Zinc(II) Catalyzed Conversion of Alkynes to Vinyl Triflates in the Presence of Silyl Triflates

Mohammed H. Al-huniti and Salvatore D. Lepore*

Department of Chemistry, Florida Atlantic University, Boca Raton, FL 33431-0991.

Table of Contents

General Information	S2
Materials	S2
General procedure	S2
Spectral Data	S 3
Formation of vinyl triflate 10a in presence of various amounts of water	S6
¹ H-NMR and ¹³ C-NMR spectra for compound 1a - 12a	S7
¹ H-NMR and ¹³ C-NMR spectra Suzuki coupling with vinyl triflate 1a	S19

General Information. Reactions were carried out under an argon atmosphere (unless otherwise stated) in oven dried glassware with magnetic stirring. Purification of reaction products was carried out using flash silica gel 40-63 μ . Analytical thin layer chromatography was performed on 0.25mm silica gel 60-F plates. Visualization was accomplished with UV light and aqueous potassium permanganate solution staining followed by air drying. ¹H NMR was recorded on a 400 MHz spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Data are reported as: (b = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet; coupling constant(s) in Hz, integration). ¹³C NMR were recorded on 100 MHz spectrometer. Chemical shifts are reported in ppm, with solvent resonance employed as the internal standard (CDCl3 at 77.16 ppm).

Materials: All reagents were purchased form commercially available sources and were used without further purification.

General procedure for the formation of vinyl triflate

In an oven dried vial containing a teflon-clad magnetic stirrer was added alkyne (1mmol), zinc (II) triflate (0.1mmol) and CDCl₃ (3 mL). To that solution was added TMSOTf (1.5 mmol) in one portion and the reaction was allowed to stir at room temperature while monitoring by ¹H NMR. After completion, silica gel (200 mg) was added (to hydrolyze excess TMSOTf) and the mixture was filtered through cotton rinsing with dry chloroform. The resulting solution was evaporated under a stream of argon then under high vacuum (0.01 torr) for 1 h.

Spectral data:

(3.3-dimethylbut-1-yn-1-yl)benzene¹: ¹H-NMR (400MHz, CDCl₃): δ 1.32 (s, 9H), 7.25-7.27 (m, 3H), 7.27-7.39 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 28.1, 31.3, 79.2, 98.7, 124.3, 127.6, 128.3, 131.7.

(3-methylbut-1-yn-1-yl)benzene²: ¹H-NMR (400MHz, CDCl₃): δ 1.39 (d, 9H), 2.8 (m, 1H), 7.26-7.29 (m, 3H), 7.40-7.42 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 21.4, 23.3, 80.0, 96.0, 124.3, 127.7, 128.4 131.8. HRMS calc. for C₁₁H₁₃ [M+H]⁺: 145.1017 Found: 145.1020

1-phenylvinyl trifluoromethanesulfonate³: ¹H-NMR (400MHz, C6D6): δ 4.85 (d, J = 4Hz, 1H), 4.89 (d, J = 4Hz, 1H), 7.41 (d, J = 8 Hz, 2H), 7.56 (d, J = 8 Hz, 2H);¹³C-NMR (100 MHz, C₆D₆): δ 105.0, OTf 118.6 (g, J_{C-F}^{1} = 318 Hz), 125.5, 128.3, 128.9, 130.2, 153.7).

1-(4-bromophenyl)vinyl trifluoromethanesulfonate⁴: ¹H-NMR (400MHz, CDCl₃): δ 4.42 (d, J = 4Hz, 1H), 5.62 (d,

Н 1a

> J = 4 Hz, 1H), 7.41 (d, J = 8 Hz, 2H), 7.56 (d, J = 8Hz, 2H), ¹³C-NMR (100 MHz, CDCl₃): δ 105.0, 118.6 (g, J_{C-F}^{1} = 318 Hz), 124.9, 126.9, 131.1, 132.3, 152.6.

1-(4-methoxyphenyl)vinyl trifluoromethanesulfonate: ¹H-NMR (400MHz, CDCl₃): δ 3.02 (s, 3H), 5.25 (d, J = 4 Hz, 1H), 5.46 (d, J = 4 Hz, 1H), 6.92 (d, J = 12 Hz, 2H), 7.48 (d, J = 12 Hz, 2H). This compound was hydrolyzed and 4'-methoxyacetopheneone was isolated; ¹H-NMR OTf $(400 \text{MHz}, \text{CDCl}_3)$: δ 2.54 (s, 3H), 3.85 (s, 3H), 6.91 (d, J = 8 Hz, 2H), 7.93 (d, J = 8 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 26.42, 55.5, 113.7, 127.9, 130.7, 163.5, 196.9. 3a

methyl 4-(1-(((trifluoromethyl)sulfonyl)oxy)vinyl)benzoate: ¹H-NMR (400MHz, CDCl₃): δ 1.04 (t, J = 7.2 Hz, 3H),

4.39 (t, J = 7.2 Hz, 2H), 5.49 (d, J = 8Hz, 1H), 7.16 (d, J = 8Hz, 1H), 7.61 (d, J = 8 Hz, 2H) 8.09 (d, J = 8 Hz, 2H);¹³C-NMR (100 MHz, CDCl₃): δ 14.8, 61.5, 106.4, 118.6(q, J_{C-F}^{1} = 318 Hz),125.4, 130.2, 132.2, 136.0, 152.6, 165.8.

¹ Cahiez, G.; Gager, O. ; Buendia, J. Angew. Chem. Int. Ed. **2010**, 49, 1278-1281.

Egi, M.: Kawai, T.: Umermura, M.: Akai, S. J. Org. Chem. **2012**, 77, 7092-7097

³ Yang, Y.; Moscetta, E. G.; Rioux, R. M.; Chem. Cat. Chem. **2013**, 10, 3005-3013.

⁴ Saulnier, M. G.; Kadow, J. F.; Tun, M. M.; Langley, D. R.; Vyas, D. M. *J Am. Chem Soc*, **1998**, 111, 8320.

hex-1-en-2-yl trifluoromethanesulfonate²⁶: ¹H-NMR (400MHz, CDCl₃): δ 0.93 (t, J = 8 Hz, 3H), 1.39 (m, 2H), 1.51 (m, 2H), 2.34 (t, J = 8 Hz, 2H), 4.93 (d, J = 4Hz, 1H), 5.09 (d, J = 4Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 13.8, 21.9, 28.2, 33.7, 104.1, 118.6 (q, $J^{1}_{C-F} = 318$ Hz), 157.2.

TfO 5a

6a

4-methylpent-1-en-2-yl trifluoromethanesulfonate: ¹H-NMR (400MHz, CDCl₃): δ 0.96 (d, *J* = 6.8 Hz, 6H), 1.85-1.95 (m, 1H), 2.2 (d, *J* = 7.2 Hz, 2H), 4.92 (dd, *J* = 3.4, 0.4 Hz, 1H), 5.12 (d, *J* = 3.2 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 21.9, 25.6, 43.3, 105.3, 118.5 (q, *J*¹_{C-F} = 315Hz), 156.2.

3,3-dimethylbut-1-en-2-yl trifluoromethanesulfonate²⁶: ¹H-NMR (400MHz, CDCl₃): δ 1.18 (s, 9H), 4.96 (d, *J* = 4 Hz, 1H), 5.06 (d, *J* = 4 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 27.6, 36.6, 99.9, 118.5 (q, *J*¹_{C E} = 318 Hz).146.6.

 $J_{C-F}^{\dagger} = 318 \text{ Hz}$, 146.6.

3-methylbut-1-en-2-yl trifluoromethanesulfonate⁵: ¹H-NMR (400MHz, CDCl₃): δ 1.16 (d, *J* = 8 Hz, 1H), 2.56

(m, 1H), 4.93 (dd, J = 1.12, 3.6 Hz, 1H), 5.07 (d, J = 3.6 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 19.9, 33.1, 101.7, 118.6 (q, $J^{1}_{C-F} = 318$ Hz), 162.3.

1-cyclohexylvinyl trifluoromethanesulfonate : ¹H-NMR (400MHz, CDCl₃): δ 1.17-1.31 (m, 6H),1.17-1.18 (m,

4H), 2.15-2.29 (m, 1H), 4.88 (dd, J = 4, 2.8 Hz, 1H), 5.05 (d, J = 4 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 25.7, 25.9, 30.4, 42.4, 101.9, 117.1, 161.6.⁶

1-phenylprop-1-en-1-yl trifluoromethanesulfonate⁷: Two isomers were observed 68:32 Z:E, for Z isomer (major)

¹H-NMR (400MHz, CDCl₃): δ 1.85 (d, *J* = 8 Hz, 1H), 5.95 (q, *J* = 8 Hz, 1H), 7.37-7.46 (m, 5H). For E isomer (minor) ¹H-NMR (400MHz, CDCl₃): δ 1.95 (d, *J* = 8Hz, 1H), 5.94 (q, *J* = 8 Hz, 1H), 7.37-7.46 (m, 5H).

⁵ Summerville, R. H.; Senkler, C. A.; Schleyer, P. V.; Dueber ,T. E.; Stang, P. J. *J. Am. Chem. Soc.* **1974**, 96, 1100.

⁶ Matsubara, S.; Hibino, J.-I.; Morizawa, Y.; Oshima, K.; Nozaki, H. J. Organomet. Chem. **1985**, 285, 163.

⁷ Luan, L.; Song, J-S. ; Bullock, M. *J. Org. Chem*. **1995**, 60, 7170.

3-methyl-1-phenylbut-1-en-1-yl trifluoromethanesulfonate¹H-NMR (400MHz, CDCl₃): δ 1.09 (d, J = 4Hz, 6H),

2.54 (m, 1H), 5.67 (d, 1H), 7.36-7.44 (m, 5H);¹³C-NMR (100 MHz, CDCl₃): δ 23.0, 27.5, 118.6 (q, J_{C-F}^{1} = 318 Hz), 126.0, 128.7, 128.9, 130.0, 131.2, 145.6.

Spectral data for Suzuki coupling products:

1-methoxy-4-(1-phenylvinyl)benzene⁹: (74% two step yield); 1H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 5H),

7.26 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8 Hz, 2H), 5.38 (d, J = 1.2 Hz, 1H), 5.34 (d, I = 1.2 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 55.36, 113.0, 113.6, 127.8, 128.2, 128.4, 129.5, 134.0, 141.9, 149.6, 159.4; HRMS calc. for C₁₅H₁₅O [M+H]⁺: 211.1117. Found: 211.1118

1-chloro-4-(1-phenylvinyl)benzene¹⁰: (71% two-step yield); ¹H-NMR (400MHz, CDCl₃): δ 5.47 (s, 1H), 5.49 (s,

1H), 7.28-7.35 (m, 8H);¹³C-NMR (100 MHz, CDCl₃): δ 114.8, 128.0, 128.3, 128.4, 128.5, 129.7, 133.7, 140.1, 141.1, 149.1.

⁸ Meng, L.; Su, J.; Zha, Z.; Zhang, L.; Zhang, Z.; Wang, Z. *Chem. Eur. J.* **2013**, 19, 5542-5545

⁹ Alacid, E.; Najera, C. *J. Org. Chem*. **2008**, 73, 2315

¹⁰ Zou, Y.; Qin, L.; Ren, X.; Lu, Y.; Li, Y. Zhou, J. *Chem Eur. J.* **2013**, 3504-3511.

The spectra show the formation of vinyl triflate **10a** in reactions containing varying amounts of water after 3 h (Table 4). With high vacuum dried $Zn(OTf)_2$ and no added water, the reaction gives low conversion to product though in a 3:1 *Z*:*E* ratio. With 0.50 eq of water, 90% conversion is achieved but the *Z*:*E* ratio is reduced to 1.2:1. Larger amounts of water (1.5 eq) actually led to reduced conversion (70%) and a complete loss of *Z*:*E* selectivity.

