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Additional Methods 

Molecular dynamics force field details 

Topologies compatible with the Martini1,2 coarse-grain (CG) model were built for all five 

phytochemicals used in this work. CG to atomistic structural mapping, shown in Supporting Fig. 

S5, was chosen according to the chemical composition of the compounds. The chemical nature 

of the underlying atomistic building blocks guide the selection of appropriate CG bead types to 

best match the atomistic properties2. Bond, angle and dihedral potentials were calibrated to 

reproduce the corresponding distributions extracted from atomistic resolution simulations. The 

GROMOS 53A63 force field was used in the atomistic simulations and the topologies were 

generated for all the phytochemicals using the Automated force field Topology Builder (ATB)4. 

Each compound was simulated for 100 ns in a box of SPC water using the GROMACS 4.x 

simulation package5,6 and standard GROMOS 53A63 parameters e.g. 2 fs time step, Berendsen 

thermostat (310 K, τT = 0.1 ps) and barostat (1 bar, κP = 4.6e-5 bar−1, τP = 0.5 ps)7, and the 

relative permittivity of the reaction-field set to 62. The CG Martini topologies can be found via 

www.cgmartini.nl.  

 

Molecular dynamics simulation details  

All CG simulations were done using the GROMACS 4.x simulation package5,6, a time step of t = 

20 fs and the standard Martini simulation parameters1,2. The temperature and pressure were 

controlled using the Berendsen thermostat and barostat7. The temperature was kept at 310 K with 

a τT = 1.0 ps and the pressure at 1 bar using a semi-isotropic pressure scheme with 

compressibility κP = 3e-4 bar−1 and relaxation time τP = 2.0 ps. For calculating the 

phytochemicals bilayer density and changes to the lateral pressure profile the phytochemicals 

were placed in the water phase above a pre-equilibrated CG 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) bilayer in a 1:10 lipid to phytochemical mol ratio. Each simulation was 

run for 2.5 µs and the last 2 µs were used for analysis. Bilayer thickness was measured as the 

average distance between the POPC phosphate (PO4) head group beads in the opposing bilayer 
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leaflets and the area per lipid as the average bilayer area divided by the number of lipids per 

leaflet. Average tail order is the average second-rank order parameter (P2) for the tail and tail 

lipid backbone bonds. The P2 and apparent area compressibility (KA) were calculated as 

described by Marrink et al.1, without correcting for membrane undulations. The lateral pressure 

profiles were determined using a modified version of the GROMACS package, which is 

available via www.gromacs.org and follows a formalism described previously8,9. Briefly, the 

lateral pressure, π(z), may be obtained as the difference between the lateral, PL, and normal, PN, 

components of pressure tensor, that is: PL=(PXX+PYY)/2 and PN=PZZ. In practice the system is 

first divided into a 3D grid with a 0.3 nm cell size. The local pressure tensor is then analyzed for 

each grid point and averages are calculated for x,y plane along the normal of the bilayer (z-axis). 

The bilayer bending modulus (Kc) was estimated using Evans polymer brush model10, according 

to the formula Kc=(KA*(bilayer thickness)2)/24, and the lipid spontaneous curvature (K0m) and 

the bilayer elastic ratio are based on the first and second moments of the lateral pressure profile, 

as described in11, see results in Supporting Table S2. 

To quantify the phytochemicals’ changes to the bilayer deformation energy the potential 

of mean force (PMF) of dragging a large bead across a CG POPC bilayer was measured, with 

and without the phytochemicals. A Lennard-Jones (LJ) particle was used as a probe and was 

designed to interact strongly with the Martini beads representing the choline, phosphate and 

glycerol groups in POPC (Q0, Qa and Na bead types) and weakly with everything else (including 

all the phytochemicals). The LJ parameters are σ = 0.92 nm for both the weak and strong 

interactions and ε = 5.0 and 200 kJ/mol for the weak and strong interactions, respectively. Note, 

however, that due to the shift function used with Martini2,12, the effective deepest well depths are 

0.12 and 4.62 kJ/mol for the weak and the strong interactions, at a bead-to-bead distance of r = 

1.07 nm. The pulling simulations were run with the same parameters as described above, except 

that the velocity rescale thermostat13 (T = 298 K, τt = 1.0 ps) and Parrinello-Rahman barostat (P 

= 1.0 bar, τp = 4.0 ps) was used. The initial bilayer patch was created using an in-house script 

(insane.py) and consisted of 132 lipids in both monolayers at a hydration level of ~50 waters 
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(~12.5 CG water beads) per lipid. 13 phytochemical molecules were added to each monolayer, 

~10 mol%. Systems were equilibrated for 500 ns with the probe restrained at the starting position 

(4 nm from the bilayer center). Next, the probe was pulled through the bilayer at a rate of 8•10-5 

nm/ps, using a harmonic restraining potential of 1000 kJ/(mol nm2). From these simulations 81 

frames were extracted with the probe particle equally spaced between -4 – 4 nm distance from 

the bilayer center. These frames were subsequently used as starting structures for 100 ns 

simulations at each PMF window, during which the bead was restrained at a constant position 

using the same harmonic potential. The windows were analyzed using the implementation of the 

weighted histogram method (WHAM) as described in14. The Bayesian histogram bootstrapping 

method was applied, using 100 bootstrap iterations, where the histograms are weighted with their 

respective autocorrelation times. The profiles were set to zero and symmetrized around the 

bilayer center. The statistical errors obtained from the WHAM analyses can be considered as a 

lower bound for the error, however a better indication might be the asymmetry in unsymmetrized 

profiles (Supporting Fig. S2c). When pulling the probe through the bilayer a few phytochemicals 

occasionally flip between the leaflets (monolayers), see Supporting Fig. S2a. On average, for all 

windows, the ratio of phytochemicals in the leaflets is close to unity (Supporting Fig. S2a 

legend). To check for lateral rearrangement of the phytochemicals when the probe enters the 

bilayer we looked at the radial distribution function of the phytochemical in the XY-plane with 

respect to the probe. The averaged windows for when the probe was in the bilayer interface or in 

the aqueous phase, Supporting Fig. S2d shows this for resveratrol. For all the phytochemicals the 

XY-distribution is flat before the probe comes close to the bilayer. When the probe is at the 

bilayer interface the phytochemicals redistribute away from the probe. In these simulations we 

were not able to measure any significant accumulation of phytochemicals around the probe. 

Phytochemical preferential orientation relative to the probe was also not observed. 

To check the distribution of the phytochemicals in the bilayer, and their effects on bilayer 

properties as estimated from the CG simulations, short POPC atomistic simulations were run 

without and with the phytochemical (at a 1:10 phytochemical to lipid molar ratio). The same 
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atomistic parameter and force fields described in the Molecular dynamics force field details 

section, above, were used with the addition of POPC parameters, which were generously 

provided by Alex H. Vries (topologies available on demand). The last frame of the 2.5 ms long 

CG simulations was backmapped into atomistic coordinates using the reverse transformation 

method of Wassenaar et al.15 and each condition simulated for 250 ns. Average properties were 

calculated from the last 200 ns of the simulation in the same manner as in the CG simulations 

except the phosphate-phosphate distance was used to estimate bilayer thickness. Lateral density 

profiles are shown in Supporting Fig. S3 and all average bilayer properties are reported in 

Supporting Table S2 (provided in a separate Excel file). Please note the phytochemicals force 

field were generated by ATB with little manual curation and therefore these simulations should 

only be considered as support for the CG results and to provide an overall indication of the 

bilayer effects of the phytochemicals and not as detailed studies on their nature. 

 

Continuum model estimates 

The required changes in bilayer material properties to increase gA function by 10 fold were 

estimated using the continuum elastic model of Nielsen and Andersen16,17. A changes in gA rate,

 (free energy difference for the transition between gA monomers and dimmers) of 10, 

meaning that  is changed be <6 kJ mole-1. In a bilayer with a bilayer hydrophobic 

thickness of 3.4 nm18 (the DC22:1PC vesicles in the gA based fluorescence assay), a gA dimer 

with a hydrophobic length of the 2.2 nm19-21, a bilayer spring constant (HB) of ~100 kJ 

(mole⋅nm2)-1, a contact slope at inclusion-bilayer boundary (s) of 0, and the other parameters as 

described in17 the  is ~140 kJ mole-1. From the continuum elastic model, if we look at 

changes in a few of the bilayer material properties in isolation: HB needs to change by only ~4% 

to account for the observed results, the hydrophobic thickness by ~1%, the area compressibility 

(KA) by ~5%, and the bilayer bending modulus (Kc) by ~10%. Which is in line with the modest 

changes in average bilayer properties observed in the MD simulations. By using the 

phytochemicals average change in bilayer properties from the CG simulations (a reduction in 

   
ΔGbilayer

M→D

   
ΔΔGbilayer

M→D

   
ΔGbilayer

M→D



Ingólfsson	
  et	
  al.	
  Supporting	
  Information	
   	
   Page	
  S6	
  of	
  24	
  
Promiscuous	
  Phytochemicals	
  

bilayer thickness by ~1%, KA by ~4% and Kc by ~5%) the continuum elastic model predicts a 

reduction in  by ~12 kJ mole-1. 

 

Additional Discussion 

Membrane Protein-Lipid Bilayer Coupling 

Changes in membrane protein reflect changes in the energetic (and kinetics) of protein 

conformational transitions. Limiting the discussion to the energetics, the free energy difference 

for the transition between two protein conformations, I and II, ( ) is the sum of energetic 

contributions from rearrangements within the protein ( ) and from the ensuing different 

packing of the surrounding lipid bilayer, e.g.22,23, ( ), where  

denotes the bilayer deformation energy associated with each membrane protein conformer. The 

phytochemicals alter  (and ) when they partition into the lipid bilayer/solution 

interface24-27. The phytochemical-imposed changes in membrane protein function thus will 

depend not only on any changes in , but also on the changes in the protein/bilayer 

boundary associated with the conformational transitions underlying protein function, as well as 

the specific lipid environment⎯that is, the relative changes in  and , and thus the 

change in . It therefore is not surprising that the magnitude, and even the direction, of the 

changes in a given phytochemical’s effects will vary among different membrane proteins. 

Only in the case of the gramicidin, and maybe the MscL, channels is there sufficient 

information about the transitions underlying the changes in channel function to allow a more 

detailed interpretation. In the case of the gramicidin channels, the hydrophobic length of the 

conducting channels (~2.2 nm19-21) is less than the host bilayer hydrophobic thickness (4.0 nm 

for DC18:1PC/n-decane planar bilayers27 and 3.4 nm for the hydrocarbon-free DC22:1PC 

membranes 18), and increases in bilayer elasticity will decrease the bilayer contribution to the 

free energy of dimerization. In the case of MscL, the hydrophobic length of the open state of the 

channel is less than that of the closed state, (cf. 28-30. One would thus expect that the 

phytochemical-induced increases in lipid bilayer elasticity would stabilize the open state, 
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contrary to what is observed. The most likely reason for this “discrepancy” is that the 

phytochemicals increase in the energetic cost of increasing the MscL cross-sectional area that is 

associated with channel opening31.  
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Table S1. Membrane proteins known to be affected by phytochemicalsa 
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5-Hydroxytryptamine receptor 3A (5-
HT3A)     +32 

ATP-sensitive K+ channels (KATP)  *33 -34 ±35,36 -37 
Ca2+ release-activated Ca2+ channel 
(CRAC) -38 -39    
Cystic fibrosis transmembrane 
conductance regulator (CFTR) +40 +41-44  ±45,46 +47 

Epidermal growth factor receptor 
(EGFR / HER) ±48,49 -50,51 */-52,53 -54 *55 

Estrogen Receptor  *56 *57 *58 *59,60 
Fibroblast growth factor receptor 
(FGFR)   -53 *61 

FOF1-ATPase/ATP synthase  -62 -62 -62 -62 
Glycine receptors    -63  

Gramicidin A (gA) +64,CA +65,CA 
+52,66, 

CA +67,CA +CA 

hERG K+ channels -68 -69,70 -71 -72  Human epidermal growth factor receptor 
2 (ErbB2/HER2) *73 -74 -53 -75 -76 
Ileal apical Na+ bile acid transporter 
(ASBT)   -77   
Inositol triphosphate receptor (InsP3R) 

 -78    
Insulin receptors (IR) 

 +79    Insulin-like growth factor-1 receptor 
(IGF-1R)   -53   
Kir2.3 inwardly-rectifying K+ channel 

   -80  
KV1.1 K+ channels -81    *82 
KV1.2 K+ channels -81     KV1.3 K+ channels -81 -83  -84 -85 
KV1.4 K+ channels 

 -86  -87  KV1.5 K+ channels -81  -88 -88 *89 
KV2.1 K+ channels -CA -CA -CA -CA  KV3.1 K+ channels -81     KV4.3 K+ channels 

   -90  KV7.1 K+ channels - KvLQT1/minK 
  -91   L-type Ca2+ channels ±92 -93 -91 -94 -95 

Large-conductance Ca2+ activated K+ 
channels (BK/Maxi-K) *96   +97 +98 
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Mechanosensitive channels of large 
conductance (MscL) -CA -CA -CA -CA -CA 
Membrane-anchored disintegrin-type 
metalloproteinase (ADAM17) -CA     
Mitochondrial permeability transition 
pore (MPTP)  +99,100  +101 +102 

Na+/Ca2+ exchanger 
  

±103, 

104   
Na+/H+ exchanger 

  +103   
P-glycoprotein (Pgp) / ABC-transporter ±105, 

106 
-105,107-

109 -110 -106 -105 
Peroxisome proliferator-activated 
receptor-γ	
  (PPARγ)  +51    
Platelet-derived growth factor receptor 
(PDGF-R)  -111 -53 -112 -113 
Ryanodine receptor type 2 (RyR2) 

  +104   Sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA) *114 -115 ±116  *117 
Small conductance K+ channel (SK) 

   +118  
Transient receptor potential (TRP) 
channels 

+119,120, 

121,122 
+123,12

4 +125 +126 -127 
Two-pore K+ channels (KCNK) 

 -128,129  -130  
Vascular endothelial growth factor 
(VEGF)  -131 -53, 

132,133 -134 -133 

Voltage-sensitive Na+ channels (NaV) -64,135-

137, CA  
-91,138, 

CA -139,CA -140,CA 
β₂-adrenoceptor 

 +79     

aPhytochemicals alter the function of many different membrane proteins. This table provides 

only an overview of the range of effects because the selected five phytochemicals are extensively 

studied (with hundreds of publications per year for each compound) and some reported 

membrane protein interactions are therefore missing. (+) indicates activation or up-regulation, (–

) indicates inhibition or down-regulation, (*) indicates “interaction,” (±) indicates biphasic dose 

response curve or both activation and inhibition reported and no symbol means that we are not 

aware of existing data. The phytochemicals’ reported activity is followed by original articles 

and/or review article citation or CA for current article.  
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Figure S1. Phytochemicals alter the physical properties of simulated phospholipid bilayers. The 

phytochemicals’ effects on CG 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

bilayers were explored using CG Martini simulations at 1:10 lipid mol ratio. (a-d) Bulk bilayer 

properties, avg ± sd. (e) Lateral density of equilibrium simulations. For clarity, the density of 

POPC head and backbone are scaled by 1.5 and the phytochemicals are scaled by 2. (f) POPC 

lateral pressure profiles with and without phytochemicals, also showing the pressure profile for 

CG 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) for comparison. 
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Figure S2. Phytochemicals reduced the energy required to perturb bilayers. To evaluate the 

phytochemicals’ effect on the energy required to perturb the bilayer a large bead (radius 0.9 nm) 

was dragged across a CG POPC bilayer with and without 1:10 lipid mol ratio of the 

phytochemicals and the PMF calculated. (a) Ratio of phytochemicals between the two 

monolayers (leaflets) for each window of the potential of mean force (PMF) simulations. Avg ± 
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sd across all windows are listed for each phytochemical. (b) Lateral density, indicated as density 

width at half maximum, shown for: water (W), POPC lipid head groups (H), backbone (B), tails 

(T) and for the phytochemicals. Calculated across all windows of the PMF simulations. (c) 

Unsymmetrized PMF for dragging the bead through the bilayer. The bilayer normal is set to the 

Z-axis with zero at the center of the bilayer. (d) Radial distribution function of the resveratrol 

molecules in the XY-plane with respect to the probe (the large bead). Out of the bilayer (black) 

curves are averages over PMF windows 0-8 and 72-80 where the probe is far enough out of the 

bilayer to not influence the distribution of the phytochemicals. The upper (red) and lower (blue) 

leaflet interface curves represent resveratrol molecules in the upper and lower leaflet when the 

probe is in the corresponding leaflet.    
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Figure S3. Bilayer localization of the phytochemicals from atomistic simulations. Lateral 

density of the phytochemicals embedded in a POPC bilayer 1:10 lipid mol ratio, results from 

atomistic simulations. For clarity, the density of POPC head and backbone are scaled by 1.5 and 

the phytochemicals are scaled by 2. 
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Figure S4. Effects of resveratrol on gA channel activity. (a) Single channel current traces 

showing gA channel activity in DOPC/n-decane bilayer with 0, 10 and 30 µM resveratrol. (b) 

Current transition amplitude histogram with 0, 10 and 30 µM resveratrol for gA-(13) (left peak) 

and AgA(15) (right peak). (c) Normalized single channel survivor histograms for gA-(13) (top) 

and AgA(15) (bottom), fitted with a single exponential distribution (red line) given by N(t)/N(0) 

= exp{-t/τ}. 1.0 M NaCl, 10 mM HEPES pH 7.0, 25 °C, ±200 mV, 500 Hz.   
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Figure S5. CG mapping schema for the phytochemicals. For each of the five phytochemicals the 

CG Martini representation is shown on top of the atomistic structure. The CG beads (cyan 

spheres) are placed roughly at the center of the group of atoms they represent. All CG bonds are 

depicted with a black line.   
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