

Supplementary Materials for

Up-Regulation of PD-L1, IDO, and T_{regs} in the Melanoma Tumor Microenvironment Is Driven by CD8⁺ T Cells

Stefani Spranger, Robbert M. Spaapen, Yuanyuan Zha, Jason Williams, Yuru Meng, Thanh T. Ha, Thomas F. Gajewski*

*Corresponding author. E-mail: tgajewsk@medicine.bsd.uchicago.edu

Published 28 August 2013, *Sci. Transl. Med.* **5**, 200ra116 (2013) DOI: 10.1126/scitranslmed.3006504

The PDF file includes:

Fig. S1. Costaining of CD4 and FoxP3 in human melanoma sections.

Fig. S2. Expression level of IDO, PD-L1, and MHC I/II in B16 tumors in vitro and in vivo.

Fig. S3. Lack of T_{reg} conversion from CD25-depleted T cells.

Fig. S4. Characterization of TILs compared to in vitro-primed CD8 T cells.

Fig. S5. CCR4 expression on human CD4 T cells and T_{regs} .

Fig. S6. Suppressive functional capacity of human $CD25^{hi}$ T_{regs}.

Suppl. Fig 1

Figure S1. Costaining of CD4 and FoxP3 in human melanoma sections. Immunohistochemistry staining for CD4 (blue) and FoxP3 (brown) in human melanoma tissue samples (400x). Left panel depicts zoom-in images out of the tumor shown on the right. All FoxP3⁺ cells were identified to have detectable CD4 staining.

Α

Suppl. Fig 2

Figure S2. Expression level of IDO, PD-L1, and MHC I/II in B16 tumors in vitro and in vivo. A-B. Quantitative RT-PCR for IDO and PD-L1 comparing parental B16 untreated (B16) or treated with IFN- γ (B16-IFN- γ) to in vivo injected B16 cell either into wild type mice (WT) or CD8depleted mice (CD8-depl). C-D. Flow cytometric analysis of MHC-class I (C) and MHC-class II expression (D) assessed in B16-tumors transplanted either in wild type (WT), IFN- γ -knock out (IFN- γ -KO) or CD8-depleted mice (CD8-depl).

Suppl. Fig 4

Figure S4. Characterization of TILs compared to in vitro-primed CD8 T cells. A. CCR4 expression on Tregs, isolated from spleen (black open line) or tumor (grey open line), was compared to the expression on CD8⁺ tumor-infiltrating lymphocytes (tinted line). B. Expression

of CCL17 in CD3/CD28-activated naïve CD8⁺CD62L⁺ lymphocytes was assessed using quantitative RT-PCR. Depicted is fold-change of 6h-activated, primed (7-day stimulation) and restimulated primed cells (primed 6h-stim) relative to naïve cells. Tumor-infiltrating CD8⁺ T cells were isolated via fluorescence-activated cell sorting and analyzed for the expression of CCL17 with expression being below detection levels (n.d.). Data are shown in mean with SEM (n=3). C. Amount of secreted CCL22 was assessed using a CCL22-specific ELISA. Supernatants analyzed were harvested from non-stimulated cells (naïve) or CD3/CD28 stimulated cells (6h-stim) as well as 7-day stimulated cells (primed) and restimulated primed cells (primed 6h-stim). Depicted are means with SEM (n=2).

Figure S5. CCR4 expression on human CD4 T cells and T_{regs}. Human CD25 ^{hi}CD4⁺ T cells express CCR4. Flow cytometry was performed using an anti-CCR4 mAb after flow cytometric sorting of CD4⁺CD25⁺ T cells from normal donor PBMCs.

Figure S6. Suppressive functional capacity of human $CD25^{hi} T_{regs}$. Human $CD25^{hi}CD4^{+} T$ cells show suppressive function against $CD4^{+}$ and $CD8^{+}$ conventional T cells in vitro. Sorted $CD25^{dim}$ cells are shown for comparison.