-Supporting Information for-

Systematic comparison of sets of ¹³C NMR spectra that are potentially identical. Confirmation of the configuration of a cuticular hydrocarbon from the cane beetle *Antitrogus parvulus*

Norazah Basar,^a Krishnan Damodaran^b Hao Liu,^c Gareth Morris,^c Hasnah M. Sirat,^a and Eric J. Thomas,^c* Dennis P. Curran^b*

a) Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia Skudai, 81310 Skudai, Johor Bahru, Malaysia, b) Department of Chemistry, University of Pittsburgh,

Pittsburgh, Pennsylvania 15260, USA, and c) School of Chemistry, University of Manchester, Manchester, M13 9PL, UK

E-mail: e.j.thomas@manchester.ac.uk, curran@pitt.edu

Table of Contents

General experimental procedures	2
Experimental information for NMR spectra	3
General procedure to find the probe temperature of a previously recorded sample	4
Copies of NMR spectra	5

General experimental procedures

¹H and ¹³C NMR spectra were recorded with residual non-deuterated solvent as the internal standard. Coupling constants are rounded to the nearest 0.5 Hz. IR spectra were recorded on an an FTIR as thin films produced by evaporation of a DCM solution on sodium chloride plates unless otherwise stated. Chemical ionisation (CI) in MS was performed using ammonia. Chromatography refers to flash column chromatography using silica gel (230-300 mesh).

Tetrahydrofuran (THF) was dried and distilled from sodium metal using benzophenone as an indicator under an atmosphere of nitrogen. Dichloromethane (DCM) was dried and distilled from calcium hydride under an atmosphere of nitrogen. Ether refers to diethyl ether, which was dried and distilled from sodium metal using benzophenone as an indicator under an atmosphere of nitrogen. Light petroleum refers to the fraction of petroleum ether distilled between 40–60 °C. Benzene and hexane were dried over sodium metal. Butyllithium (1.6 M in hexanes) was titrated against a solution of propan-2-ol in xylene with 2,2'-bipyridine as an indicator. Triethylamine and diisopropylamine were dried over potassium hydroxide pellets. Brine refers to saturated aqueous sodium chloride. Anhydrous cerium(III) chloride was prepared by heating the heptahydrate overnight at 80 °C under reduced pressure and was stored under an atmosphere of N₂.

Experimental information for NMR spectra

All the ¹³C NMR data that were used for the analysis were collected on a 700 MHz NMR spectrometer at ¹³C frequency of 176.03 MHz. The sample temperature was maintained at 293 or 298K at a precision of ± 0.1 K using a temperature controller. The samples were equilibrated for about 30mins prior to acquisition. A narrow spectral width (SW) of about 94 ppm was used to improve resolution when the number of acquisition data points are kept the same. 32K data points (TD) were acquired, which were zero-filled to 128k (SI) before processing. Traficante apodization function was used with a lb value of 0.4 Hz to improve resolution further. Line widths at half height of the ¹³C NMR peaks range from 0.7 to 1Hz. For samples 2 and 4, ¹³C NMR data was collected twice each (one week apart) at both 293 and 298K for reproducibility. They were reproducible to a level of about \pm 1ppb.

General procedure to estimate the sample temperature of a previously recorded spectrum.

The temperature of the sample in a ¹³C NMR experiment is not necessarily the same as the temperature of the probe (the radiofrequency irradiation used for broadband ¹H decoupling will generally raise the temperature significantly), and the temperature of the probe is not necessarily the temperature indicated or set by the spectrometer hardware (calibration accuracy is rarely better than \pm 1 °C). Sample temperature is therefore necessarily uncertain (unless independently measured), and some method for correcting the effects of uncontrolled differences in temperature between samples is needed.

The procedure described here is for the case where the "same" resonances of the candidate samples match each other but not the natural product. The expectation is that the natural product spectrum was recorded at a different sample temperature. To identify this temperature, change the probe temperature of the synthetic samples by some small value (perhaps 3-5 K), then repeat the subtraction of the "same" group of resonances. If the absolute values of the subtraction values of S/R and the NP all get smaller, then temperature dependence is the problem and you changed the probe temperature in the right direction. If the absolute values of the subtraction values of S/R and the NP all get larger, then temperature dependence is again the problem, but you changed the probe temperature in the wrong direction. Temperature effects on chemical shifts are usually linear over small temperature changes, so a two-point line can now be plotted for each resonance and values of the natural product spectrum can be placed on the line to estimate the sample temperature. To confirm, record the spectra of the synthetic samples at the estimated temperature of the natural product sample. All the "same" values of NP will have zero difference or a small, constant difference (the calibration error) with S/R. Now you have learned the temperature of the natural product spectrum – or rather, the nominal temperature to which the probe in this spectrometer has to be set to obtain the same actual sample temperature as the NP sample.

HL102–006 mPROTON CDCl3 /opt/bruk500data/2010/Dec ejt 9

BRUKER

HL102–007 mPROTON CDCI3 /opt/bruk500data/2010/Dec ejt 10

Me OTBS

7

HO

10

9

8

7

1.27

6

	4 3	2 1	O ppn	
			INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 ======= NUC1 P1 PL1 PL1W	<pre>spect 5 mm TXI 1H/D- zg30b 65536 CDCl3 16 0 10330.578 Hz 0.157632 Hz 3.1719923 sec 161 48.400 usec 13.38 usec 293.0 K 1.00000000 sec 1 CHANNEL f1 ======= H 8.20 usec 3.25 dB 12.12272263 W</pre>
e la Antonia	tin - Starky		EXPNO PROCNO Date_	2010-12-23-EJC-10 10 20101223

 $\mathcal{L}_{\mathbf{k}}$

02/12/2010 11:34:16

Acquisition Time (sec)	1.1010	Comment	HL046-001 mCARBON CDCl3 /opt/bruk500data/2009/Oct ejt 51			
Date	16 Oct 2009 17:04:00	Date Stamp	16 Oct 2009 17:04:00			
File Name	E:\Postgraduate Database\Experiment Database\Experiment 1-50\HL046 - Deiodination and deprotection\13CNMR - HL046-001_000001r					
Frequency (MHz)	125.76	Nucleus	13C			
Number of Transients	256	Origin	spect			
Original Points Count	32768	Owner	vnmr1			
Points Count	32768	Pulse Sequence	zgpg30			
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90			
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12575.3066			
Sweep Width (Hz)	29761.00	Temperature (degree C)	20.001			

E:\Postgraduate Database\Experiment Database\Experiment 1-50\HL046 - Deiodination and deprotection\13CNMR - HL046-001_000001r

E:\Postgraduate Database\Experiment Database\Experiment 101-150\HL102 - Project Intermediate Characterization\HL102-010\13C NMR\13C NMR_010000fid

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ HL102-011 mCARBON CDCl3 /opt/bruk500data/2011/Jan ejt 21

Acquisition Time (sec)	1.1010	Comment	HL102-011 mCARBC	N CDCl3 /opt/bruk500data	/2011/Jan ejt 21	Date	17 Jan 2011 17:29:36
Date Stamp	17 Jan 2011 17:29:36					L	
File Name	\\ss7a.ds.man.ac.uk\w	ol5\vol3\users\snmrdata\bru	.k500data\bruk500data\	2011\Jan\data\ejt\nmr\2011	I-01-17-ejt-21\11\fid	Frequency (MHz)	125.76
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	vnmr1	Points Count	262144	Pulse Sequence	zgpg30	Receiver Gain	512.00
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12575.3066	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.79	Temperature (degree C) 25.029				

ejt

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ HL102-011 mCARBON CDCl3 /opt/bruk500data/2011/Jan ejt 21

Acquisition Time (sec)	1.1010	Comment	HL102-011 mCARBO	V CDCl3 /opt/bruk500data/	2011/Jan ejt 21	Date	17 Jan 2011 17:29:36
Date Stamp	17 Jan 2011 17:29:36						
File Name	\\ss7a.ds.man.ac.uk\vo	ol5\vol3\users\snmrdata\bru	k500data\bruk500data\2	011\Jan\data\ejt\nmr\2011-	-01-17-ejt-21\11\fid	Frequency (MHz)	125.76
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	vnmr1	Points Count	262144	Pulse Sequence	zgpg30	Receiver Gain	512.00
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12575.3066	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.79	Temperature (degree C) 25.029				

ejt

HL102-012 mPROTON CDCI3 {e:\bruk400data\2011\Jan} ejt 29

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL089 - LHS synthesis\HL089-002\13CNMR - HL089-002_011001r

HL048-001 mPROTON CDCI3 {e:\bruk400data\2009\Oct} ejt 23

HL048-002 mPROTON CDCI3 {e:\bruk400data\2009\Oct} ejt 1

de.

01/03/2011 16:37:09

01/03/2011 16:37:35

Acquisition Time (sec)	1.3631-	Comment	H. Liu 0610-012 HL089-003	mCARBON CDCI3 (E:\bru	k400service_data\2010\Jun} Administrator 45
Date	08 Jun 2010 08:00:16	Date Stamp	08 Jun 2010 08:00:16		
File Name	C:\Users\Leo\Desktop\Exp	riments Folder\Experiment	101-150\HL102 - Project Inte	ermediate Characterization	\HL102-013\13CNMR - HL089-003\10\fid
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	14336
Origin	AV400_S	Original Points Count	32768	Owner	Administrator
Points Count	262144	Pulse Sequence	zgpg30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Spectrum Type	STANDARD	Sweep Width (Hz)	24038.37	Temperature (degree C)	26.100

02/12/2010 11:00:13

Acquisition Time (sec)	1.3631							
Comment	H.Liu 0610-016 HL0089-004 mCARBON CDCl3 {E:\bruk400service_data\2010\Jun} Administrator 53							
Date	10 Jun 2010 07:00:16	Date Stamp	10 Jun 2010 07:00:16					
File Name	E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL089 - LHS synthesis\HL089-004\13CNMR - HL089-004_010001r							
Frequency (MHz)	100.64	Nucleus	13C					
Number of Transients	17408	Origin	AV400_S					
Original Points Count	32768	Owner	Administrator					
Points Count	32768	Pulse Sequence	zgpg30					
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46					
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	9960.0313					
Sweep Width (Hz)	24037.73	Temperature (degree C)	26.000					

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL089 - LHS synthesis\HL089-004\13CNMR - HL089-004_010001r

<u>S2</u>

HL089–005 mPROTON CDCI3 /opt/bruk500data/2010/Jun ejt 18

Acquisition Time (sec)	1.3631						
Comment	H. Liu 0610-022 HL089-005 mCARBON CDCl3 {E:\bruk400service_data\2010\Jun} Administrator 22						
Date	16 Jun 2010 07:13:04	Date Stamp	16 Jun 2010 07:13:04				
File Name	E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL089 - LHS synthesis\HL089-005\13CNMR - HL089-005 010001r						
Frequency (MHz)	100.64	Nucleus	13C				
Number of Transients	11264	Origin	AV400_S				
Original Points Count	32768	Owner	Administrator				
Points Count	32768	Pulse Sequence	zgpg30				
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46				
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	9960.1025				
Sweep Width (Hz)	24037.73	Temperature (degree C)	24.900				

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL089 - LHS synthesis\HL089-005\13CNMR - HL089-005_010001r

3/2/2011 3:40:46 PM

Acquisition Time (sec)	3.9649	Comment	HL102-016 mPROTON	CDCl3 {e:\bruk400data\20	11\Jan} ejt 57	Date	30 Jan 2011 20:07:28
Date Stamp	30 Jan 2011 20:07:28	File Name	C:\Users\Leo\Desktop\I	Experiments Folder\Experin	nent 101-150\HL102 - F	roject Intermediate Charact	terization\HL102-016\1H NMR\fid
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	AV400
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b
Receiver Gain	362.00	SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2434.2427
Spectrum Type	STANDARD	Sweep Width (Hz)	8264.21	Temperature (degree C)	19.100		
^{0.85} ∃1H NMR.esp	VerticalSc	aleFactor = 1					
0.80			.				
0.75-				ì			
0.70			Me Me Me	Me		• •	
0.65			20	~ ~	·		
0.60							
0.55				·			
0.50 H							
		2					
∂ 0.35					4 		
0.30-							
0.25			,				
0.20							
0.15							
0.10			,		 		
0.05				I	A		
U		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****				
9.0 8.4	5 8.0 7.5	7.0 6.5	6.0 5.5	5.0 4.5 4.0 Chemical Shift (ppm)	3,5 3.0	2.5 2.0	1.5 1.0 0.5 0

02/03/2011 17	:26:38
---------------	--------

16.80

19.54 19.52

14.40

יירן הדרו הרויי 12 10

Acquisition Time (sec)	1.3631	Comment	H Liu 0111-019 HI102-016 mCARBON CDCI3 (E:\bruk400service_data\2011\Feb} Administrator 60						
Date	02 Feb 2011 07:13:04	Date Stamp	02 Feb 2011 07:13:04						
File Name	C:\Users\Leo\Desktop\Experiments Folder\Experiment 101-150\HL102 - Project Intermediate Characterization\HL102-016\13C NMR\fid								
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	16384	Origin	AV400_S		
Original Points Count	32768	Owner	Administrator	Points Count	262144	Pulse Sequence	zgpg30		
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350		
Spectrum Type	STANDARD	Sweep Width (Hz)	24038.37	Temperature (dearee C)	25.400				

.

30 28 Chemical Shift (ppm)

02/03/2011 17:26:46

Acquisition Time (sec)	1.3631	Comment	H Liu 0111-019 HI102-01	6 mCARBON CDCl3 {E:\br	uk400service data\2011\Fel	b) Administrator 60	
Date	02 Feb 2011 07:13:04	Date Stamp	02 Feb 2011 07:13:04		······································	*	
File Name	C:\Users\Leo\Desktop\Exp	eriments Folder\Experime	ent 101-150\HL102 - Project	Intermediate Characterization	on\HL102-016\13C NMR\fid		
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	16384	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	262144	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Spectrum Type	STANDARD	Sweep Width (Hz)	24038.37	Temperature (degree C) 25.400		
Spectrum Type 13C NMR.esp 0.40 0.35 0.30 0.30 0.25 0.20 0.15	STANDARD VerticalScale	Sweep Width (Hz) Factor = 1	24038.37	Temperature (degree C	25.400		
0.10		·	·				
0.05	nadara dan Kafara da Manang Mangana da Manang Mangana Manang Manang Mangana Manang Manang Manang Manang Manang Manang Mangana da Manang Ma	n hiji umah baijini afa sikana kan da sa ka s		ý nýmedo y felony de meň jedno na kolý do kolý da o most baleste v repai		unternande ander og de visit here ander de stade med handrage	electrone was seen to be drug day on other works of the second second
92 90	D 88 86	84 82 8	0 78 76 Che	74 72 70 emical Shift (ppm)	68 66	64 62 60	58 56 54

22.42742746692833

3/3/2011 2:00:40 PM

Acquisition Time (sec)	1.1010	Comment	HL101-003 mCARBON	CDCl3 /ont/bruk500deta/2	010/Dec eit 34	Date	07 Dec 2010 09:42·24
Date Stamp	07 Dec 2010 09:42:24	File Name	C:\Users\Leo\Desktop\	Experiments Folder\Experir	ment 101-150\HL102 - Pr	oject Intermediate Characte	erization\HL102-018\13C NMR\fid
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	256	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	262144	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12575.3066
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.79	Temperature (degree C)	19.803		
0.40 0.35 0.30 1 0.25	STANDARD	<u>Sweep Width (Hz)</u> aleFactor = 1		<u>_Temperature (degree C</u>	<u>, 19.803</u>	- -	
0.15 E 5		40.19		67 69 7	Ŋ	20.42 20.10	9.61 19.53 19.46 7 7 7
0.10 							
-¦ ₊₊₊₊₊ +++++++++++++++++++++++++++++++	44 42	40 38	36 34	32 30 2 Chemical Shift (ppm)	28 ^{2,} 26 ;	24 22 20) 18 16 14

HL092–002 mPROTON CDCI3 {e:\bruk400data\2010\Aug} ejt 40

02/12/2010 11:39:00

E:Postgraduate Database\Experiment Database\Experiment 51-100\HL092 - (R)-citronellol iodonation\HL092-002\13C NMR_000001r

3/15/2011 9:46:52 AM

Acqu	isition Time	<i>(sec)</i> 1	.0835		Commen	t	HL092-002 mCARBON CDCl3 {e:\bruk400data\2010\Aug} ejt 40				Date			12 Aug 20	10 15:30:24					
Date	Stamp	1:	2 Aug 2010 1	5:30:24												1				
File N	lame	C	:\Users\Leo\D	esktop\l	Experiment	s Folder\Ex	periment 51	-100\HL	092 - (R)-	citronellol iodo	nation\HL09	2-002\1	3C NMR\fid	Freq	uency (MH.	z)	100.61			
Nucle	Nucleus 13C Number of Transients			ts 256			Origin		AV400)	Origi	nal Points	Count	32768						
Owne	ər	A	dministrator		Points Co	ount	10485	76		Pulse Seque	псе	zgpg3	0	Rece	iver Gain		512.00			
SW(c	yclical) (Hz)	3	0241.94		Solvent		CHLO	ROFOR	M-d	Spectrum Of	ffset (Hz)	11335	.2197	Spec	trum Type		STANDAF	D		
Swee	p Width (Hz) 3	0241.91		Tempera	ture (degre	<i>e C)</i> 21.500)]											
0.8 0.7 0.0 0.0 0.2 0.0 0.2 0.1 0	13C NMB.		0445	Me	e (S)	-23		s. J. S. Market J. Market State St		-77.03	Star Uniderstand		(a. 1) E. 4				25.75			
	136	128	120	112	10	4 9	6	B8	80	72 Chemical Sh	64 ift (ppm)	5	6 4	18	40	32	24	16	8	
No	(ppm)	(H7)	Height	No	(nnm)	(H7)	Height	No	(nnm)	(H ₇)	Height	No	(nnm)	(Hz)	Height	No I	(mnm)	(Hz)	Height	
1	5.27	530.4	0 1409	4	25.32	2547.3	0.2051	7	36.35	3654 1	0.2199	10	77.03	7750.4	1 0000	13	131.52	13232.4	0 1103	
	17 71	1781.6	0.1915	5	25.02	2590.9	0.2001		<u>40 an</u>	4114.8	0.1921		77.35	7782.3	0.9641	┤└──╵╯──┤	101.02	10404.7	0.1100	
3	18.65	1876.9	0.2289	6	33.57	3377.4	0.2367	9	76.71	7718.5	0.9622	12	124.46	12522.4	0.1974	1				

· - ·

02/12/2010 11:40:47

1.3631			
Leo 0910-040 HL093-001	mCARBON CDCl3 {E:\bruk	400service_data\2010\Sep} Administrator 56	
20 Sep 2010 10:57:04	Date Stamp	20 Sep 2010 10:57:04	
E:\Postgraduate Database NMR_010001r	Experiment Database Expe	riment 51-100\HL093 - Sulfone alkylation\HL093-001\13C	
100.64	Nucleus	13C	
10240	Origin	AV400_S	
32768	Owner	Administrator	
32768	Pulse Sequence	zgpg30	
2050.00	SW(cyclical) (Hz)	24038.46	
CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	
24037.73	Temperature (degree C)	23.600	
	1.3631 Leo 0910-040 HL093-001 20 Sep 2010 10:57:04 E:\Postgraduate Database NMR_010001r 100.64 10240 32768 32768 2050.00 CHLOROFORM-d 24037.73	1.3631 Image: Constraint of the system Leo 0910-040 HL093-001 mCARBON CDCl3 {E:\bruk 20 Sep 2010 10:57:04 Date Stamp E:\Postgraduate Database\Experiment Database\Expe NMR_010001r 100.64 Nucleus 10240 Origin 32768 Owner 32768 Pulse Sequence 2050.00 SW(cyclical) (Hz) CHLOROFORM-d Spectrum Offset (Hz) 24037.73 Temperature (degree C)	1.3631

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL093 - Sulfone alkylation\HL093-001\13C NMR_010001r

02/12/2010 11:41:51

Acquisition Time (sec)	1.3631		
Comment	Leo 0910-043 HI093-002 r	mCARBON CDCl3 (E:\brui	<400service_data\2010\Sep} Administrator 8
Date	22 Sep 2010 14:17:36	Date Stamp	22 Sep 2010 14:17:36
File Name	E:\Postgraduate Database NMR_012001r	NExperiment Database\Exp	eriment 51-100\HL093 - Sulfone alkylation\HL093-002\13C
Frequency (MHz)	100.64	Nucleus	13C
Number of Transients	12000	Origin	AV400_S
Original Points Count	32768	Owner	Administrator
Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Sweep Width (Hz)	24037.73	Temperature (degree C) 23.600

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL093 - Sulfone alkylation\HL093-002\13C NMR_012001r

02/12/2010 11:43:46

Acquisition Time (sec)	1.0835	Comment	HL094-001 mCARBON CDCl3 {e:\bruk400data\2010\Sep} ejt 50
Date	23 Sep 2010 13:05:04	Date Stamp	23 Sep 2010 13:05:04
File Name	E:\Postgraduate Databa NMR_000001r	se\Experiment Database\Ex	periment 51-100\HL094 - Dithiane formation\HL094-001\13C
Frequency (MHz)	100.61	Nucleus	13C
Number of Transients	256	Origin	AV400
Original Points Count	32768	Owner	Administrator
Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11335.2197
Sweep Width (Hz)	30241.01	Temperature (degree C)	21.300
		•	

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL094 - Dithiane formation\HL094-001\13C NMR_000001r

HL102-032 mPROTON CDCI3 {e:\bruk400data\2011\Feb} ejt 45

3/15/2011 10:04:19 AM

Acquisition Time (sec)	1 0835	Comment			01000		3/13/2011 10:04:19 AM
Date Stamp	23 Sep 2010 14:05:04	Comment	HL094-001 MCARDON		(010/Sep} elt 50	Date	23 Sep 2010 14:05:04
File Name	C:\Users\Leo\Deskton	Experiments Folder\Experi	ment 51, 100\HI 094 - Dit	bigno formation\UL004.00			400.04
Nucleus	13C	Number of Transients	256	Origin		Crisinal Deinte Court	100.61
Owner	Administrator	Points Count	1048576	Dulsa Saguanca	AV400	Dogoiver Opin	32768
SW(cyclical) (Hz)	30241.94	Solvent		Spectrum Offect (Uz)	11225 2107	Receiver Gain	512.00
Sweep Width (Hz)	30241.91	Temperature (degree C) 21 300	Opectrum Onset (nz)	11000.2197	Spectrum Type	STANDARD
0.40	VerticalSc	aleFactor = 1					
							<u>.</u>
	• *						
0.25	M	le					
0.55	HO. ~ ~						
		\sim \sim \sim					
	(8	\-26					
0.30	(n	-20					
0.30							
-							
0.25							
0.20							
						9	
						•	
				66	33	~ ~	2
				QQ	38 32.33	2.7	က် ကိ
					230	51.	
0 15	9 9				×		
0.15	9						
1							×
-							
E _{nt}							
0.70							
1							
-							
0.05							
0.00							
-l Harata da kati na da kata da kata da kata	ويتقلب أفتيا باستان فاقتر الأر		he have a flat as the state of the factor				
							han an a
	to the least of the state of the		ntalite with mentional pentile hours and	in in the formation of the second	aka adalar ka dadi ke pedalar dalar dalam salahar	. A later to the filler and the filler to the	A TARAN DE MARTING A TARAN DE MARTINE DE LA ANTINISTA A ANTINA DE MARTINA
		┍╶┍╶╺╶╶┲╌┲╌┲╌┲╌┱╼┲╼┲╌┲╌ ┍┼┍╼╴╶╸╺╔╴╋╌╋╌╋╋┨╢┍╬╋┨┉┠┿┙	a a cara da car	i dan da maa maa ka k	el na la servició de la chada de la construction de la construcción de la construcción de la construcción de la	atte and a burdade of the needed of the second second	i tai ki ang ka
65	60	55 50	45	40 35	30	25 20	15 10
				Chemical Shift (ppm)			

HL098-001 mPROTONnight CDCl3 {e:\bruk400data\2010\Nov} ejt 12

02/12/2010 11:44:46

<u>.</u>			02/12/2010 11:44:46				
Acquisition Time (sec)	1.0835	Comment	HL098-001 mCARBONnight CDCI3 {e:\bruk400data\2010\Nov} eit 12				
Date	17 Nov 2010 05:07:12	Date Stamp	17 Nov 2010 05:07:12				
File Name	E:\Postgraduate Databas NMR_000001r	se\Experiment Database\Ex	eriment 51-100\HL098 - RHS sulfone synthesis\HL098-001\13C				
Frequency (MHz)	100.61	Nucleus	13C				
Number of Transients	256	Origin	AV400				
Original Points Count	32768	Owner	Administrator				
Points Count	32768	Pulse Sequence	zgpg30				
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94				
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11335.2197				
Sweep Width (Hz)	30241.01	Temperature (degree C)	20.600				
13C NMR_0000	01r	= <u>∫</u> 77.35 	Ma				
-			TsO Me				
-			(<i>S</i>)-27				
Normalized Intensity		1.07 					
140 130) 120 110 100	90 80 70	60 50 40 30 20 10 0 10				

Chemical Shift (ppm)

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL098 - RHS sulfone synthesis\HL098-001\13C NMR_000001r

02/12/2010 11:46:12

Acquisition Time (sec)	1.0835	Comment	HL094-002 mCARBON CDCl3 {e:\bruk400data\2010\Sep} eit 10
Date	27 Sep 2010 09:44:32	Date Stamp	27 Sep 2010 09:44:32
File Name	E:\Postgraduate Databa NMR_000001r	se\Experiment Database\E>	periment 51-100\HL094 - Dithiane formation\HL094-002\13C
Frequency (MHz)	100.61	Nucleus	13C
Number of Transients	256	Origin	AV400
Original Points Count	32768	Owner	Administrator
Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94
Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11335.2197
Sweep Width (Hz)	30241.01	Temperature (degree C)	21.600

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL094 - Dithiane formation\HL094-002\13C NMR_000001r

HL100-007 mPROTON CDCI3 {e:\bruk400data\2010\Dec} ejt 22

3/15/2011 10:07:46 AM

Date 22 New 2010 13:0:0:40 Date Stamp 22 New 2010 13:2:0:40 Processor Control (1:00) (Acquisition Time (sec)	1.3631	Comment	Leo 1110-056 HL 098-002		uk400service_data\2010	Noul Administrator 26	
File Manne C:UkasetLeoOperatioExperimente Ed:Terrorited 51:100-L088 - PHB subjects/000-2013 (2:NNR-Nd Frequence / MHz / 100-24 Nuccleus 13C Multime of Transitions 2264 04/dm AVAID S Oddpatel Peters Count 2278 Stream Middly 24034.44 Solvent CHLORORORIAL Speetrum Type STANDARD Stream Middly 24038.44 Tamparature (degree C) 24 500 Speetrum Type STANDARD 10g 12C N/RMR sep VerticalScaleFactor = 1 Speetrum Type STANDARD 0466 (n):28 0 100-83 Speetrum Type STANDARD 0469 (n):28 0 Speetrum Type STANDARD Speetrum Type 0475 (n):28 Speetrum Type STANDARD Speetrum Type STANDARD 0466 (n):28 Speetrum Type STANDARD Speetrum Type STANDARD 0466 (n):28 Speetrum Type Standard Speetrum Type Standard Speetrum Type 0466 Speetrum Type Speetrum Type Standard Speetrum Type Speetrum Type	Date	22 Nov 2010 13:30:40	Date Stamp	22 Nov 2010 13:30:40			INOV AUTIINISTIZION SO	
Nucleus 13C Number of Transients 2384 Order Output Points Count 23785 SWCordball (Hz) 24038.46 Solventer S	File Name	C:\Users\Leo\Desktop\E>	periments Folder\Experime	ent 51-100\HL098 - RHS st	lfone synthesis\HI 098-002	2\13C NMR\fid	Frequency (MHz)	100.64
Owner Administrator Politis Count 1048/37.8 Politis Source 200/30 Restrict Gain 2058.00 Street Width (Hz) 2403.8.4 Januarde 2403.8.4 Januarde 200/30 Spectrum Type STANDARD 1.00 100 100 3350 Spectrum Type STANDARD 1.00 100 100 3350 Spectrum Type STANDARD 0.03 0 (n) - 28 (n) - 28 (n) - 28 (n) - 28 0.04 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0.06 0 <td< td=""><td>Nucleus</td><td>13C</td><td>Number of Transients</td><td>2364</td><td>Oriain</td><td>AV400 S</td><td>Original Points Count</td><td>32768</td></td<>	Nucleus	13C	Number of Transients	2364	Oriain	AV400 S	Original Points Count	32768
SMICCICALID (Hz) 24038.46 Solvent CHLORCFORMS.d. Speectrum Officet (Hz) 10083.3350 Speectrum Type STANDARD Sinvert Victorial Scale Factor = 1 Vertical Scale Factor = 1 Immenture (degree 0.) 24.500 Speectrum Type STANDARD Use Victorial Scale Factor = 1 Vertical Scale Factor = 1 Immenture (degree 0.) 24.500 Speectrum Type STANDARD Use Vertical Scale Factor = 1 Immenture (degree 0.) 24.500 Speectrum Type STANDARD Use (r)-28 (r)-28 Immenture (degree 0.) 24.500 Speectrum Type STANDARD 0.863 (r)-28 (r)-28 Speectrum Type STANDARD 0.863 (r)-28 Speectrum Type Standard Speectrum Type 0.863 (r)-28 (r)-28 Speectrum Type Speectrum Type Speectrum Type 0.863 (r)-28 (r)-28 Speectrum Type Speectrum Type Speectrum Type 0.863 (r)-28 (r)-28 Speectrum Type Speectrum Type Speectrum Type 0.863 (r)-28 Speectr	Owner	Administrator	Points Count	1048576	Pulse Seauence	zana30	Receiver Gain	2050.00
Sweet With $(fz) = 24038.44$ Temperature (degree 0) 24.500 1.03 1.03 1.04 1.05	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
$\begin{array}{c} 10.0 \\ 10$	Sweep Width (Hz)	24038.44	Temperature (degree C,	24.500		· · · · · · · · · · · · · · · · · · ·		01/11/0/11/0
$\begin{array}{c} 0.66 \\ 0.86 \\ 0.86 \\ 0.77 \\ 0.77 \\ 0.65 \\ 0.65 \\ 0.66 \\ 0.$	1.00 13C NMR.esp	VerticalScal	eFactor = 1					
$\begin{array}{c} 0.00 \\ 0.05 \\ 0.$	0.95		•		· · ·	,		
$\begin{array}{c} 0.55 \\ 0.30 \\ 0.75 \\ 0.77 \\ 0.75 \\ 0.77 \\ 0.66 \\ 0.80 \\ 0.65 \\ 0.$	0.90	Ме						
0.80 0.76 0.70 0.65 0.00 0.65 0.00 0.65 0.00 0.45 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45	0.85		Me					
$\begin{array}{c} 0.75 \\ 0.70 \\ 0.66 \\ 0.60 \\ 0.$	0.80	(<i>R</i>)-28	·					
0.70 0.60 0.00	0.75		. • •					
0.65 0.65 0.65 0.55	0.70							
$ \begin{array}{c} 0.60 \\ 0.45 \\ 0.45 \\ 0.40 \\ 0.35 \\ 0.30 \\ 0.45 \\ 0.35 \\ 0.30 \\ 0.30 \\ 0.35 \\ 0.30 \\ 0$	0.65							
40 36 36 36 34 32 30 28 26 24 22 20 18 16 14 12 10 5 6 4 4	0.60				4			
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.55 ·							
All and a set of the s	드 0.50							
$ \frac{5}{2} $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		ő	2 5.06 23 2 23	26	02		~	
0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 40 38 36 34 32 30 28 26 24 26 24 22 20 18 16 14 12 10 8 6 4	0.40 No. 10 No.		-31.3 -31.3 -29.6	-26.9	-22.		44.	
0.30 0.25 0.20 0.15 0.10	0.35-							
0.25 0.20 0.15 0.10 0 0 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	0.30							64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.25							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.20							
0.10^{-1}_{-1}	0.15-							
$0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 $	0.10							
$ \begin{array}{c} 0 \\ $	0.05-							
$\frac{3}{40}$		ĸ₩₩₽₽₽₩₩₽₽₩₩₽₽₩₩₽₩₽₩₩₽₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩₩₽₩	ant for the second s	a den er fallet. En er finnen er finnen fan en er er er finnen er er fan er er er er fan er er er er er er er e Er er	internet of the life to the test of the second s	hizda tözele sedintellersbest di heinerides (di beledig te ensindere beter erson) 	in an in the second	elen sener in henriksen statung en en sin der staten er staten Er staten er
	^a ritterine 1997 - 199	36 34	32 30 2	8 26 24	22 20	18 16	14 12 10	8 6 4

E:\Postgraduate Database\Experiment Database\Experiment 51-100\HL098 - RHS sulfone synthesis\HL098-003\13C NMR_000001r

3/15/2011 10:09:13 AM

Acquisition Time (sec)	1.3631	Comment	Leo 1110-055 HL098-003	mCARBON CDCI3 (E:\br	uk400service data\2010\N	lov} Administrator 18	
Date	19 Nov 2010 08:36:16	Date Stamp	19 Nov 2010 08:36:16				
File Name	C:\Users\Leo\Desktop\E>	periments Folder\Experime	ent 51-100\HL098 - RHS su	Ifone synthesis\HL098-003	3\13C NMR\fid	Frequency (MHz)	100.64
Nucleus	13C	Number of Transients	4096	Origin	AV400 S	Original Points Count	32768
Owner	Administrator	Points Count	1048576	Pulse Sequence	zapa30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
Sweep Width (Hz)	24038.44	Temperature (degree C) 25.100	<u></u>			
SW(cyclical) (Hz) Sweep Width (Hz) 13C NMR.esp 0.40 0.35 0.30 0.30 0.30 0.30 0.31 0.32 0.30 0.30 0.31 0.32 0.32 0.35 0.30 0.31 0.32 0.32 0.35 0.30 0.31 0.32 0.32 0.35	24038.46 24038.44 VerticalScal	Solvent Temperature (degree C) eFactor = 1 Me (R)-29	CHLOROFORM-d 25.100 Me	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
0.10	Here, and the formed is a first of the description	માર્ડ અનુ સરકો જેવાનું આવ્યું અને	માં છે. આ બેલી માં માં છે. આ બેલ બેલ બેલ છે. આ બેલ બેલ છે. આ બેલ બેલ છે. આ બેલ બેલ બેલ બેલ બેલ બેલ બેલ બેલ બેલ આ બેલ	hun at discovered Takon 1 discovered Takon 1 discovered Takon and a skil at line as	n 144 andre 1 March 20 (16) e data historia (16) e		
140 135	130 1 25 120 11	5 110 105 100	95 90 85 Ch	80 75 70 6 emical Shift (ppm)	5 60 55 50	45 40 35	30 25 20 15

2

	i nis report was crea	ited by ACD/NMR P	rocessor Academic E	Edition. For more inf	formation go to www	.acdlabs.com/nmrp	roc/ 3/8/2011 11:33:58 AM
Acquisition Time (sec)	1.3631	Comment	Leo 1110-062 HI 099-004	mCARBON CDCI3 /E-\bru	k400service_data\2010\Nov	Administrator 39	
Date	23 Nov 2010 08:12:48	Date Stamp	23 Nov 2010 08:12:48				
File Name	C:\Users\Leo\Desktop\Ex	periments Folder\Experime	ent 101-150\HL102 - Project	Intermediate Characterizati	on\HL102-027\13C NMR\10	fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12288	Oriain	AV400 S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Seavence	zana30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	/ 25.500		
13C NMR.010	.esp VerticalScale	Factor = 1					
0.030-			5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	n			
2.000							
-							
-							
0.025							
-							
-				i.		,	
-							
_		•					
0.020-			. . .				
0.020		Me Me Me M	le S(O) ₂ Ph Me				
i≩]		ネスネノ	<u>、ふへん</u> /	∕ ∕ ^{Me}			
Sue -	we		••••	ΥΥΥ ^y			
			30	35 29.1	ģ		
				5 I	02.70 80.95.6		
별 0.015~		· .	02		- 5 5 - 5 - 5		
			37.	25 2.4	7.7	40	
Z				27.	2.0.7	1 T	
-			56	1.1		6	

.

3/8/2011 11:34:05 AM

Acquisition Time (sec)	1.3631	Comment	Leo 1110-062 HL099-004	mCARBON CDCI3 (E:\bru	k400service data\2010\No	v} Administrator 38			
Date	23 Nov 2010 08:12:48	Date Stamp	23 Nov 2010 08:12:48						
File Name	C:\Users\Leo\Desktop\Ex	periments Folder\Experime	nt 101-150\HL102 - Project I	ntermediate Characterizatio	on\HL102-027\13C NMR\10				
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12288	Oriain	AV400 S		
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Seauence	zapa30		
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063 3350		
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (dearee C	9 25.500		10000.0000		
13C NMR.01	Desp VerticalScale	eFactor = 1		129.05					
0.020	Me Me Me Mi	e S(O)₂Ph Me							
0.030- 			Me						
-		30							
0.025-									
0.020									
-									
-									
र्म् <u>छ</u> 0.020-									
- ter				62					
				28					
ize -				5					
		•							
· 토 0.015 - 1				80					
				28.					
-				5					
- -			, u						
			3.4						
0.010-			. <u>0</u>						
-		50							
_		ŝ							
		Ţ							
0.005									
1,000						1			
					al and the last	, , . .			
	IN CARACTERISTICS		a ha la k a sa ka sa ka sa ka	l haile hier an is a later that a sec			an dia a kata kata kata a aka kata kata kata		
o – Maria Maria	un din dan Unio, Addin an Ang						n a ste mana i Analanda a bhadaan bhaanni		
	valstiller i fan frankrike fan fan fan de	n i kari da ina ang kari kanang na	I AN ANTICIC TO A CONTRACT OF A C	JUST AND TO THE REPORT OF A STREET AND A STREET			LATENAL MATERIAL AND A STATEMENT AND A S		
155	150	145 140	135 130	125	120 115	110 10	5 100		
			Che	mical Shift (ppm)	•				

S64

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ Leo 1110-069 HL099-005 mCARBON CDCl3 {E:\bruk400service_data\2010\Nov} Administrator 52

2010-11-25-Administrator-52.010.001.1r.esp

ا بېغۇر مىلى

3/15/2011 9:59:46 AM

Acquisition Time (sec)	1.3631	Comment	Leo 0910-040 HL093-001 mCARBON CDCI3 {E:\bruk400service_data\2010\Sep} Administrator 56							
Date	20 Sep 2010 11:57:04	Date Stamp	20 Sep 2010 11:57:04							
File Name	C:\Users\Leo\Desktop\Ex	periments Folder\Experime	ent 51-100\HL093 - Sulfone	alkylation\HL093-001\13C	NMR\10\fid	Frequency (MHz)	100.64			
Nucleus	13C	Number of Transients	10240	Origin	AV400_S	Original Points Count	32768			
Owner	Administrator	Points Count	1048576	Pulse Sequence	zgpg30	Receiver Gain	2050.00			
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD			
Sween Width (Hz)	24038 44	Temperature (degree C	23 600		······································					

n geografikang si na ang kasarang bina kang kana kasa kasa kasa

.

3/15/2011 9:59:54 AM

Acquisition Time (sec)	1.3631	Comment	Leo 0910-040 HL093-001	mCARBON CDCl3 {E:\bru	k400service_data\2010\Se	ep} Administrator 56	
Date	20 Sep 2010 11:57:04	Date Stamp	20 Sep 2010 11:57:04				L
File Name	C:\Users\Leo\Desktop\Ex	periments Folder\Experime	nt 51-100\HL093 - Sulfone	alkylation\HL093-001\13C	NMR\10\fid	Frequency (MHz)	100.64
Nucleus	13C	Number of Transients	10240	Origin	AV400_S	Original Points Count	32768
Owner	Administrator	Points Count	1048576	Pulse Sequence	zgpg30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
Sweep Width (Hz)	24038.44	Temperature (degree C)	23.600				
SW(cyclical) (Hz) Sweep Width (Hz) 13C NMR.010.es 0.13 0.13 0.12 0.11 0.10 0.09 0.09 0.09 0.07 0.06 0.05	24038.46 24038.44 sp VerticalScale Me Me 31	Solvent Temperature (degree C) eFactor = 1 Me $S(O)_2Ph$ EFactor = 1 Factor = 1 Factor = 1 Factor = 1	CHLOROFORM-d 23.600 10.82 10.8	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
0.04 0.03 0.02 0.02 0.01 0.01 0.01	ביין אינער אינע אינער אינער אינ אינער אינער אינ		בנוראין אייראין אייראי אייראיז אייראין אייראין אייראין אייראין	fasting fan her her her fan	121/1121-1121-1121-1122-1122-1122-1122-	นิกษณะและสมบัญารสตรีสุนารสุดสารสุนารสุดสารสุนารสุด มีกษณะและสารสุนารสารสารสารสุนารสุนารสุนารสุนารสุน	and an addinate of the first and the state of the state o
150	145 140	135 13	30 125 Ch	120 115 emical Shift (ppm)	110	105 100	95 90

3/15/2011 9:50:15 AM

Acquisition Time (sec)	1.3631	Comment	Leo 0910-043 HI093-002	mCARBON CDCI3 (E:\brul	k400service_data\2010\Se	p} Administrator 8	
Date	22 Sep 2010 15:17:36	Date Stamp	22 Sep 2010 15:17:36				
File Name	C:\Users\Leo\Desktop\Ex	periments Folder\Experime	nt 51-100\HL093 - Sulfone	alkylation\HL093-002\13C	NMR\12\fid	Frequency (MHz)	100.64
Nucleus	13C	Number of Transients	12000	Origin	AV400_S	Original Points Count	32768
Owner	Administrator	Points Count	1048576	Pulse Sequence	zgpg30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350	Spectrum Type	STANDARD
Sweep Width (Hz)	24038.44	Temperature (degree C)	23.600				
0.30 0.30 0.25	VerticalScale	eFactor = 1		64.58	- 63.22	33.87 33.79 32.74 32.74 32.70	
135 130	125 120 115	110 105 100	95 90 85 8 Cł	0 75 70 65 nemical Shift (ppm)	60 55 50	45 40 35	30 25 20 15

	$\int C (115000 CDC1)$	3 {E:\br 14.13, 14.7 1.17, 19.56 0.70, 24.7 36.88, 3 45.59, 42 1.28.89, 1.28.89, 1.28.89, 1.28.10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	uk400servi 39 19.00 21 26.99 26, 28.71 6.9% 37.00 5.85, 66.30 128.92 1	100 _ dat	33 a:\2011 20.89 32.49 62.66 133.8%	37.31					NAME EXPNC PROCN Date Time INSTR PROBE PULPR TD SOLVE NS DS SWH FIDRE AQ DB TE D1 D11 D11 D11 D11 D11 D11 D11 D11 D11	2011-02-03-Administrator-18 10 10 14.50 20110203 14.50 2010203 14.50 2010203 14.50 2010203 14.50 2010203 16000 4 24038.461 Hz 5 0.366798 Hz 1.3631988 sec 2050 20.800 usec 6.50 usec 298.1 K 2.00000000 sec 1 20.800 usec 0.0300000 sec 1 1 === CHANNEL f1 ===== 13C 8.00 usec 0.00 dB 33.9104524 W 100.6479773 MHz === CHANNEL f2 ====== G2 walt216 1H 90.00 usec -3.60 dB 15.31 dB 18.98951721 W 0.24406971 W 0.13137537 W 400.2316009 MHz 32768 100.6379140 MHz 22768 100.6379140 MHz 0 1.00 Hz 0 1.40
--	------------------------	---	--	-----------	--	-------	--	--	--	--	---	---

in de la constante 🔁 la constante de la c

Acquisition Time (sec)	1.3631	Comment	H. Liu 0211-009 HL101-006a mCARBON CDCl3 (E:\bruk400service_data\2011\Feb) Administrator 54			
Date	13 Feb 2011 11:18:24	Date Stamp	13 Feb 2011 11:18:24			
File Name	E:\Postgraduate Database\Experiment Database\Experiment 101-150\HL101 - Natural Product diastereomer synthesis\HL101-006a\13C NMR\13C NMR 000000fid					
Frequency (MHz)	100.65	Nucleus	13C	Number of Transients	12288	
Origin	AV400_S	Original Points Count	32768	Owner	Administrator	
Points Count	131072	Pulse Sequence	zgpg30	Receiver Gain	2050.00	
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10065.5420	
Sweep Width (Hz)	24038.28	Temperature (degree C	22.500			• · · · · · · · · · · · · · · · · · · ·

14/02/2011 10:17:33

E:\Postgraduate Database\Experiment Database\Experiment 101-150\HL101 - Natural Product diastereomer synthesis\HL101-006a\13C NMR\13C NMR_000000fid

H N O

വവ

a an an

15 ppm

フィタ

ω Ω Ω

S75

15 ppm

