# Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively-activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4benzotriazine 1,4-dioxide (tirapazamine)

Kevin M. Johnson<sup>‡</sup>, Zachary D. Parsons<sup>‡</sup>, Charles L. Barnes<sup>‡</sup> and Kent S. Gates<sup>‡,§,\*</sup>

<sup>‡</sup>Department of Chemistry, University of Missouri, Columbia, MO 65211 <sup>§</sup>Department of Biochemistry, University of Missouri, Columbia, MO 65211 \*E-mail: gatesk@missouri.edu, Phone: (573) 882-6763

#### **Table of Contents**

| Figure S1. Crystal structure of <b>19</b> isolated from the reaction of tosyl chloride with <b>15</b>                                | 2  |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| Table S1. Crystal and data collection parameters for crystal structure in Figure S1                                                  | 3  |
| Figure S2. HPLC chromatograms showing the hydrolysis of compounds <b>17a</b> and <b>18a</b>                                          | 4  |
| Figure S3. pH-dependent changes in the absorbance spectra<br>and pH versus absorbance plot for <b>29</b>                             | 5  |
| Figure S4. pH versus absorbance plots for <b>31</b> and <b>32</b>                                                                    | 6  |
| Figure S5. pH-dependent changes in the absorbance spectra and pH versus absorbance plot for <b>9</b> and <b>12</b>                   | 7  |
| Figure S6. HPLC chromatograms showing the in vitro metabolic conversion of <b>15</b> to <b>16</b> by NADPH:cytochrome P450 reductase | 8  |
| Figure S7. HPLC chromatograms showing the in vitro metabolic conversion of <b>9</b> to <b>12</b> by NADPH:cytochrome P450 reductase  | 9  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-NMR spectra                                                                                   | 10 |
| References                                                                                                                           | 50 |





Figure S1. Crystal structure of 19 obtained from the reaction of tosyl chloride with 15.

| Table S1                                   |                                |  |
|--------------------------------------------|--------------------------------|--|
|                                            |                                |  |
| Empirical formula                          | C18 H21 N5 O6 S                |  |
| Formula weight                             | 435.46                         |  |
| Temperature, (K)                           | 173(2)                         |  |
| W. length, (Å)                             | 0.71073                        |  |
| Crystal system                             | Monoclinic                     |  |
| Space group                                | P 21/c                         |  |
| a, (Å)                                     | 11.8137(17)                    |  |
| b, (Å)                                     | 7.0470(10)                     |  |
| c, (Å)                                     | 24.199(4)                      |  |
| α, (deg)                                   | 90                             |  |
| β, (deg)                                   | 101.033                        |  |
| γ, (deg)                                   | 90                             |  |
| Volume, (Å <sup>3)</sup>                   | 1977.4(5)                      |  |
| Z/calculated density (Mg/m <sup>3</sup> )  | 4/1.463                        |  |
| Absorption coefficient (mm <sup>-1</sup> ) | 0.211                          |  |
| Crystal size (mm)                          | 0.50 x 0.35 x 0.10             |  |
| Reflections collected/unique               | 22323 / 4574 [R(int) = 0.0261] |  |
| Data/restraints/parameters                 | 4574 / 0 / 276                 |  |
| GOF                                        | 1.047                          |  |
| R indices (all data)                       | R1 = 0.0413, wR2 = 0.0972      |  |

 Table S1. Crystal and data collection parameters for the crystal structure of 19.



**Figure S2**. Representative HPLC chromatograms showing the hydrolysis of compounds 17a (left) and 18a (right) (250  $\mu$ M) in sodium phosphate buffer (25 mM, pH 7) containing DMF (2.5% v/v) at 50 °C. Compounds were detected by their absorbance at 280 nm. The disappearance of compound 17a and appearance of hydrolysis products 16 and 27 over a 24 h time period is shown here (left). Detailed conditions are provided in the Experimental Section of the paper.





**Figure S3.**  $pK_a$  determination for **29**. Absorbance spectra (top) and titration curves (bottom) with least squares fitting for compound **29** from pH 2.18-5.47.





Figure S4.  $pK_a$  determination for compounds 31 and 32. Titration curves with least squares fitting of compounds 31 (top) and 32 (bottom) from pH 3.35-9.00. The absorbance spectra of these compounds as a function of pH are shown in the manuscript.

### Figure S5



**Figure S5.** Control experiments showing the pH-dependent changes in the absorbance spectra of compounds **12** and **9**. There are not significant changes in the absorbance spectra for these molecules in the pH 3-7 region. This provides evidence that the pH-dependent changes in the absorbance spectra for **29**, **31**, and **32** in the pH 3-7 range are likely associated with protonation and deprotonation of the carboxylate and phenol groups of these analogs.



Figure S6

**Figure S6.** HPLC chromatograms showing the in vitro metabolic conversion of **15** to **16** by NADPH:cytochrome P450 reductase and associated controls: (A) reduction of **15** under anaerobic conditions, (B) same except under aerobic conditions, (C) authentic standard of **15**, and (D) authentic standard of **16**. Detailed conditions are provided in the Experimental Section of the paper.

Figure S7



**Figure S7.** HPLC chromatograms showing the in vitro metabolic reduction of **9** to **12** by NADPH:cytochrome P450 reductase using the same conditions employed for the reduction of **15** to **16** (see: Experimental Section for details). Panel (A) Reduction of **9** under anaerobic conditions, (B) HPLC standard chromatogram of **9**, and (C) HPLC standard chromatogram of **12**.

# <sup>1</sup>H-NMR and <sup>13</sup>C-NMR Spectra









































### <sup>13</sup>CNMR











<sup>13</sup>CNMR































#### References

- 1. Hay, M. P.; Gamage, S. A.; Kovacs, M. S.; Pruijn, F. B.; Anderson, R. F.; Patterson, A. V.;
- Wilson, W. R.; Brown, J. M.; Denny, W. A. J. Med. Chem. 2002, 46, 169-182.
- 2. Boyd, M.; Hay, M. P.; Boyd, P. D. W., Magn. Res. Chem. 2006, 44, 948-954.
- 3. Pchalek, K.; Hay, M. P. J. Org. Chem. 2006, 71, 6530-6535.
- Ligthart, G. B. W. L.; Guo, D.; Spek, A. L.; Kooijman, H.; Zuilhof, H.; Sijbesma, R. P., J. Org. Chem. 2007, 73, 111-117.
- 5. Cantrell Jr, W. R.; Bauta, W. E.; Engles, T., Tetrahedron Lett. 2006, 47, 4249-4251.