Table S1. Mapping summary for switchgrass crown and rhizome samples analyzed by HTS

_						
Plant ID	Summer1	Summer2	Summer3	Kanlow1	Kanlow2	Kanlow3
Total Reads	26,158,420	26,000,859	26,818,136	24,539,570	27,127,805	27,090,340
Total Mapped to Genome	20,032,371	20,879,066	20,548,960	20,463,917	22,290,859	21,847,400
Percent of Total	76.6	80.3	76.6	83.4	82.2	80.6
Multi-Mapped Reads	3,179,885	4,163,674	3,198,823	2,624,806	3,254,418	3,051,917
Percent of Total	12.2	16.0	11.9	10.7	12.0	11.3
Uniquely Mapped Reads						
In Annotated Genes	14,573,318	14,674,977	14,936,660	15,198,819	16,141,080	16,024,441
Percent of Total	55.7	56.4	55.7	61.9	59.5	59.2
In Unannotated Regions	2,279,168	2,040,415	2,416,477	2,640,292	2,895,361	2,771,042
Percent of Total	8.7	7.8	9.0	10.8	10.7	10.2

Table S2. Annotation of all transcripts using Blast2GO

Total Transcripts	No Blastx Hit*	no GO Terms not A	nnotated**	Annotated
65,878	4,986	6,594 8,83	11	45,487
Total EC Assigned	Transcripts with EC	Molecular Function	Biological Pro	ocesses
15,507	13,406	35,438	28,115	5
KEGG Pathways				
Enzymes in KEGG F	Paths KEGG Paths	Populated		
1,347	138			

^{*} at an e-value threshold of 1 x 10^{-7} or lower; ** at an e-value threshold of 1 x 10^{-15} or lower

Table S3. List of 124 KEGG Pathways populated by Blast2GO analysis of the switchgrass draft genome used for Gene Set Enrichment Analysis

NAME	# Enzymes	
	50	
PURINE METABOLISM	52	
AMINO SUGAR AND NUCLEOTIDE SUGAR	40	
METABOLISM	40	
ARGININE AND PROLINE METABOLISM	40	
STARCH AND SUCROSE METABOLISM	38	
PYRIMIDINE METABOLISM	32	
CYSTEINE AND METHIONINE METABOLISM	30	
GLYCOLYSIS / GLUCONEOGENESIS	26	
ALANINE, ASPARTATE AND GLUTAMATE		
METABOLISM	26	
GLYCEROPHOSPHOLIPID METABOLISM	25	
GLYCINE, SERINE AND THREONINE METABOLISM	25	
PORPHYRIN AND CHLOROPHYLL METABOLISM	25	
METHANE METABOLISM	24	
PYRUVATE METABOLISM	23	
AMINOACYL-TRNA BIOSYNTHESIS	22	
CARBON FIXATION IN PHOTOSYNTHETIC		
ORGANISMS	21	
NITROGEN METABOLISM	21	
INOSITOL PHOSPHATE METABOLISM	21	
VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	20	
FRUCTOSE AND MANNOSE METABOLISM	20	
GLYOXYLATE AND DICARBOXYLATE	20	

METABOLISM	
TERPENOID BACKBONE BIOSYNTHESIS	20
PHENYLALANINE, TYROSINE AND TRYPTOPHAN	
BIOSYNTHESIS	19
GLUTATHIONE METABOLISM	18
GLYCEROLIPID METABOLISM	18
TYROSINE METABOLISM	18
GALACTOSE METABOLISM	17
PHOSPHATIDYLINOSITOL SIGNALING SYSTEM	17
BETA-ALANINE METABOLISM	16
CITRATE CYCLE (TCA CYCLE)	16
PROPANOATE METABOLISM	16
CARBON FIXATION PATHWAYS IN PROKARYOTES	16
PHENYLALANINE METABOLISM	15
PENTOSE PHOSPHATE PATHWAY	15
DRUG METABOLISM - OTHER ENZYMES	15
BUTANOATE METABOLISM	15
PANTOTHENATE AND COA BIOSYNTHESIS	15
PENTOSE AND GLUCURONATE	
INTERCONVERSIONS	14
FATTY ACID METABOLISM	14
DITERPENOID BIOSYNTHESIS	14
SULFUR METABOLISM	13
ONE CARBON POOL BY FOLATE	13
ASCORBATE AND ALDARATE METABOLISM	12
SPHINGOLIPID METABOLISM	12
N-GLYCAN BIOSYNTHESIS	12
LYSINE DEGRADATION	11
TRYPTOPHAN METABOLISM	11
CYANOAMINO ACID METABOLISM	11
UBIOUINONE AND OTHER TERPENOID-OUINONE	11

BIOSYNTHESIS	
HISTIDINE METABOLISM	11
ALPHA-LINOLENIC ACID METABOLISM	10
SELENOCOMPOUND METABOLISM	10
NICOTINATE AND NICOTINAMIDE METABOLISM	10
FLAVONOID BIOSYNTHESIS	10
STEROID BIOSYNTHESIS	10
AMINOBENZOATE DEGRADATION	9
RIBOFLAVIN METABOLISM	9
STEROID HORMONE BIOSYNTHESIS	9
FATTY ACID BIOSYNTHESIS	9
VALINE, LEUCINE AND ISOLEUCINE BIOSYNTHESIS	9
VARIOUS TYPES OF N-GLYCAN BIOSYNTHESIS	9
LYSINE BIOSYNTHESIS	9
STREPTOMYCIN BIOSYNTHESIS	9
PHENYLPROPANOID BIOSYNTHESIS	8
ARACHIDONIC ACID METABOLISM	8
BIOSYNTHESIS OF UNSATURATED FATTY ACIDS	8
FOLATE BIOSYNTHESIS	8
DRUG METABOLISM - CYTOCHROME P450	7
THIAMINE METABOLISM	7
METABOLISM OF XENOBIOTICS BY CYTOCHROME	
P450	7
OXIDATIVE PHOSPHORYLATION	7
OTHER GLYCAN DEGRADATION	7
RETINOL METABOLISM	7
TROPANE, PIPERIDINE AND PYRIDINE ALKALOID	
BIOSYNTHESIS	7
VITAMIN B6 METABOLISM	7
BENZOATE DEGRADATION	6
FATTY ACID ELONGATION	6

CAROTENOID BIOSYNTHESIS	6
ETHER LIPID METABOLISM	5
GLYCOSAMINOGLYCAN BIOSYNTHESIS - HEPARAN	
SULFATE	5
STYRENE DEGRADATION	5
LIPOPOLYSACCHARIDE BIOSYNTHESIS	5
LINOLEIC ACID METABOLISM	4
GLYCOSPHINGOLIPID BIOSYNTHESIS - GLOBO	
SERIES	4
ISOQUINOLINE ALKALOID BIOSYNTHESIS	4
TAURINE AND HYPOTAURINE METABOLISM	4
GERANIOL DEGRADATION	4
SYNTHESIS AND DEGRADATION OF KETONE	
BODIES	4
BIOTIN METABOLISM	4
GLYCOSAMINOGLYCAN BIOSYNTHESIS -	
CHONDROITIN SULFATE	3
GLYCOSAMINOGLYCAN DEGRADATION	3
INDOLE ALKALOID BIOSYNTHESIS	3
LIMONENE AND PINENE DEGRADATION	3
GLYCOSPHINGOLIPID BIOSYNTHESIS - GANGLIO	
SERIES	3
CHLOROALKANE AND CHLOROALKENE	
DEGRADATION	3
CAFFEINE METABOLISM	3
ZEATIN BIOSYNTHESIS	3
NOVOBIOCIN BIOSYNTHESIS	3
POLYKETIDE SUGAR UNIT BIOSYNTHESIS	3
CHLOROCYCLOHEXANE AND CHLOROBENZENE	
DEGRADATION	3
TOLUENE DEGRADATION	3
PHOSPHONATE AND PHOSPHINATE METABOLISM	3

OTHER TYPES OF O-GLYCAN BIOSYNTHESIS	3
PEPTIDOGLYCAN BIOSYNTHESIS	3
T CELL RECEPTOR SIGNALING PATHWAY	2
GLYCOSPHINGOLIPID BIOSYNTHESIS - LACTO AND	
NEOLACTO SERIES	2
GLUCOSINOLATE BIOSYNTHESIS	2
CAPROLACTAM DEGRADATION	2
C5-BRANCHED DIBASIC ACID METABOLISM	2
STILBENOID, DIARYLHEPTANOID AND GINGEROL	
BIOSYNTHESIS	2
FLAVONE AND FLAVONOL BIOSYNTHESIS	2
LIPOIC ACID METABOLISM	2
BUTIROSIN AND NEOMYCIN BIOSYNTHESIS	2
FLUOROBENZOATE DEGRADATION	2
D-GLUTAMINE AND D-GLUTAMATE METABOLISM	2
ATRAZINE DEGRADATION	2
PRIMARY BILE ACID BIOSYNTHESIS	2
MTOR SIGNALING PATHWAY	1
NAPHTHALENE DEGRADATION	1
BIOSYNTHESIS OF VANCOMYCIN GROUP	
ANTIBIOTICS	1
ETHYLBENZENE DEGRADATION	1
PHOTOSYNTHESIS	1
GLYCOSYLPHOSPHATIDYLINOSITOL(GPI)-ANCHOR	
BIOSYNTHESIS	1
BIOSYNTHESIS OF TERPENOIDS AND STEROIDS	1
BETALAIN BIOSYNTHESIS	1

Table S4: Gene Set Enrichment Analysis Results. KEGG pathways with an FDR <0.2 are shown. Transcript observed for individual enzymes in a given pathway are tabulated (enzymes).

Up-regulated in Summer		
Pathway	FDR	Enzymes
DITERPENOID BIOSYNTHESIS	0.000	14
VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	0.001	20
DRUG METABOLISM - CYTOCHROME P450	0.012	7
METABOLISM OF XENOBIOTICS		
BY CYTOCHROME P450	0.012	7
FATTY ACID ELONGATION	0.013	6
BUTANOATE METABOLISM	0.014	15
GERANIOL DEGRADATION	0.020	4
VITAMIN B6 METABOLISM	0.024	7
BENZOATE DEGRADATION	0.034	6
STYRENE DEGRADATION	0.039	5
GLUTATHIONE METABOLISM	0.051	18
HISTIDINE METABOLISM	0.058	11
VALINE, LEUCINE AND ISOLEUCINE BIOSYNTHESIS	0.063	9
SYNTHESIS AND DEGRADATION OF KETONE BODIES	0.066	4
BETA-ALANINE METABOLISM	0.067	16
PROPANOATE METABOLISM	0.073	16
PYRUVATE METABOLISM	0.079	23
TRYPTOPHAN METABOLISM	0.080	11
PANTOTHENATE AND COA BIOSYNTHESIS	0.188	15
BIOSYNTHESIS OF UNSATURATED FATTY ACIDS	0.193	8
Up –regulated in Kanlow		
Pathway	FDR	Enzymes
PHENYLPROPANOID BIOSYNTHESIS	0.001	8

Palmer et al. Switchgrass crown and rhizome metabolism

LINOLEIC ACID METABOLISM	0.007	4	
STARCH AND SUCROSE METABOLISM	0.007	38	
PHENYLALANINE METABOLISM	0.017	15	
OTHER GLYCAN DEGRADATION	0.020	7	
METHANE METABOLISM	0.033	24	
PENTOSE AND GLUCURONATE INTERCONVERSIONS	0.040	14	
CAROTENOID BIOSYNTHESIS	0.047	6	
GLYCOSAMINOGLYCAN BIOSYNTHESIS			
- HEPARAN SULFATE	0.050	5	
FLAVONOID BIOSYNTHESIS	0.079	10	
STREPTOMYCIN BIOSYNTHESIS	0.084	9	
SPHINGOLIPID METABOLISM	0.089	12	
INOSITOL PHOSPHATE METABOLISM	0.197	21	

Figure S1. Temperature and rainfall at the field site prior to and post harvest.

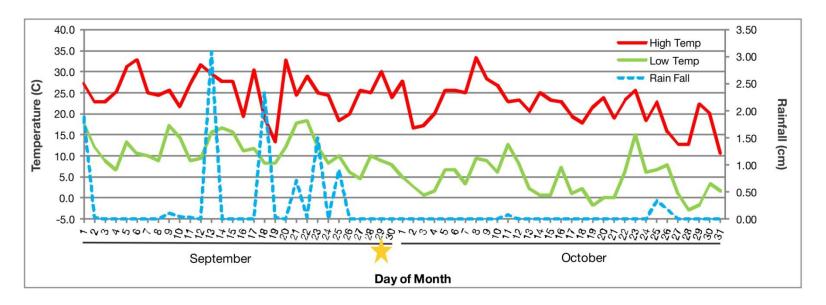
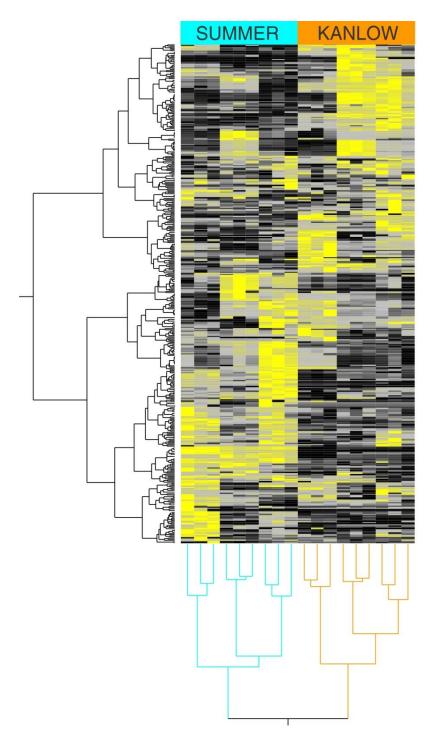



Figure S2. Two way heat map of all features observed by GCMS. Metabolites identified with higher degree of confidence are shown in Fig. 6 Red bar = Kanlow samples; Green bar = Summer samples. Yellow = high, black = low. Data from three independent extractions from each plant sample.

