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Table S1, related to Figure 3. Key parameter values of the ring simulation. 
Symbol Meaning Value Legend 

d Ring binding zone width 0.2 μm (A) 

ρfor Mean density of formin dimers along the ring 15 μm-1    (±2.5 μm-1) (A) 

for
offk  Formin off rate 0.023 s-1    (±0.007 s-1) (B) 

ρmyo Initial mean density of myosin clusters along the ring 7.5 μm-1    (±1 μm-1) (C) 

myo
offk  Myosin cluster off rate 0.026 s-1    (±0.001 s-1) (D) 

fmyo Myosin II cluster force  4 pN    (±3.5 pN) (E) 

rmyo Myosin II cluster capture radius for actin filaments 0.1 μm (F) 

ρx Mean density of α-actinin crosslinks along the ring 25 μm-1    (±5 μm-1) (A) 

x
offk  α-actinin crosslink off rate 3.3 s-1    (1.9 - 9.6 s-1) (G) 

0
xr  α-actinin crosslink rest length 30 nm    (28 - 36 nm) (H) 

kx α-actinin crosslink stiffness 25 pN/µm (I) 

lp Actin filament persistence length 10 μm    (6 – 25 μm) (J) 

rsev Actin severing rate per filament length by cofilin 1.8 μm-1 min-1 (K)  

vpol Formin-mediated barbed end actin polymerization rate 70 nm/s (K)  

γmyo Myosin II cluster drag coefficient 1.3 nN·s/µm (L) 

γfor Formin drag coefficient 1.9 nN·s/µm (L) 

γring Total ring-membrane drag coefficient in protoplasts 2805 nN·s/μm    (±45 nN·s/μm) (M)  

Legend: 
Values in parentheses are standard deviations or ranges for experimentally measured values, and 
standard errors for fitting parameters.   
(A) (Wu and Pollard, 2005). 
(B) (Yonetani et al., 2008), Fig. S3C. Together with the value for ρfor, this gives a formin binding 
rate of rfor = 0.35 μm-1·s-1. 
(C) Assumed the same as the density of nodes at the end of ring assembly (Wu and Pollard, 
2005). Since there are ~3000 Myo2p myosin-II heavy chains in a ring of ~10 μm in length, this 
implies ~40 Myo2 heavy chains per myosin cluster.  
(D) From FRAP measurements of myosin light chain Cdc4p (Pelham and Chang, 2002). 
Together with the value for ρmyo, this gives a myosin binding rate of rmyo = 0.20 μm-1·s-1.  
(E) From our measurements of node motions in this work. 
(F) Estimated from single-molecule high resolution colocalization (SHREC) measurements of 
the distance that myosin heads extend from precursor nodes (Laporte et al., 2011). 
(G) (Kuhlman et al., 1994; Miyata et al., 1996; Xu et al., 1998).   
(H) (Meyer and Aebi, 1990). 
(I) Estimated from in vitro actin bundles (Claessens et al., 2006).    
(J) (Ott et al., 1993; Riveline et al., 1997). 
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(K) Fit to previous measurements of rings in intact cells (see Fig. S3 and Extended Experimental 
Procedures). Polymerization rate corresponds to 26 subunits/s. 
(L) Fit to our measurements of the speeds of myosin II and formin in the ring (Fig. 2). 
(M) Fit to our measured protoplast ring constriction curves (Fig. 6E and S4C). 
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Table S2, related to Experimental Procedures. S. pombe strains used in this study  
Strain Genotype Source/Reference 

CL4 h- rlc1-3GFP ade6-M216 his3-D1 leu1-32 ura4-D18 (Vavylonis et al., 2008) 

CL5 h- rlc1-tdTomato-NatMX6 sad1-mEGFP-KanMX6 ade6-M216 his3-D1 
leu1-32 ura4-D18 

(Vavylonis et al., 2008) 

CL54 h+ myo2-E1 rlc1-3GFP ade6-M216 his3-D1 leu1-32 ura4-D18 (Balasubramanian et al., 1998) 

CL110 h+ nmt41-GFP-CHD (rng2)-leu1+  rlc1-tdTomato-natMX6 ade6-
M210 leu1-32 ura4-D18 

(Martin and Chang, 2006) 

JW1114 h+ cdc12-3YFP-KanMX6 sad1-CFP-KanMX6 ade6-M210 leu1-32 
ura4-D18 

(Wu et al., 2006) 
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Movie S1, related to Figure 1. Diffusion of nodes marked with Rlc1p-3GFP in a protoplast.  
Confocal fluorescence micrographs taken at 2 s intervals for a total of 100 s. Width of the field 
of view: 13.2 µm. 
 
Movie S2, related to Figure 1. Directed, stop-go motions of nodes marked with Rlc1p-3GFP 
in a protoplast.  
Confocal fluorescence micrographs taken at 8 s intervals for a total of 592 s. Width of the field 
of view: 10.6 µm. 
 
Movie S3, related to Figure 1. Sliding and constriction of a contractile ring marked with 
Rlc1p-3GFP in a compressed protoplast.  
Confocal fluorescence micrographs taken at 3 min intervals. Bar: 5 µm. 
 
Movie S4, related to Figure 2. Motions of formin Cdc12p-3YFP in the contractile ring of a 
compressed protoplast. 
Reversed contrast confocal fluorescence micrographs taken at 2 s intervals. Bar: 2 μm.  
 
Movie S5, related to Figure 2. Motions myosin-II marked with Rlc1p-tdTomato in the 
contractile ring of a compressed protoplast.  
Reversed contrast confocal fluorescence micrographs taken at 4 s intervals. Bar: 2 μm. 
 
Movie S6, related to Figure 4. Ring simulation under standard, “wild type” conditions.  
Actin filaments: gray; myosin cluster capture zone: orange; formins: blue; α-actinin crosslinks: 
green. Horizontal dashed lines: boundaries of formin and myosin binding zone. The field of view 
is 5 μm wide, a portion of a 10 μm long ring. Starting from an initial condition with no actin 
filaments, the ring reaches a fluctuating steady-state in ~30 s.  
 
Movie S7, related to Figure 6. Comparison of observed and predicted ring constriction in a 
compressed protoplast with dimensions h = 1.60 μm and R = 1.96 μm. 
(Left) Confocal fluorescence images at 3 min intervals of a constricting and sliding contractile 
ring marked with Rlc1p-3GFP. (Top) Overhead view and (bottom) side view of maximum 
projection images reconstructed from confocal stacks.  
(Right) Simulated contractile ring (blue) constricting in the compressed protoplast. (Top) 
Overhead view and (bottom) side view. Solid red line: cell boundary. Dotted red line: boundary 
of the flat portion of the protoplast. Parameters, as in Table S1. 
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EXTENDED EXPERIMENTAL PROCEDURES 
 
1. Measurement of ring tension 

2. Simulation of the fission yeast contractile ring 

3. Quantitative characterization of the ring organization: the sarcomericity, the bundling 
coefficient, and their relation to ring tension 

4. Sliding-constriction model of rings in protoplasts, and comparison to observed ring 
shapes and constriction rates  
 
 
1. Measurement of ring tension 
 
Protoplast membrane tension was measured using micropipette aspiration (Evans, 1989; 
Hochmuth, 2000). Pipettes with long tapers >1 cm were drawn from borosilicate capillaries 
(WPI, Sarasota, FL, 1 mm OD, 0.58 mm ID) using a Sutter P-97 puller (Novato, CA). Tips were 
cut at 1.5-3 m diameter using a Narishige MF-830 microforge (Tokyo, Japan) using a small 
molten glass bead. Observation chambers consisted of a pair of glass coverslips (#1.5, Waldemar 
Knittel Glasbearbeitungs- GmbH, Braunschweig, Germany) separated by 3 mm, attached to a 
metal block using vacuum grease. The chamber and pipettes were filled with 50% EMM5S in E 
buffer with either 0.6, 0.8, or 1.2 M sorbitol, and 0.5% BSA. Freshly prepared protoplasts, 
suspended in the same solution, were introduced into a corner of the observation chamber. 
Gentle suction was applied with the micropipette (mounted on a Sutter MP285 3-axis 
manipulator) to pick up and lift a protoplast above the coverslip. Pressure was increased in steps 
every 15-110 s and bright field images were recorded every 0.5 s.  
 
Aspiration pressure was controlled using a hydrostatic system. Before aspiration, the zero 
pressure was set by vertically moving a reservoir (open to atmospheric pressure) and observing 
the movement of debris into or out of the pipette. When such motion stops, the reservoir and 
pipette opening are at the same hydrostatic pressure. A second, reference reservoir was then 
placed at the same level as the first reservoir. The pressure difference between the reservoirs was 
continuously read using a pressure sensor (Validyne DP-15) and transducer (Model CD223,  
Validyne Engineering, Northridge, CA). The desired aspiration pressure was then set either by 
lowering the first reservoir (for pressures up to ~20 cm H2O) or by isolating it from atmospheric 
pressure and withdrawing the air above it using a programmable syringe pump (KDS230, KD 
Scientific). Pressure data (in the form of voltages) were digitized and recorded using a HEKA 
EPC 10 patch amplifier (HEKA Instruments, Inc., Bellmore, NY). Digital videos were 
synchronized with pressure data by a trigger signal from the EM-CCD camera to the amplifier.  
 
Image analysis was performed in ImageJ (http://rsb.info.nih.gov/ij/). For each protoplast (n = 9), 
the diameter of the spherical protoplast cap 2Rc, the pipette diameter 2Rp, and the length l of the 
protoplast aspirated into the micropipette (Fig. 2B) were measured from kymographs. Because 
protoplasts lack a cortical actin cytoskeleton, we assumed that the tension opposing aspiration 
into the pipette originates from the plasma membrane. The membrane tension σ can then be 
determined from σ = ΔPRp/[2(1 - Rp/Rc)], where ΔP is the suction pressure required to aspirate 
an equilibrium length l = Rp of protoplast into the pipette (Fig. 2B) (Evans and Yeung, 1989). 
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Assuming that the perturbation due to aspiration has a small effect on the membrane tension, this 
expression then represents the membrane tension of the unaspirated cell that we seek. The 
suction pressure ΔP was identified by overlaying plots of suction pressure and aspirated 
protoplast length as functions of time (Fig. S2H). We measured the tension ߪ under 3 different 
osmotic conditions, with sorbitol concentrations 0.6, 0.8, or 1.2 M. The mean membrane tensions 
in each case were similar, and showed no clear dependence on osmotic conditions: 0.33 (n = 4), 
0.17 (n = 2), and 0.30 mN/m (n = 3), respectively. Thus we used the mean of the 9 measured 
membrane tensions, σ = 0.28 ± 0.28 mN/m (mean ± SD), to calculate the ring tension, as follows. 
 
We inferred ring tension from protoplasts in a range of in 0.6 – 1.2 M sorbitol that contained 
sliding rings that furrowed the membrane (n = 12) (Fig. 2A). The ring tension is determined by a 
force balance at the furrow in the radial direction, T = Rring(σ1cosθ1 + σ2cosθ2) (Fig. 2A). Here, 
Rring is the ring radius, θ1 and θ2 are the angles the membrane makes with the plane of the ring at 
the furrow, and σ1 and σ2 are the membrane tensions of the two protoplast lobes. Since the ring 
sliding was very slow, with constriction timescales of ~30-60 min (Fig. 6E), we assumed that 
cytosolic pressure gradients produced by the moving membrane furrow had sufficient time to 
relax. Thus the pressure is uniform within the cell, so the membrane of each lobe supports the 
same pressure difference. It thus follows from Laplace’s law that the ratio of the membrane 
tensions in the lobes equals the ratio of the lobe radii. Since the relative difference in lobe radii 
was <50%, we took the mean of the membrane tensions in the two lobes of a furrowed protoplast 
to be equal to the value, σ, that we measured in unfurrowed protoplasts using micropipette 
aspiration. Hence, σ1 = 2σ/(1+R2/R1) and σ2 = 2σ/(1+R1/R2), where R1 and R2 are the lobe radii. 
Thus, by measuring the ring radius Rring and the lobe radii R1 and R2 from images of furrowed 
protoplasts, and then calculating the resulting angles θ1 and θ2, we could directly calculate ring 
tension T. The values we obtained give a mean value of T = 391± 154 pN (mean ± SD).  
 
2. Simulation of the fission yeast contractile ring 
 
We developed a computer simulation to study the organization and tension of the ring. The ring 
tensions generated in our simulation were then used as input to our model of ring sliding-
constriction in protoplasts (described in section 4). Our simulation represents the contractile ring 
at some instant during constriction, when its length L is less than or equal to its initial maximum 
value at the onset of constriction. Importantly, constriction lasts much longer (~30-60 min, Fig. 
6E and Pelham and Chang, 2002) than the time required for the organization and tension of the 
simulated ring to attain steady state. A good measure of the latter timescale is the memory time 
for tension fluctuations, ~30 s (Fig. 4A). Thus, during the time required for the statistical 
properties of the ring to reach steady state, the ring length changes very little. This justifies our 
procedure in which we ran the ring simulation and calculated the tension for a fixed ring length 
L, and then repeated this for different values of L corresponding to the shortening ring 
throughout constriction. 
 
As our experimental results suggest that protoplast rings are functional (Figs. 1 and 2), the model 
is assumed to be equally applicable to rings in intact fission yeast cells and in protoplasts, and 
accordingly we compared its predictions both to literature measurements on intact cells and to 
measurements on protoplasts in the present study. In intact fission yeast, the length of the ring at 
the onset of constriction is L ≈ 10 μm (Pelham and Chang, 2002), while in protoplasts we 
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observed ring lengths up to a maximum of L = 22.1 μm (Fig. 6E). Table 1 summarizes the key 
parameter values used in the simulation. All simulations were performed in MATLAB. 
 
Ring geometry 
The simulated ring lies on the inner surface of the plasma membrane and has circumference, or 
length, L. Our experimental measurements showed that the thickness of the ring perpendicular to 
the membrane (<0.4 µm, Figs. 1J and S3A,B) is significantly less than the mean actin filament 
length in the simulation (~1.3 µm). Moreover, in a previous study actin filaments were estimated 
to make a small ~8º angle with the membrane during ring assembly (Laporte et al., 2011). Thus, 
in our simulations we approximated the ring as a quasi-two-dimensional structure in the plasma 
membrane. Since the mean filament length of ~1.3 μm is much less than the initial ring length of 
~10-20 μm, we simulated the ring as a flat band with periodic boundary conditions (Movie S6). 
This assumption did not significantly affect ring tension, since the bending of actin filaments 
imposed by the curvature of the ring would generate negligible forces (see below).  
 
Newly arriving formins and myosin-II clusters were assumed to bind randomly, with uniform 
spatial distribution, within a zone of the membrane of width d = 0.2 µm. This choice of width 
resulted in steady state rings with formins randomly distributed around the ring (Fig S3E) and 
components extending across a band ~0.2 µm wide (Fig. 4F), in agreement with present (Fig. 
2H-J) and previous (Wu and Pollard, 2005) experiments, respectively.  
 
Actin filaments and formins 
We described actin filaments as semi-flexible polymers, accounting for the fact that actin 
filaments are stiff but can bend, according to the bending modulus κ = kBTlp, where kBT is the 
thermal energy and lp = 10 μm the persistence length (Ott et al., 1993; Riveline et al., 1997). We 
used a standard method to follow filament configurations, tracking a subset of the actin 
filament’s subunits separated by 0.1 μm, measured along the filament’s length. Thus, every 37th 
actin subunit is labeled, and in the following the “ith subunit” denotes the ith labeled subunit.  The 
filament segments connecting labeled subunits are represented by springs that also have a local 
energy penalty for bending, determined by the bending modulus κ (Laporte et al., 2012) (Gauger 
and Stark, 2006). Thus, the springs have rest length 0

actl  = 0.1 µm. Note this is less than the 

myosin capture diameter (see below), ensuring stable actin-myosin connections. Each spring has 
stiffness kact = 1000 pN/µm, equivalent to a filament tensile modulus of kact

0
actl /Afil = 4 pN/nm2, 

where Afil ≈ 25 nm2 is the actin filament cross-sectional area. This value was chosen to be 
smaller than the true modulus, ~1800 pN/nm2 (Kojima et al., 1994), to allow the use of longer 
simulation time steps while still ensuring very small typical extensions of <10%. The simulated 
ring was relatively insensitive to the value of the actin filament bending modulus ߢ, as varying ߢ 
by a factor of 3 created small variations in tension T (<12%), bundling coefficient Ψbund (<1%), 
and sarcomericity Ψsarc (<14%) (Fig. 5H).   
 
Each actin subunit had an effective drag coefficient representing the drag coefficient of the 
segment of length ݈ୟୡ୲

଴  separating it from the next labeled subunit along the filament’s length. 
This drag coefficient was γsubunit = 0.2 pN·s/µm, corresponding to a cytoplasmic viscosity of η ≈ 
γsubunit[ln( 0

actl /dact) + 0.35]/(3π 0
actl ) = 0.6 Pa·s (Tirado and Garciadelatorre, 1979), on the order of 

previous measurements (Howard, 2001), where dact is the actin filament diameter. Simulation 
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results were not sensitive to the value of γsubunit because the typical drag force γsubunitvpol = 0.014 
pN is much smaller than the myosin force fmyo = 4 pN. The barbed end of each actin filament was 
capped by a formin dimer anchored to the membrane. The subunit at the barbed end of each actin 
filament represented the formin, and was assigned drag coefficient γfor, whose value (Table S1) 
was determined by fitting to the mean speed we experimentally measured for formin in the ring 
(Fig. 2).   
 
The actin filament diameter of ~5-9 nm is likely much less than thickness of the ring 
perpendicular to the membrane, which we measured to be of order 0.4 µm or less (Figs. 1J and 
S3A,B), and actin filaments in the assembling ring were estimated to dip a small ~8º angle out of 
the plane of the membrane (Laporte et al., 2011). These findings suggest that actin filaments can 
cross one another in the ring with relatively little mutual interference. Thus our simulations 
neglected excluded volume interactions between different actin filaments, which could freely 
cross one another. We accounted for excluded volume interactions between myosin clusters (see 
below), but such interactions between formins were omitted, as our measurements suggest they 
exist as single dimers (Fig. S2E-G) and are therefore likely much smaller than myosin clusters.  
 
Myosin clusters 
The structure of myosin-II in the fission yeast contractile ring is unknown. Our simulations 
assumed that myosin forms clusters, each containing 40 Myo2p myosin heavy chains, the same 
number of Myo2p molecules per node from which the ring is assembled (Wu and Pollard, 2005). 
Each myosin cluster is anchored to the membrane with drag coefficient γmyo, whose value (Table 
S1) was determined by fitting to the mean speed we experimentally measured for myosin clusters 
in the rings of protoplasts (Fig. 2). Myosin clusters interact in two ways with actin filament 
subunits that are within its capture radius of rmyo = 0.1 μm from the center of the cluster (Table 
S1). First, myosin pulls on the subunit with force fmyo = 4 pN (Table S1) in the direction of the 
filament’s pointed end. We imposed a maximum net force of 40pN that a myosin cluster could 
exert on all filaments that it binds to, based on an assumed force of 2 pN per myosin dimer. Thus 
the force per filament is reduced if a cluster interacts with >10 filaments (see below). Second, the 
actin subunit is captured and drawn toward the center of the cluster, an effect we modeled with a 
spring with zero rest length connecting the center of the cluster with the subunit. In addition, 
myosin clusters interact with one another through a short range excluded volume repulsion if 
they move within a distance dmyo = 50 nm of one another. These interactions and their 
implementation are described in more detail below. 
 
Turnover in the simulated ring 
The cytokinetic ring is an open system, constantly exchanging components with its environment. 
The simulated turnover of actin, formin, and myosin-II followed the reactions depicted in Fig. 
3A. Formin and myosin binding and unbinding, and actin filament severing were implemented 
stochastically, and the values of the corresponding rate constants (Table S1) were constrained by 
published experimental observations.  
 
Formin binding. New formin proteins bind with uniform probability at all locations within a 
zone of width d = 0.2 µm. The number entering the ring during a time step of duration Δt follows 
a Poisson distribution with mean rforLΔt, where rfor is the binding rate per ring length. Each 
newly bound formin instantly nucleates an actin filament, so a binding event results in a formin 
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subunit connected to an actin filament subunit by a spring with an initial rest length of 
approximately zero (vpolΔt  ≈ 3.5×10-6 μm), where vpol is the actin polymerization velocity. The 
new filament adopts any orientation θ with respect to the ring axis with equal probability. The 
value of the binding rate was rfor = ρfor

for
offk  = 0.35 μm-1·s-1, where ρfor =15 μm-1 is the formin 

density (Wu and Pollard, 2005), and for
offk  = 0.023 s-1 is the formin unbinding rate (Yonetani et 

al., 2008, Fig. S3C) (Table S1).  
 
Actin polymerization. Each actin filament elongates from the formin that caps its barbed end. To 
implement the increasing filament length, while still describing the filament as a series of springs 
with fixed rest length, new springs are inserted at the barbed end at a rate corresponding to the 
polymerization rate. This is done as follows. At each time step, a length vpolΔt of filament is 
added to the rest length of the spring at the barbed end (Laporte et al., 2012), where vpol is the 
formin-mediated polymerization velocity. Once the rest length of the spring at the barbed end 
exceeds a threshold value of 0.12 µm, the spring is split into two springs of lengths 0.02 µm (1st 
spring at the barbed end) and 0

actl  = 0.1 µm (2nd spring) as a new subunit enters the actin filament. 

Thus, each actin filament consists of a spring connected to the barbed end whose rest length is 
growing due to polymerization, connected to a series of springs of constant rest length 0

actl  = 0.1 

µm. 
 
Severing by cofilin. Every actin filament is severed by cofilin with probability rsevlfilΔt each time 
step, where lfil is the filament length and rsev the severing rate per filament length. After each 
subunit of yeast ATP-actin polymerizes, the bound ATP hydrolyzes and the -phosphate 
dissociates in <10 s (Ti and Pollard, 2011). Since we predict that actin turns over in ~11 s (Fig. 
7C), and since cofilin binding can accelerate phosphate release >10 fold (Blanchoin and Pollard, 
1999), we assume that most polymerized subunits are ADP-actin and that cofilin severs with 
equal probability at any location along each filament. Thus, the net severing probability for the 
filament increases with length, consistent with the kinetics of cofilin severing of ADP-actin 
filaments in vitro (Andrianantoandro and Pollard, 2006). After severing, all subunits and springs 
between the point of severing and the pointed end are deleted from the simulation.  
 
Formin unbinding. Each formin dissociates from the ring with probability for

offk Δt in each time 

step, where for
offk is the formin off rate. If a formin dissociates, both the formin and its associated 

actin filament are deleted from the simulation. 
 
Myosin turnover. In the simulation, myosin-II clusters bind with uniform probability at all 
locations in the binding zone of width d = 0.2 μm. The number entering during a time step of 
duration Δt follows a Poisson distribution with mean rmyoLΔt, where rmyo is the binding rate per 
ring length. The value of the binding rate was rmyo = ρmyo

myo
offk  = 0.20 μm-1·s-1, where ρmyo =7.5 

μm-1 is the myosin-II cluster density assuming 40 heavy chains per cluster (Wu and Pollard, 
2005), and myo

offk  = 0.026 s-1 is the myosin unbinding rate (Pelham and Chang, 2002) (Table S1). 

Each myosin-II cluster dissociates from the ring with probability myo
offk Δt in each time step. 
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FRAP simulations. To simulate a formin FRAP assay (Figs. 7C and S3C), we assigned all formin 
subunits in the ring at some instant to a ‘bleached’ population, and then tracked the arrival of 
new, ‘unbleached’ formins. To simulate an actin FRAP assay (Fig. 7C), we assigned all actin 
filaments in the ring at some instant to a bleached population, and then tracked the arrival of new 
unbleached filaments and the growth of new unbleached portions of bleached filaments.   
 
Forces and velocities 
The ith actin filament subunit in the simulated ring has the 2-component position vector act

ir , 

where i = 1,2,3...nsubunit and nsubunit is the total number of actin filament subunits. Within each 
actin filament, subunits are counted from the barbed to the pointed end. Similarly, myosin cluster 
i has position myo

ir , where i = 1,2,3...nmyo and nmyo is the total number of myosin clusters. The 

velocities of the actin subunits and myosin clusters are determined by the forces acting upon 
them, summarized in Fig. 3B: 
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Here γmyo is the myosin drag coefficient, and γi is equal to the formin drag coefficient γfor if 
subunit i is at the barbed end of a filament, and is equal to the actin subunit drag coefficient 
γsubunit otherwise. At each simulation time step of duration Δt, Eqs. S1 and S2 were used to 
determine the component velocities, allowing update of positions. Below we describe the forces 
in Eqs. S1 and S2. 
   
Actin filament springs. The force on actin subunit i from actin filament springs is 
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where the sum is over actin subunits j that neighbor subunit i, and are part of the same filament. 
For interior subunits, j = i - 1, i + 1, while for subunits at barbed and pointed ends,  j = i + 1 and j 
= i - 1, respectively. 
 
Actin filament bending. The force on actin subunit i from filament bending is  
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where the quantity in square brackets is the total bending energy of the actin filament containing 
subunit i, the sum is over all of the nspring springs in this actin filament, κ is the actin filament 

bending modulus, and jt̂  is the unit vector parallel to spring j (Gauger and Stark, 2006; Laporte 

et al., 2012).  
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Actin crosslinking forces due to α-actinin. When actin subunits from two different filaments are 
within distance bind

xr  = 50 nm of each other, α-actinin Ain1p forms a crosslink between the 
subunits with a binding rate tuned so the density of α-actinin in the ring matched the 
experimentally measured value (Table S1). The α-actinin is modeled as a spring connecting the 
two actin subunits having spring constant kx = 25 pN/μm (Table S1). α-actinin crosslinks unbind 
at rate x

offk (Table S1) and are also assumed to unbind if the separation between the linked actin 

subunits exceeds bind
xr . The force on actin subunit i from α-actinin crosslinks is  
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where 0
xr  is the rest length of the spring (Table S1), and the sum is over actin subunits j that are 

linked to actin subunit i by α-actinin.  
 
Myosin-II pulling. An actin filament subunit that enters within the capture radius of a myosin 
cluster is pulled by the myosin cluster with force fmyo in a direction tangent to the filament at that 
point (i.e., parallel to the spring connecting that subunit to its neighbor) and acting toward the 
filament’s pointed end. The value of this force was ୫݂୷୭ ൌ 4 pN, from our measurements of node 
motions in this work (Table S1). However, each myosin cluster is assumed to exert a maximum 
net force of 40 pN on all the actin filaments to which it binds (assuming 2 pN per myosin dimer), 
so that the force per filament is reduced accordingly if a cluster interacts with >10 filaments. The 
total myosin pulling force on actin filament subunit i is therefore 
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where myo
in is the effective number of myosin clusters interacting with subunit i, and subunit i-1 

is the adjacent subunit in the direction of the barbed end. The effective number of clusters is 

 j jin myo , where the sum is over myosin clusters j that interact with filament i. Here αj = 1 

if myosin cluster j interacts with ௝݊
୧୬୲ ≤ 10 actin filaments, and αj = 10/ ௝݊

୧୬୲ if the cluster interacts 

with ௝݊
୧୬୲ > 10 filaments. From the above expression, myosin pulls locally along the direction of 

the filament’s contour, and this force does not locally change the actin filament’s orientation. 
Each actin-myosin pulling interaction also produces an equal and opposite force on the myosin 
cluster due to Newton’s third law, and the net pulling force on myosin cluster i is named myo pull,

if

. We assume that all of these forces due to myosin are independent of actin and myosin cluster 
velocities, since these velocities are much less than the measured unloaded actin filament gliding 
velocity produced by fission yeast Myo2p, 0

myov  = 0.4 μm/s (Lord and Pollard, 2004).  

 
Myosin-II capture. In addition to pulling, a myosin cluster also binds to, or captures, actin 
subunits within the capture radius rmyo and draws them toward the center of the cluster. This 
binding is modeled as a spring with zero rest length connecting the center of the cluster with the 
actin filament subunit. The total myosin capture force on actin subunit i is  
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where it̂  is the unit vector in the direction of spring i, and the sum is over all myosin clusters j 

that are within distance rmyo of actin subunit i. The first term is the spring force, while the second 
term subtracts off the component parallel to the actin filament. Thus the capture force only acts 
perpendicular to the filament, and therefore perpendicular to the myosin pulling force. Each 
capture interaction also produces an equal and opposite force on the myosin cluster due to 
Newton’s third law, and the net capture force on myosin cluster i is named myo cap,

if . The spring 

constant kmyo = 5 pN/μm was set to allow stable actin-myosin connections while still allowing 
myosin to transfer to the next actin subunit in the filament as the filament grows. Significantly 
larger values of kmyo caused permanent pinning of actin subunits to myosin clusters, while 
significantly smaller values prevented stable actin-myosin binding. 
 
Myosin-II excluded volume. Myosin-II clusters experience a short range excluded volume 
repulsion if they move within distance dmyo = 50 nm of each other. The net force on myosin 
cluster i is                                                 
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where the sum is over all myosin clusters j that are within dmyo of cluster i, and the spring 
constant of repulsion, excl

myok  = 10,000 pN/µm, was chosen to be extremely stiff to approximate a 

“hard sphere” interaction. The value of dmyo was set to be on the order of the myosin capture 
radius, but smaller than the assumed excluded volume radius for nodes (Laporte et al., 2012; 
Vavylonis et al., 2008) because myosin clusters in the ring likely lack some node components.  
 
Calculation of ring tension in the simulation 
As mentioned above, we performed simulations at fixed ring length. To calculate the ring tension 
as a function of ring length, T(L), for each value of L we ran the simulation to steady state and 
then recorded the time-averaged value of the tension over a time >25-fold larger than the formin 
turnover time. At each simulation time step, ring tension was calculated using the formula:       

                                                 
 spring
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springspringspring2 )(cosN
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iii

L

lT
T


,                                           (S9) 

where Ti
spring, li

spring, and θi
spring are the tension, length, and orientation of spring i, and the sum is 

over all springs in the simulation (actin filament springs, α-actinin springs, myosin capture force 
springs, and springs representing myosin cluster excluded volume). The angle θi

spring is measured 
relative to the ring axis, and the )(cos spring2

i  factor selects the components of spring length and 

tension parallel to the ring axis. Thus, T is the component of tension of ring components parallel 
to the ring axis, averaged over the ring length. This is the relevant component that works to 
constrict the ring. The expression of Eq. S9 is valid provided drag forces between actin filaments 
and the cytoplasm can be neglected, i.e., the actin subunit drag coefficient γsubunit is sufficiently 
small. In our simulations this condition was satisfied, as the characteristic drag force γsubunitvpol = 
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0.014 pN was far smaller than the myosin force fmyo = 4 pN. Thus we expect the contribution to 
the tension from these drag forces is small. 
 
Time step 
The simulation time step was Δt = 5×10-5 s. We chose this value to be significantly less than the 
relaxation time of the actin filament subunit-spring system, γsubunit/kact = 2×10-4 s. The time step 
was therefore also far smaller than the formin and myosin turnover time of ~30 s. This choice 
lengthened an actin filament by 3.5 ൈ 10ିଷ nm per time step, far less than the actin subunit size 
~2.7 nm. When we used a time step Δt = 0.04 s, giving a length increase per time step close to 
the length of an actin subunit, we found no changes in ring properties (tension, sarcomericity, 
organization). For example, ring tension at the onset of constriction was 355 ± 50 pN, within the 
range of tensions 340 ± 57 pN that we obtained using our usual, much smaller, simulation time 
step. 
 
Determination of unknown turnover parameter values: rsev and vpol 
The parameters rsev and vpol are the cofilin-mediated severing rate per length of actin filament, 
and the formin-mediated polymerization rate of actin filaments, respectively. Unlike many other 
simulation parameters, these have not been directly measured in the ring. However, their values 
help to determine the amount of actin and the turnover rates of components in the simulation. 
Thus, we could fix their values by insisting that the results of the simulation were consistent with 
experiments that have probed these features. We estimated rsev and vpol by tuning them 
simultaneously so that two properties of the simulated ring matched data from previous 
experiments: (1) from published electron micrographs, we estimated the number of actin 
filaments in parallel across the ring to be ~20 (Kanbe et al., 1989); (2) the contractile ring 
disintegrated in ~55 s after treatment with a large dose of the toxin Latrunculin A that apparently 
completely inhibited actin polymerization (Yonetani et al., 2008), Fig. S3D. To simulate the 
Latrunculin treatment experiment, we set the polymerization rate vpol to zero at t = 0 and 
recorded the time at which 90% of the actin originally in the ring was lost due to formin 
unbinding and cofilin severing (Fig. S3D, dashed line). We then set the parameter values so that 
this time matched the experimentally observed time for 90% of rings to disintegrate. We could 
not compare directly to the amount of actin in the ring, as this was not reported. In the 
experiments, a ring was defined to have disintegrated when the actin became indistinguishable 
from background, so we assumed that the amount of actin remaining served as a good guide for 
the disintegration time. 
 
The parameter values that reproduced these two experimental results, (1) and (2) above, were vpol 
= 70 nm/s (26 subunits/s) and rsev = 1.8 μm-1min-1 (Table S1). These best-fit parameter values 
produce a mean actin filament length of ~1.3 µm (Movie S6). 
 
The best-fit value of vpol, 70 nm/s, is one third the rate of filament extension from precursor 
nodes (Vavylonis et al., 2008). The value of rsev, 1.8 μm-1min-1, is ~6-fold faster than the rate at 
which the optimal concentration of cofilin Adf1p severs muscle actin filaments in vitro 
(Andrianantoandro and Pollard, 2006). Similarly to the cofilin severing kinetics, a previous 
model of actin patch dynamics also predicted rates for several reactions in live fission yeast that 
were faster than those measured in vitro using muscle actin (Berro et al., 2010), some of which 
have been verified (Arasada and Pollard, 2011; Ti and Pollard, 2011). 
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Testing the simulation turnover mechanisms: comparison with experiments in fission yeast 
cells expressing mutant formin   
To validate our assumed actin and formin turnover mechanisms (Fig. 3A), we tested whether our 
simulations could recapitulate the behavior observed in fission yeast cells with altered actin or 
formin turnover rates.  
 
Yonetani et al. (2008) reported that deletion of both profilin binding sites in the FH1 domain of 
formin Cdc12p resulted in dramatically reduced actin polymerization activity in vitro. FRAP 
measurements showed that the dissociation of the mutant formin Cdc12p ( for

offk  = 0.009 s-1) from 

contractile rings of cells also expressing wild-type Cdc12p was slower than the dissociation of 
wild-type Cdc12p from rings in wild-type cells (0.023 s-1, Fig. S3C). Further, treatment with a 
large dose of Latrunculin A to inhibit all actin polymerization disintegrated rings more slowly in 
cells expressing mutant Cdc12p (138 s) than in wild-type cells (55 s, Fig. S3D Inset) (Yonetani 
et al., 2008). 
 
To test if our simulation could capture this result, we simulated the Latrunculin A ring 
disintegration assay assuming that all formins in the ring were mutant formins. Using the 
measured mutant for

offk  value, and treating the mutant actin polymerization rate vpol as a fitting 

parameter, we ran the simulation to steady state. Then we set vpol = 0 (to mimic Latrunculin 
addition) and recorded the time for 90% of the actin to disappear. Note that the simulated 
disintegration time depends on the mutant actin polymerization rate because the latter determines 
the filament length distribution in the steady state ring just before polymerization is switched off, 
and this distribution in turn affects the disintegration time. To reproduce the observed 
disintegration time, we found a best-fit value for the mutant actin polymerization rate of vpol = 12 
nm/s, much less than our model’s best-fit value in wild-type cells, 70 nm/s (Fig. S3D and Table 
S1). This best-fit value is an upper bound, and would have been even lower had we assumed that 
wild-type formins were present in the ring along with the mutant proteins. This lower mutant 
polymerization rate is consistent with the reduced polymerization activity seen experimentally 
(Yonetani et al., 2008). Thus, the assumed turnover mechanisms in our simulation (Fig. 3A) are 
able to capture the behavior of contractile rings with perturbed actin and formin turnover 
kinetics. 
 
Calculation of actin and formin FRAP curves 
The analytical solution for the formin FRAP curve of Fig. 7C has the format ܫforሺݐሻ/ܫfor

ஶ ൌ 1 െ
exp ሺെ݇off

forݐሻ, where Ifor is the formin fluorescence and ܫfor
ஶ  is the final recovery value, because of 

the assumed simple 1st order unbinding of formin from the ring.   
 

The actin FRAP curve is calculated from ܫactሺݐሻ ൌ polݒlܫ fܰil ׬ Ԣݐ݀
௧

଴  ᇱሻ, where Il is the actinݐሺ݌
fluorescence per unit filament length, fܰ୧୪ is the number of filaments in the ring and p(t’) is the 
“survival probability” of a monomer at time t’ that was polymerized at time 0, i.e. the probability 
that such a monomer still belongs to the ring after time ݐԢ. Based on the turnover mechanisms 

described above, the survival probability obeys 
ௗ௣

ௗ௧
ൌ  െ݇off

for݌ െ  Evaluating the  .݌ݐpolݒsevݎ



25 
 

integral above then yields ܫactሺݐሻ/ܫact
ஶ ൌ ሾerfሺܽ ൅ ሻݐܾ െ erfሺܽሻሿ/ሾ1 െ erf ሺܽሻሿ, where ܽ ൌ

݇off
forሺ

௥sev௩pol

ଶ
ሻିଵ/ଶ and ܾ ൌ ሺݎsevݒpol/2ሻଵ/ଶ. This expression was used in Fig. 7C.      

 
Tension and organization of the simulated ring are robust to parameter variations 
Within a range about the experimentally determined “wild type” parameter values of Table S1, 
the simulations robustly self-organized components into a functional ring whose tension was 
close to the value we measured experimentally (Fig. 4A). To test the robustness of the model, we 
varied the parameter values in simulations of the ring at the onset of constriction, and we 
measured the ring tension, and the sarcomericity ߰ୱୟ୰ୡ and bundling coefficient ߰ୠ୳୬ୢ that 
quantify the ring’s organization (Fig. 5).  
 
Production of a functional ring with essentially the same bundled organization and tension as in 
the wild type simulations required that formin and myosin-II clusters bind in a zone <0.4 µm 
wide, and that that myosin clusters have a capture radius >70 nm (Fig. 5E,F) and an anchor 
mobility >0.2 nm/pN s (Fig. 5A-C). The wild type simulations assumed there was no directional 
bias in the actin filaments nucleated by formins, the simplest possible assumption; introducing 
bias had little effect, and the rings were similar to those in wild type simulations. (Fig. 5G). This 
suggests that the spontaneous rotation and bundling of actin filaments is such an efficient process 
that possible orientational bias of actin nucleation in the circumferential direction of the ring may 
be redundant. Production of functional rings was similarly insensitive to the actin filament 
bending modulus, myosin turnover rate and actin polymerization and severing rates at fixed 
mean filament length (Fig. 5H and data not shown). For the latter, for each value of the cofilin 
severing rate ݎୱୣ୴ we tuned the actin filament polymerization rate ݒ୮୭୪ to compensate in such a 
way as to maintain the actin filament length fixed. 
 
Bending forces in actin filaments due to ring curvature are negligible 
The simulation ignores forces due to actin filament bending imposed by the curvature of the ring 
as it follows the curved cell membrane. Here, we show that these forces are negligible compared 
to other forces in the ring. The bending energy per unit length of an actin filament due to this 
curvature is E = κ/(2 2

ringR ), where Rring is the filament’s radius of curvature (equal to the ring’s 

radius of curvature) and κ is the bending modulus (Landau and Lifshitz, 1986). The force per 
unit length acting in the radial direction is then -∂E/∂Rring = κ/ 3

ringR . In a ring whose cross section 

is intersected by N actin filaments, the total outward radial force per unit length due to filament 
bending is thus σbend = Nκ/ 3

ringR . In Laplace’s law, the filament bending energy contributes an 

extra term that translates into a negative effective contribution to the ring tension given by  

                               Tbend = -σbend Rring = -Nκ/ 2
ringR .                                           (S10) 

Using N = 20 (Kanbe et al., 1989), κ = kBTlp = 0.041 pN·μm2 (where kBT is thermal energy and lp 
is the actin filament persistence length, Table S1), and 2πRring = 2-20 μm, gives -8 pN < Tbend < -
0.08 pN. These values are much smaller than the ring tension of ~350 pN.  
 
Once the ring has a length <1 μm (the approximate filament length in our simulations), its 
diameter is ~0.3 μm, comparable to the thickness of the ring and to the size of myosin-II clusters. 
Thus, no matter what model one might adopt of the contractile ring, physically it cannot continue 
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to constrict and retain the same form with the same components. We consider it very likely that a 
distinct process takes over at this stage, perhaps related to the process of abscission. 
  
 
3. Quantitative characterization of the ring organization: the sarcomericity, the bundling 
coefficient, and their relation to ring tension 
 
Derivation of approximate expression for the simulated ring tension in terms of statistical 
properties of the ring organization 
Here we derive the expression for the ring tension T presented in the main text in Results, in the 
subsection “Relationship between organization and tension in the ring.” This approximate 
expression relates the tension to the sarcomericity and bundling coefficient that characterize the 
organization and will be defined below. We will show that the ring tension can be expressed as a 
simple function of several key properties of the ring after adopting the following simplifying 
assumptions. (i) We calculate only the tension in actin filaments, as this accounts for >99% of 
the tension in the simulation, while tension in α-actinin crosslinks, myosin excluded volume 
forces, and myosin capture account for the remainder. (ii) We assume that each actin filament is 
straight, so its orientation with respect to the ring axis is characterized by a single angle. This is 
expected to produce fairly small errors, because the mean magnitude of actin filament curvature 
due to bending in the simulation is ~0.17 μm-1, giving a mean radius of curvature of ~6 μm, more 
than 4-fold larger than the mean actin filament length. (iii) Similarly to our derivation of the 
near-exact formula for tension in the ring given by Eq. S9, we ignore the very small contribution 
from drag forces between actin filaments and the cytoplasm (see discussion following Eq. S9). 
 
Consider first the population of actin filaments in the ring that have length l and orientation θ, 
where –π < θ < π, and θ = 0 for a filament aligned with the ring axis that has barbed end to the 
left. We define cmyo,lθ(s) to be the mean linear number density ( per unit filament length) of 
myosin clusters interacting with filaments in this population a distance s from the filament’s 
anchored barbed end, measured along the filament in the direction of its pointed end. The barbed 
end is at s = 0, while the pointed end is at s = l. This myosin density is an average for filaments 
of length l and orientation θ. Since each myosin cluster exerts a total force fmyo, the mean tension 
generated by myosin-II clusters in a filament of length l and orientation θ, averaged over its 
length, is given by  

                                                          
l

ll dsssc
l

f
T

0 ,myo
myo )(  .                                              (S11) 

The s in the integrand of Eq. S11 is present because myosin at location s produces tension in the 
portion of the filament of length s between the myosin and the anchored barbed end. Note that 
there is no contribution to tension from drag forces that act on the barbed end anchor, s = 0, due 
to filament motion. Each such filament makes a contribution to the mean tension averaged along 
the ring of length L that is equal to Tlθcos2(θ)l/L. Here the factor cos(θ)l/L gives the fraction of 
the ring’s length that the filament’s length projects onto, and the second factor of cos(θ) gives the 
component of the filament’s tension that contributes to the ring tension which acts parallel to the 
ring circumference. For a ring with a total of Nfil filaments, the total ring tension is then 
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where the angular brackets with subscript l,θ denotes the average over the distributions of both 
actin filament length and orientation. This is rewritten 

                                     
)(cos

)()(cos
)(cos

2

,0 ,myo
2

2
filmyo 


 

l

dsssc
lcfT l

l

lθ
  ,                          (S13) 

where cfil = Nfil/L is the mean linear density of actin filaments. Thus the tension can be expressed 
in the form presented in “Relationship between organization and tension in the ring” in Results: 

                                                            sarcbundfilmyo lcfT   .                                               (S14) 

Here we defined the bundling coefficient Ψbund to be 
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and we defined the “sarcomericity” Ψsarc as 
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where cmyo,l(s) is the mean linear density of myosin clusters engaged with filaments of length l. 
To obtain the simplified final expression for Ψsarc in Eq. S16, we assumed that filament length 
and orientation are independent. In practice this is a good approximation, as most filaments make 
small angles with the ring axis (Ψbund = 0.8, Fig. 4J). In the main text, we simplified the notation 
by dropping the l subscript, cmyo,l(s)  cmyo(s). Note that the contribution of each myosin cluster 
to the number density cmyo,l(s) takes into account the fact that the myosin-II heads in the cluster 
are saturated by 10 actin filaments, when the maximum cluster force of 40 pN is reached. Thus,  
cmyo,l(s) represents the density of myosin-II heads that are bound at a distance s from the barbed 
end to actin filaments of length l, divided by the number of heads per cluster. The contribution of 
a myosin cluster j to this density is αj = 1 if myosin cluster j interacts with ௝݊

୧୬୲ ≤ 10 actin 

filaments, and αj = 10/ ௝݊
୧୬୲ if the cluster interacts with ௝݊

୧୬୲ > 10 filaments. 
 
Ψbund and Ψsarc are dimensionless numbers that embody the features of ring organization that 
determine the ring tension. The bundling coefficient is bounded between 0 and 1, where Ψbund = 
1 indicates perfect alignment of all filaments with the ring axis, and Ψbund = 0 indicates that all 
filaments are aligned perpendicular to the ring axis. An important principle that emerges from 
this simple calculation is that the mean tension in an actomyosin organization depends not only 
on the amount of myosin that binds to the actin filaments, but also on the locations of the myosin 
along the filaments: it is the moment of the myosins that governs the amount of tension, not 
simply the total amount. This is quantified by the sarcomericity, which is the mean myosin 
moment per actin filament length, i.e., a sum over the myosin-II clusters interacting with a 
filament, weighted by the distances of these interactions from the barbed end, and then averaged 
over all filaments. The moment is then normalized by the mean actin filament length, <l>. Thus, 
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Ψsarc = 1 indicates that the average tension-producing effect of the myosins is the equivalent of a 
single myosin cluster situated at each actin filament pointed end. This could be produced, for 
example, by 2 myosin clusters bound half-way along each actin filament, or, more realistically, 
by a distribution of myosin locations whose net normalized moment gives unity.  
 
In “wild type” simulations, we found a value of Ψsarc = 4.2 (Fig. 4K). Thus, the tension-
producing effect of myosin-II clusters is equivalent to about 4 clusters acting at the pointed end 
of actin filaments, at the maximum possible distance from the anchored barbed end. This 
provides a quantitative measure, in terms of tension-producing capability, of the high 
concentration of components in the self-organized actomyosin bundle produced by self-
organization. 
 
Calculation of the bundling coefficient Ψbund and sarcomericity Ψsarc in ring simulations 
The averages in Eqs. S15 and S16 are time averages over all filaments in the ring. To calculate 
Ψbund in the ring simulation, at each time step we estimated θ for each actin filament as the angle 
of the straight line connecting the barbed and pointed ends, averaged over all filaments as in Eq. 
S15, and then averaged over all simulation time steps once the ring had reached steady state. To 
calculate Ψsarc, at each time step we averaged over all actin filaments as in Eq. S16, with each 
actin filament-myosin cluster interaction giving a contribution proportional to its distance from 
the barbed end, and then averaged over all simulation time steps once the ring had reached 
steady state.    
 
4. Sliding-constriction model of rings in protoplasts, and comparison to observed ring 
shapes and constriction rates  
 
Sliding-constriction model for ring constriction in protoplasts   
The ring simulation outputs the ring tension as a function of ring length, T(L). We used this ring 
tension to calculate the length L(t) and the shape of constricting rings as a function of time t as 
the rings constricted while sliding along the cell membrane of protoplast cells. The model 
assumed that anchors attach the ring to the membrane and endow the ring with total drag 
coefficient γring. We assume that the drag coefficient is distributed evenly along the arc length of 
the ring (uniformly distributed anchors), which may be maintained by the rapid turnover of ring 
components that occurs on a timescale much shorter than constriction. The sliding velocity and 
shape of the ring are then determined by balancing two forces (Fig. 3D). (i) The component 
tangent to the membrane of the centripetally directed force on the ring due to ring tension T. The 
value of this centripetal force is given by Laplace’s law. (ii) Drag forces due to the sliding of 
ring-membrane anchors through the membrane.  
 
Spherical protoplasts. First, we consider the simple case of a spherical protoplast. In the absence 
of external constraints, protoplasts would adopt a spherical shape due to the loss of cell wall. In 
our model, constriction is driven by ring tension that exerts at each point of the ring an inward 
radial force per ring length equal to T/(L/2π), following Laplace’s law in two dimensions. The 
component of this force tangent to the membrane is 2πTsinθ/L, where θ is the angle between the 
membrane tangent in the steepest direction and the normal to the plane of the ring. Ring sliding 
is resisted by viscous forces due to anchors with force per unit length (γring/L)v, where v = 
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(dL/dt)/(2πsinθ) is the sliding velocity of the ring and γring is the total drag coefficient of all the 
anchors in the membrane. Equating these forces gives the ring length dynamics as 
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since sin2θ = 1 – L2/ 2
protoL , where Lproto is the circumference of the spherical protoplast. In this 

simple geometry, due to symmetry considerations, the ring would maintain a circular shape and 
lie in a plane at any instant. 
 
Compressed protoplasts. In the present study, ring constriction was measured in protoplasts that 
were compressed between a microscope slide and coverslip to deform them from spheres into a 
range of partially flattened shapes (Fig. 6A), which allowed us to test the effect of cell shape on 
ring constriction. We compared measurements of constricting rings in these deformed protoplasts 
to our sliding-constriction model in which we describe the cell shape by the height of the cell 
membrane z(x,y) above the location (x,y) on the slide: 
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Here R is the radius of the parallel discs that constitute the upper and lower surfaces of the 
protoplast in contact with the coverslip and slide, respectively, and h is one half of the protoplast 
height (Fig. 6A). The slide is at z = -h and the coverslip deforming the cell is at z = h. The profile 
of the protoplast surface extending beyond the parallel discs is a semicircle (Fig. 6A). In this 
geometry, the length of the ring when confined to the plane x = 0 is equal to the protoplast 
equatorial circumference, Lproto = 4R + 2πh.   
 
Contractile ring dynamics. The configuration of the ring in compressed protoplasts is described 
by the vector function r(s,t) = <x(s,t), y(s,t), z(s,t)>, where r(s,t) is the position vector at time t of 
the element of the ring that was located an arc length s along the ring at t = 0. The parameter s 
therefore has values in the range 0 < s < L(0) at all times, with r(0,t) = r(L(0),t) since the ring is a 
closed loop. Note that s is defined with respect to initial arc length and thus labels a material 
element of the ring; at later times s does not represent arc length, due to stretching or 
compression of the ring. The ring length at time t is 
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The dynamics of the ring are governed by a balance of forces generated by ring tension and drag 
forces from ring anchors that resist ring sliding. The force balance per unit length of ring is 
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where κ(s) = |r'×r''|/|r'|3 is the ring curvature and n(s) = r''/|r''| the principal unit normal to the ring 
at s. N(r(s,t)) is the inward directed unit normal vector to the protoplast surface, calculated from 
Eq. S18. Primes denote partial derivates with respect to s. The right hand side of Eq. S20 is due 
to the force per unit ring length that drives ring sliding, namely the local inward force on the ring 
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due to tension that is equal to Tκ in the direction of the principal normal vector to the ring 
(Laplace’s law). The factor in square brackets selects the component of this force tangential to 
the protoplast surface. The tension is uniform along the ring. The left hand side of Eq. S20 is the 
drag resistance force per unit ring length from ring anchors. Eq. S20 is therefore a generalization 
of Eq. S17 to arbitrary cell shapes that we applied to compressed protoplasts whose shape is 
given in Eq. S18. In contrast to a spherical cell where the ring would maintain a circular shape, 
the ring curvature now varies at different points along its contour and the ring no longer lies in a 
plane.  
 
Implementation of the sliding-constriction model. Using time-lapse confocal microscopy we 
observed 17 compressed protoplasts expressing Rlc1p-3GFP that had constricting rings. For each 
cell we measured the protoplast shape parameters R and h (Eq. S18, Fig. 6A), the ring length as a 
function of time L(t) (Fig. 6E and Fig. S4C), and the myosin-II concentration in the ring as a 
function of ring length (Fig. S1H). To simulate ring constriction in each of these seven 
protoplasts, we first input the mean measured myosin-II concentration into the ring simulation 
which output ring tension as a function of ring length T(L) (see above). We then simulated ring 
constriction by representing the ring as a series of discrete points which were initially equally 
spaced around the ring, which was confined to the plane at x = 0.1 µm. (We chose this initial ring 
configuration as all of our experimental observations in protoplasts commenced after the ring 
had slid >0.1 µm away from the center of the cell.) At each timestep, Eq. S20 was solved for the 
velocity of each point using the T(L) value from the ring simulation, and κ, n, and N were 
computed using finite differences with respect to neighboring points. After evolving the position 
of each point on the ring, the ring length was updated (i.e., a discrete version of Eq. S19 was 
executed). We found that after a brief transient ring shapes were independent of the initial ring 
configuration.  
 
Predicted ring shapes do not depend on model parameters. In Eq. S20, the rate of ring sliding 
∂r/∂t is proportional to the ratio of the ring tension to the total anchor drag coefficient. However, 
since both T and γring are independent of s, the series of shapes that the ring adopts is independent 
of T and γring. This is because the factor T/γring can be eliminated from the equation by rescaling 
time t → tT/γring. Thus, the tension and drag coefficient do not affect the evolution of ring shapes, 
but only the rate at which the evolution occurs. Because no other quantities that determine ring 
dynamics in Eq. S20 depend on model parameters, the predicted ring shapes are independent of 
all model parameters and the comparison between predicted and observed ring shapes (Figs. 6C 
and S4A) requires no fitting parameters. The ring shapes are a consequence only of the broad 
model assumptions, i.e., a ring with uniform tension working against drag forces from uniformly 
distributed anchors.  
 
Comparison of predicted and observed ring shapes. Calculated ring shapes are compared to ring 
shapes in the seven observed protoplasts in Figs. 6C and S4A and Movie S7, and display 
remarkable agreement independently of any model parameter values. Unlike rings in spherical 
cells which would be circular, the rings in compressed protoplasts adopt a bent out-of-plane 
shape due to the deformed shape of the protoplast. From the top view, the central portion of the 
ring on the flat surface (0 < x2 + y2 < R2, Eq. S18) lags behind the “edges” of the ring (Figs. 6C 
and S4A, and Movie S7). This is because the tensile forces driving constriction are caused by 
ring curvature (Eq. S20, Laplace’s law). Thus on the upper and lower flat portions of the 
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protoplast the ring must have curvature in order for the tension to have a component that can pull 
the ring across the flat portion.  
 
Comparison of model to measurements of the time course of ring constriction   
Predicted ring lengths from the sliding-constriction model, L(t), calculated using the procedure 
described above, were fit to the 17 measured constriction curves (Figs. 6E and S4C, model I). A 
brute force search of parameter space was used to minimize the residual sum of squares and 
determine the values of 18 parameters: a single value of the ring drag coefficient γring and 17 
initial ring lengths for the 17 observed protoplasts. The best-fit drag coefficient was γring = 2805 
± 45 nN·s/μm, where the standard error was calculated from the diagonal of the covariance 

matrix   1T2 
i ii JJV  . Here, σ2 is the sum of squared residuals divided by the degrees of 

freedom, J = ∂L/∂β is the Jacobian, which was evaluated numerically at each data point i, and β 
is the vector of fitting parameters.  
 
We also tested three alternative models, which were fit to the L(t) measurements using the same 
procedure. Model II used the identical sliding-constriction model I but assumed that the drag 
coefficient is proportional to ring length (γring~L). Models I and II (Figs. 6E and S4C) assumed 
that the ring operates close to its isometric tension limit, i.e., even though the ring is shortening 
the tension is very close to its value at fixed length calculated by our ring simulation. Our 
simulations suggest that this quasi-static limit is realized in protoplasts, since relaxation of ring 
properties occurred on the ~30 s timescale of component turnover whereas constriction occurs 
over ~30-60 min. In other words, the anchor forces resisting ring sliding are so strong that the 
ring operates close to stalling conditions where the load would be sufficient to prevent 
constriction. Thus, in Models I and II the constriction rate is highly sensitive to the external load. 
 
We compared these models that assumed isometric tension conditions with two models where 
the ring set its own constriction rate, rather than its own tension. In model III we assumed the 
constriction rate was proportional to initial ring length, as in C. elegans (Carvalho et al., 2009). 
In model IV we assumed that the constriction rate was proportional to the relative myosin 
concentration, which we measured as a function of ring length in protoplasts (Fig. S1H, Inset). 
When fitting these models to the full set of constriction data (Figs. 6E and S4C), the additional 
fitting parameter (in addition to the initial length of each ring) was the constriction rate per unit 
ring length and the constriction rate per relative myosin concentration, respectively. The ring in 
models III and IV is analogous to a muscle fiber working close to its zero load velocity; this 
velocity is an intrinsic property of the muscle, unrelated to properties of the load the muscle 
works against. For example, in model III the ring length changes at a constant rate despite the 
varying load from anchor drag forces, which decrease over time as the ring slides more slowly 
along steeper sections of the protoplast to maintain a constant constriction rate. Thus, the 
constriction rate is insensitive to the load on the ring anchors.      
 
The sliding-constriction model with constant γring (model I) fit the experimental data better than 
the three alternative models (Fig. 6F and S4D). Model I captured the observed increase in 
constriction rate with time (Fig. 6E and S4C), mostly because the constriction rate is higher 
when the ring is on a steep surface where the component of tension parallel to the surface is 
greater (Fig. 3D). The high tensions generated in shorter rings due to the high myosin 
concentration (Fig. 4B) made only a small contribution to the increase of constriction rate over 
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time (Fig. 4B), since these high tensions occur in rings shorter than those observed (Fig. 4B and 
6E). Model II, with γring~L, produced L(t) curves with larger curvature than observed because 
constriction accelerates even more strongly over time due to the decreasing total drag on the 
shortening ring. Models III and IV produced less curvature than observed (Fig. 6E and S4C).  
 
To compare the fits quantitatively, we used chi-squared tests for goodness of fit. We first 
estimated the variance of L due to measurement error to be the variance of the experimental data 
about the best fitting model (Fig. 6F and S4D), i.e. we assumed that model I was correct. Using 
this value for the variance, the tests indicated poor fits for models II-IV relative to model I (p<10-

5, 531 degrees of freedom) (Fig. 6F). Chi-squared tests also indicated that the distribution of 
residuals from the basic sliding-constriction model (model I) were most consistent with a normal 
distribution (Fig. S4D).  
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