Appendix A: Proofs

This appendix contains the proofs for the lemmas and theorems in the main text of the article.

A.1 Proof of Lemma 1

Denote by:

1. A_h , the fact that the hth record is the match, and by $\neg A_h$ the fact that the hth record is not a

correct match

2. B_h , the fact that the hth record can be verified (as a match or non-match), and by $\neg B_h$ the fact

that the hth record can not be verified.

Note that, the adversary reaches the nth attempt only when every previous attempt was either unverifiable or verified as a non-match.

Consider first the case where $F_j > n+1$, the probability of getting a successful match from the n^{th} attempt, P_j^n , is the probability that the nth record is the match and that the match can be verified and that the previous records attempted were either verified as non-match or unverified

$$P_j^n = \Pr\{A_n \land B_n \land (\bigcap_{h=1}^{n-1} [(\neg A_h \land B_h) \lor (\neg B_h)])\}$$

However, because there is only one correct match, we get:

$$P_j^n = \Pr\{A_n \land B_n \land (\bigcap_{h=1}^{n-1} [(\neg A_h \land B_h) \lor (\neg A_h \neg B_h)])\}$$
$$= \Pr\{A_n \land B_n \land (\bigcap_{h=1}^{n-1} [B_h \lor \neg B_h])\}$$
$$= \Pr\{A_n \land B_n\}$$
$$= \frac{p}{F_i}$$

When $F_i - 1 = n$, then we need to consider two cases:

- 1. The case where the n^{th} attempt is the match, and
- 2. the case where all the $F_j 1$ attempts result in verified non-matches, as this implies that the last record will be the match (without having to go any further than *n* attempts).

$$P_j^n = \Pr\{A_n \land B_n \land (\bigcap_{h=1}^{n-1} [(\neg A_h \land B_h) \lor (\neg B_h)])\} + \Pr\{\bigcap_{h=1}^n (\neg A_h \land B_h)\}$$
$$= \Pr\{A_n \land B_n\} + \Pr\{A_{n+1} \land \bigcap_{h=1}^n B_h\}$$
$$= \frac{p}{F_j} + \frac{p^{F_j - 1}}{F_j}$$

When $F_j = n$, then we need to consider two cases

- 1. the case where, out of the F_j attempts performed, $F_j 1$ of these result in verified non-matches and only one attempt was unverifiable, in such case, we can deduce the sole unverified record is the correct match.
- 2. The case where the n^{th} attempt is the match that was not discovered in the previous attempt (i.e. we need to discard the case where the $F_j 1$ previous attempts resulted in verified non-matches)

$$P_j^n = \Pr[A_n \land B_n \land \exists i \in \{1, ..., n\} s.t. \neg B_i] + \Pr[(\neg A_n \land B_n) \land (\bigcup_{i=1}^{n-1} (A_i \land \neg B_i \land B_h \text{ for some } h \neq i)]$$

Where $\exists i \in \{1,..,n\}$ *s.t.* $\neg B_i$ means that at least one of the previous matches was unverifiable.

$$P_j^n = (1 - p^{F_j - 1}) \frac{p}{F_j} + \frac{(F_j - 1)p(1 - p)p^{F_j - 2}}{F_j}$$

A.2 Proof of Lemma 2

We consider each of the different cases separately:

1. if $F_i > M_i + 1$, then

$$R_2^{j} = P_j^1 + P_j^2 + ... + P_j^{M_j}$$
 From Lemma 1 we get:

- Page 2 of 3-(Appendix-A-v5.doc)

$$R_2^j = M_j \frac{p}{F_j}$$

2. if $F_i = M_i + 1$, then:

$$R_2^{j} = P_j^1 + P_j^2 + \dots + P_j^{M_j - 1} + P_j^{M_j}$$

Hence, from Lemma 1, we get:

$$R_2^j = M_j \frac{p}{F_j} + \frac{p^{F_j - 2}}{F_j}$$

3. if $F_j = M_j$ then:

$$R_2^j = P_j^1 + P_j^2 + \dots + P_j^{M_j - 2} + P_j^{M_j - 1} + P_j^{M_j} \text{ then from Lemma 1 we get:}$$

$$R_2^j = (M_j - p^{F_j - 1}) \frac{p}{F_j} + \frac{p^{F_j - 1} + p^{F_j - 1}(F_j - 1)(1 - p)}{F_j} = p + p^{F_j - 1}(1 - p)$$

A.3 Proof of Theorem 1

Recall that, the risk is the following:

$$R_{2} = \begin{cases} M' \frac{p}{F'}, & , if \ F' > M' + 1 \\ M' \frac{p}{F'} + \frac{p^{F'-2}}{F'}, & , if \ F' = M' + 1 \\ p + p^{F'-1}(1-p), & , if \ F' = M' \\ 1, & , if \ F' = 1 \end{cases}$$

Where
$$F' = \min_{j} F_{j}$$
 and $M' = \min\left(M, \min_{j} \left(F_{j}\right)\right)$.

Given the values for M and p, we need to find the smallest value for F_j that satisfies $R_2 \leq \tau$.

Observe that, if $F_j \ge M + 2$ for all j, then it is enough to have $M \frac{p}{F_j} < \tau$ for all j.

Hence we can set our k to be

$$k = \max\left(M + 2, \left\lceil\frac{Mp}{\tau} + 1\right\rceil\right)$$

- Page 3 of 3-(Appendix-A-v5.doc)