SUPPLEMENTAL MATERIAL

Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes

Gaëlle J.S. Talhouarne and Joseph G. Gall

Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 and Department of Biology, Mudd Hall, Johns Hopkins University, Baltimore, MD 21218

Corresponding author: Joseph G. Gall - <u>gall@ciwemb.edu</u>

> Supplemental Figure S1 Supplemental Figure S2 Supplemental Figure S3 Supplemental Figure S4 Supplemental Figure S5 Supplemental Figure S7 Supplemental Figure S8 Supplemental Figure S9 Supplemental Figure S10

Supplemental Figure S1. Relative numbers of reads from an experiment in which RNA samples from *X. tropicalis* oocyte nuclei (GV) and cytoplasm were subjected to deep sequencing. In the nucleus snRNAs, snoRNAs, and intronic sequences make up the majority of annotated sequences. In the cytoplasm, mRNA sequences constitute the major class of annotated sequences, with intronic sequences next in abundance. Noteworthy is the complete absence of snoRNA and snRNA sequences from the cytoplasm, attesting to the lack of nuclear contamination in this fraction.

Supplemental Figure S2. Use of a snoRNA as an internal standard to compare relative abundance of cytoplasmic and nuclear sisRNAs. snoRNA sequences (green) are strictly nuclear, as shown by their absence from a sample of cytoplasmic RNA (top track). They are sufficiently abundant to appear in the whole oocyte sample (bottom track) and they are by far the most abundant sequences in the GV sample (middle track, note the change in scale to accommodate the extremely abundant snoRNA). Thus snoRNA abundance (green) can be compared to cytoplasmic sisRNA abundance (blue) in the whole oocyte sample and to nuclear sisRNA abundance (red) in the GV. From these ratios the relative abundance of cytoplasmic sisRNA to nuclear sisRNA can be approximated, in this case

18.9/128.6 X 5604/80.9 = 10.2

18.9 reads/100bp = sisRNA in cytoplasm (blue in whole oocyte)

128.6 reads/100bp = average of the 2 snoRNAs (green in whole oocyte)

5603.9 reads/100bp = average of the 2 snoRNAs (green in GV)

80.9 reads/100bp = average of the nuclear sisRNAs (red in GV)

Supplemental Figure S3. Comparison of log_{10} FPKM_{intron} values for 4417 introns from two independent samples of cytoplasmic RNA. Reproducibility between experiments was high (R = 0.86). These introns were derived from a total of 2963 genes, approximately 30% of all genes with an FPKM_{exon} \ge 2.

Supplemental Figure S4. All cytoplasmic intronic reads are from the same strand as corresponding exonic reads. Reads were mapped to 14,875 introns in this sample of cytoplasmic RNA. One percent of these (green dots) appeared to have some antisense reads. When examined individually, however, each case involved overlapping genes with opposite orientations. The inset shows one such example.

Supplemental Figure S5. Cytoplasmic sisRNA sequences are as stable as mRNA sequences after inhibition of transcription with actinomycin D. Shown is a comparison of log_{10} FPKM_{intron} / log_{10} FPKM_{exon} values for cytoplasmic RNA from control and actinomycin-treated oocytes. Correlation between the two samples is high (R = 0.83). Each point represents the ratio between the log_{10} FPKM value for a specific intron and the log_{10} FPKM value for the entire mRNA. The inset shows an example: the intron value is based on the blue fragments and the intron length, the exon value on the yellow fragments and the total exonic length.

Supplemental Figure S6. Treatment of a cytoplasmic RNA sample with RNase R increases the number of sisRNA reads by 10-100 fold. Log₁₀ FPKM_{intron} values for control and RNase R treated samples are plotted. The y-intercept of the regression line is 1.4, equal to an average 25 fold increase in reads after RNase R. Points that fell away from the main cluster (yellow) were examined individually and in every case corresponded to alternative splicing, not genuine sisRNA sequences. Inset shows the increase in reads (blue) for a typical sisRNA (in the *nat10* gene).

Supplemental Figure S7. The RNA lariat debranching enzyme Dbr1 is present in the GV but is not detectable in the cytoplasm of the *X. tropicalis* oocyte. Shown here is a western blot of proteins from 5 GVs or 1 cytoplasm probed with an antibody against human Dbr1.

Supplemental Figure S8. Some nuclear sisRNAs are stable lariats. (*A*) Inverted reads with mismatches at the junction can be found for some nuclear sisRNA molecules by searching the pool of unmapped reads (Taggart et al. 2012). These sisRNA molecules are presumably lariats. The sisRNAs that lack inverted reads could still be lariats, since inverted reads are produced only if the reverse transcriptase can pass through the branchpoint. (*B*) All nuclear sisRNAs are equally stable after transcription has been inhibited by actinomycin D. The persistence of lariat sisRNAs after actinomycin treatment shows that they are not transient splicing intermediates.

Supplemental Figure S9. The abundance of cytoplasmic sisRNAs increases relative to mRNA during oogenesis. The graph shows the averages for the 15 most abundant cytoplasmic sisRNAs.

Supplemental Figure S10. Cytoplasmic sisRNAs do not occupy the same introns in orthologous genes of *X. tropicalis* and *X. laevis*. The top two tracks show that the *cugbp1* gene (introns 3-13) of *X. tropicalis* gives rise to multiple cytoplasmic sisRNAs (blue), with the most prominent in intron 12. The two homologous genes in *X. laevis* (*cugbp1-a* and *cugbp1-b*) differ from each other and from the *X. tropicalis* gene. The most prominent sisRNA comes from intron 7 in *cugbp1-a* (middle tracks) but from intron 5 in *cugbp1-b* (bottom tracks).

EXPERIMENTS		Orientation	arfgap2(1)	arfgap2(2)	eif4a1	faf2
		forward	AACOCGGATGTACCACAGATTACCA	CGCCAAAGCCATTTCCTCAGACAT	AGATTACATGGGTGCCCTCTTGCCA	TCBAATCAATBBACCAATBTCBCC
		reverse	AAGTTCCTGATACGCCAGCCTCAT	TCACTCCATTAGCCAGAACTGCCA	TCAACATCTCGTCGGGCTTCATCCA	GCTGTTAAGGAAATGGGTGACCTC
lionaten		forward	TA CO CO GOCAGO GACTA ATAACAA	CAGCCAGCCAATTATTTCCA	TTGGAATGAGGCTGTTTATGGGGCG	ATTGATTAACCAGCAGCCTGAAGA
	RNINSIS	reverse	AGAGTGCACACATGCTCCTTGA	TTCATCAAGAGGTCTAGGGCAGCA	ACTCTGGCCCACAGAGCTTACAAT	TAT GCTCAGA CCTGCTGTTGCACT
in vitro	-bre-	forward	AACCOGGATCTACCACAGTTACCA	CGCCAMAGOCATTTCCTCAGACAT	AGATTACATGOGTGCTCTTGCCA	TATTA ACCCTCACTAAAGG ACTTGACAGGGTAT CGAAT CA A
transcription	mRNA	reverse	AAGTTCCTGATAOGCCAGCCTCAT	TCACTCCATTAGCCAGAACTGCCA	TCAACATCTCGTCGGGCTTCATCCA	TITITITITITITITITICCITGGTGTGTGGCCGAGACACCACATA
10000		forward	ALTAA COOTOAOTAAAGGAA OTGGAG OTGG TT OOAAOTGAGA	ATTAACCCTCACTAAAGGAGAQGCCAGTTGCTAACAAGTCCT	ATTAACCCTCACTAAAGGATCCAGCAGCGAGCTATTATGCCT	ATTAACCCTCACTAAAGGGGACGAACGTTCCTTTGCTTCTGA
construct	ANIHSIS	reverse	GGATCCAGGACTTGTTAGCAACTGGCGTCT	GGAT CCAS CCGG CCATATACG CCAATTTCAC	GGATCCTGAACTTCTTGGTCACCTCGAGCA	GGATCCTTTCTTGGTCAGCACGCAGAGATG
Invinet dotootion		forward	сстттсаеттеаеваевсе а	CCCCGGGTAACTTGACCCATT	CITATATCTGGCGGGGGGGG	AGTGCAACAGCAGGTCTGAGCATA
	ANIHSIS	reverse	GGACTTCAGGACACTCGCAA	GGCAGCAGGGAAAACCACTA	GTACCGCCCATAAACAGCCT	TCTTCAGGCTGCTGGTTAATCAAT
	sisRNA	forward	JAATACGAGTCACTATAGGGGGGGGGGGGGGGGGGGGGGG	TAATACGACTCACTATAGGGAAATGTAACCTGCTGTGGGGTCGC	TAATACGACTCACTATAGGGGGGGGGGAATCTGCCATAGAAGTGCCT	ATTAACCOTCACTAAAGGGAACGTACCTTTACCTTTCTCTGTTAA
inverted in vitro	-piece1	reverse	GAAATGGAOCCACTCATGAGCAAGTGGTGCCCCAAATG	GOCGITTCTACTGACTCACTTGTGCCCAAAOATGCAAATCA	GCTCATGATACTCACTGAGTGCTGCACCGGCCCACG	GG TT CAGGTACATACTCATCAGAGAACAG TG TACTCTGTA
transcription construct	sisRNA	forward	GGGCACCTTGCTCATGAGTGGGTCCATTTCCATTCTGTATA	GTTTGGGCACAAGTGAGTCAGTAGAACGGCCCAACTGG	CCAGTGCAGCACTCAGTGAGTATCATGAGCCTGCCTCTG	AGTACATGTTCTCTGATGAGTATGTACCTGAACCAGCAGGGAA
	-piece2	reverse	GTAGGGCTCAGACTGAAGGC	AACGGAAGAGTCGGTGGCCA	TITGCTGATGGGTAGTGAGCAT	ACACAGATTAGTCATATTGCAAA

	σ
	d)
	ĭ
	╘
-	<u> </u>
	5
	$\underline{\bullet}$
	Q
	5
	_
	d)
	۳
	μ,
	S
	Ľ
	(۵
	٣
	=
	5
	0
	_
	_
	S
	۵).
	χ.
	\leq
	(۵
	≍
	╧
	Q
	Φ
	õ
	<u>ب</u>
	Φ
	Ţ
	0
	ć
	Ō
	2
	ົ
	~
	~
1	
1	
	~
	\overline{O}
	B
	\sim
ì	
1	_
	S
	Ľ,
	-
	ŝ
	Jen
	nen
	Imen
	rimen
	erimen
	oerimen
	xperimen
•	sxperimen
	experimen
•	<pre>section </pre>
-	K experimen
	K experimen
	CK experimen
	UCK experimen
	-PCK experimen
	I-PCK experimen
	<pre></pre>
	KI-PCK experimen
	RI-PCK experimen
	IL RI-PCK experimen
	or KI-PCK experimen
	tor KI-PCK experimen
	1 tor KI-PCK experimen
	d for KI-PCK experimen
	ed for KI-PCK experimen
	sed for KI-PCK experimen
	used for RI-PCR experimen
	Used for KI-PCK experimen
	s used for KI-PCK experimen
	rs used for KI-PCK experimen
	ers used for KI-PCK experimen
	ners used for KI-PCK experimen
	mers used for RI-PCR experimen
	'Imers used for KI-PCK experimen
	rimers used for KI-PCR experimen
	Primers used for KI-PCK experimen
	. Primers used for RI-PCR experimen
	 Primers used for KI-PCK experimen
	 Primers used for KI-PCK experimen
	S1. Primers used for KI-PCK experimen
	S1. Primers used for KI-PCK experimen
	e S1. Primers used for KI-PCK experimen
	IL Primers used for RI-PCK experimen
	ble S1. Primers used for KI-PCK experimen
	able S1. Primers used for KI-PCK experimen
	able S1. Primers used for KI-PCK experimen
	Table S1. Primers used for KI-PCK experimen
	I Table S1. Primers used for KI-PCK experimen
	al Table S1. Primers used for KI-PCK experimen
	tal Table S1. Primers used for KI-PCK experimen
	1tal Table S1. Primers used for KI-PCK experimen
	Intal Table S1. Primers used for KI-PCK experimen
	ental Table S1. Primers used for KI-PCK experimen
	nental Table S1. Primers used for RI-PCR experimen
	mental Table S1. Primers used for KI-PCR experimen
	emental Table S1. Primers used for RI-PCR experimen
	Iemental Table S1. Primers used for KI-PCK experimen
	plemental Table S1. Primers used for R1-PCR experimen
	oplemental Table S1. Primers used for KI-PCK experimen
	Ipplemental Table S1. Primers used for KI-PCK experimen
	upplemental Table S1. Primers used for KI-PCR experimen
	Supplemental Table S1. Primers used for R1-PCR experimen