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ABSTRACT The collective behavior of interconnected
spiking nerve cells is investigated. It is shown that a variety
of model systems exhibit the same short-time behavior and
rapidly converge to (approximately) periodic firing patterns
with locally synchronized action potentials. The dynamics of
one model can be described by a downhill motion on an
abstract energy landscape. Since an energy landscape makes
it possible to understand and program computation done by
an attractor network, the results will extend our understand-
ing of collective computation from models based on a firing-
rate description to biologically more realistic systems with
integrate-and-fire neurons.

Most neurons communicate through action potentials—
discrete short pulses of electrochemical activity. Action po-
tentials are generated when the membrane potential of a
neuron reaches a threshold value. They propagate along the
axon of a cell toward synapses with postsynaptic neurons where
they initiate ion currents that trigger (or inhibit) action po-
tentials of the postsynaptic cell. Most useful network neuro-
modeling, in contrast, is based on model cells whose output is
described as a continuous variable that is slowly varying in
time. The output variable is usually interpreted as a short-time
average of the rate of production of action potentials.

While it may frequently be the case that mean firing rates are
an adequate description of neural information, there are many
instances where the detailed timing and organization of action
potentials matter. The sonar processing of bats (1), sound
localization of owls (2), and electrosensation of weakly electric
fish (3) are based on time-comparison circuits that discrimi-
nate signals with a resolution in the submillisecond range.
Specific stimulus-dependent synchronization of action poten-
tials has been observed in the olfactory system of the locust (4)
and in the primary visual cortex of cats (5, 6) and has been
suggested to be of “neurocomputational” use in binding
features together (7). Experiments have also shown that
neurons in frontal cortex exhibit pronounced stimulus-
dependent temporal correlations (8). All these different ex-
perimental results give strong impetus to studying how to do
computations based on action potential timing.

The modeling using action potentials has been of two
natures. Analytical work has been done chiefly on networks in
which each neuron has equal synaptic coupling strength to all
other neurons (9-15). Although these networks exhibit inter-
esting dynamical features, their connectivity is too simple to
support biologically relevant computation. At the other ex-
treme, numerical studies of much more elaborate networks,
with multicompartment cells and axonal propagation delays,
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have been carried out (16-21). The simulations display rich
behavior, but the networks are completely intractable from a
mathematical point of view. Thus our ability to understand and
generalize from such simulations is rather limited.

In this paper we analyze the dynamics of networks of
integrate-and-fire neurons with local or global interactions.
We prove that various models reach a complex but cyclic
attractor in a short time. One model has a particularly simple
mathematical structure that admits a Lyapunov function. Its
convergence to periodic limit cycles may thus be understood as
a downhill march in an abstract energy landscape. Simulations
of the other integrate-and-fire models display almost identical
dynamical behavior in the short-time regime, while deviating
at longer times. However, only the short-term behavior of the
models seems biologically relevant, since computational deci-
sions must be taken rapidly, and in any event the assumption
of constant input from other areas implicit in all models breaks
down at longer times. By focusing on short-time aspects (and
by not making any mean-field approximation), our approach
differs from other mathematical studies of networks of inte-
grate-and-fire neurons with nonuniform interactions (22-26).

The existence of a Lyapunov function for a simple structure
of coupled model neurons has previously allowed an under-
standing of computation by attractors and of associative
memory (27). We believe it will similarly be possible to
understand some aspects of collective computation based on
action potentials through the Lyapunov function of the inte-
grate-and-fire model and that the similarity of the short-term
behavior of the other models will extend this understanding to
a broad class of networks.

The Model Systems

We consider networks of interconnected integrate-and-fire
model neurons. Below the firing threshold, each neuron i
operates as a leaky integrator,

Cldu;/dt) = ~[uit) = uol/R + I0). 1
In the absence of the input current I;(¢), the cell potential u,(¢)
drifts to its rest value uo. The term uo/R can be absorbed in I(¢),
and we will, therefore, focus on the case where up = 0. By
rescaling time, the capacitance C and the resistance R of the
cell membrane can be taken as unity except for the limiting
cases C — 0 or R — =, The latter describes a perfectly
integrating cell,

du;/dt = I,(¢). (2]
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When the potential of cell i reaches the threshold uhresh, the
cell produces an action potential of negligible duration and
resets its potential to ureser. FOr convenience, units can be
chosen such that upresh = 1 and Ureger = 0.

When an action potential arrives at a synapse from cell j to
cell i, a synaptic current briefly flows. This current is some-
times modeled as a step followed by an exponential decay or
by an « function. In either case, the integral of the current flow
is finite, and the current rapidly decays. Within the present
description, the duration of this current is set to zero. By
assuming a linear summation of the inputs and vanishing signal
delays, the current I;(¢) into cell i, 1 < i < N, is then given by

I0) = 2 Tyfi®) + 1), 3]
]

where the instantaneous firing rate fi(f) is a sum of Dirac &
functions

£ =2 8 — 1. (41

17 represents the times at which neuron j generates an action
potential, Tj; represents the strength of the synaptic connection
from neuronj to neuron i, and I{*'(f) denotes an external input
current that is assumed to be constant in time unless otherwise
stated.

The general behavior of the system is now as follows. While
none of the neurons is producing an action potential, Eq. 1 can
be integrated and yields (for C = R = 1)

wi®) = [wt§) —ITe D + 1P fort=ty,, [5]
where o denotes the last firing time. When the potential u; of
neuron j reaches 1 (the threshold), it drops instantaneously to
0. At the same time, the potential u; of each neuron i to which
neuron j makes a synapse is increased by Tj.

Because the duration of action potentials and of synaptic
currents has been set equal to zero, the description given so far
contains an ambiguity. To which value should neuron i be reset
if at time ¢ an action potential is produced by cell j, T;; > 0, and
ui(t™) > 1 — T;? For in this case, the action potential will raise
u; above 1, and cell i should generate its action potential during
the flow of synaptic current produced by the synapse T;;. When
synaptic (and dendritic) time constants are longer than the
duration of action potentials, what should actually happen is
that cell j should fire when its potential reaches umresh = 1, and
the synaptic current from synapse Tj; that arrives after cell i
fires should be integrated to yield a positive potential (relative
tO Ureser) afterward. Thus, if cell j fires first and at time ¢ and
that event evokes a firing of neuron i, then after both action
potentials have been generated, the two membrane potentials
should be

u(t*) =Ty [6]
and
U; t+) = u,‘(t_) + T',] - 1. [71

The first equation represents the fact that neuron j fired first
when u; = 1 and was reset to 0, and when subsequently neuron
i generated its action potential, this changed the potential of
neuron j to Tj;. The second equation represents the fact that
neuron i fired second and reduced its potential by 1 when it did
so but received the synaptic current T; when neuron j fired.
The updating rule can be generalized to a large network of
neurons by the following algorithm. As the potentials all
increase with time, a first neuron j reaches u; = 1. Reset that
potential to zero, and then change the potential of each neuron
i by Ty. If, by following this procedure, some of the potentials
become =1, pick the neuron with the largest potential, say
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neuron k, decrease its potential by 1, and then change the
potential of each neuron / by T. Continue the procedure until
no membrane potential is =1 and then “resume the flow of
time” and again let each potential u; increase according to Eq.
5.

This deterministic algorithm preserves the essence of the
idea that firing an action potential carries 2 neuron from upresh
tO Ureser, and effectively apportions the synaptic current into a
part that is necessary to reach threshold and a part that raises
the potential again afterward. Because the firing of one neuron
can set off the instantaneous firing of others, this model can
generate events in which many neurons are active simulta-
neously. Notice that throughout what follows, terms such as
“synchronized neurons” always refer to the time of spike
generation. According to this definition, a periodic network
state (also called a “phase-locked solution”) may or may not
be “globally synchronized.”

When synaptic (and dendritic) time constants are shorter
than the duration of an action potential, all contributions from
the synaptic current that arrive during spike generation are
lost, and Eq. 7 should be replaced by u;(t*) = 0. Distinguishing
between models with zero and nonzero leakage currents, we
are led to four different scenarios:

Model A, the first leaky integrate-and-fire model, charac-
terized by Egs. 1, 3, 4, 6, and 7;

Model B, like model A but whenever an action potential is
generated by neuron j at time ¢, u; is reset to 0, whether or not
uit")=1loru(t7)>1;

Model C, like model A but in the limit R — o where Eq. 1
is replaced by Eq. 2;

Model D, like model C but with u; reset to 0 as in model B.

To analyze the dynamic role of action potentials with fixed
size, we include a fifth related model of geophysical origin (28):
model E, like model D but with “action potentials” whose size
is proportional to the membrane potential of the spiking unit
so that if j is active at time ¢, u; is changed by Tu;(t).

The order in which the neurons are updated in an event in
which several neurons fire at once is described above and has
been used in all variants. However, for models A and C, the
order does not matter as long as T; = 0. For these cases, any
procedure for choosing the updating sequence of the neurons
at or above threshold will yield the same result because the
reset is by a fixed negative amount (herein: —1) regardless of
whether immediately prior to reset ¥ = 1 or u > 1.

In model C, the cumulative effects of action potentials and
slow membrane dynamics commute if T;; = 0. This makes the
model equivalent to a class of “Abelian avalanche” models (29,
30). Closely related sandpile-like models relax to a critical state
with fluctuations on all length scales, a phenomenon that has
been coined “self-organized criticality” (31). The apparent
similarity between the microscopic dynamics of such models
and networks with integrate-and-fire neurons has led to spec-
ulations about a possible biological role of the stationary
self-organized critical state (19, 25, 26). However, whereas for
earthquakes, avalanches, and sandpiles, the main interest is in
the properties of the stationary state, for neural computation,
it is the convergence process itself that does the computation
and is thus of particular interest (32).

Simulations of Locally Connected Networks

The models allow for countless realizations. To perform
numerical experiments and for thinking about the biological
relevance, a specific connection pattern must be described. We
choose to study simple planar networks with local connections,
in crude correspondence to the structure of subareas of the
neocortex. In neurobiology, the output of one neocortical area
will provide time-varying inputs to another, but for simplicity,
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the effects of this changing feedback will be omitted. Thus,
when thinking about the dynamics of one patch of neurons, the
behavior of the model after perhaps 200 ms is irrelevant from
a biological point of view because the inputs from other areas
would probably have changed on such a time scale. Equiva-
lently, in the dynamical behavior of the system, we should be
interested in phenomena that occur within the time necessary
for a typical neuron to generate 20 spikes or less.

Within this conceptualization, information coming from the
periphery or other areas of the brain can be thought of as either
providing initial values for the u; or defining the If™(f). In the
simulations and theoretical analysis, the first paradigm was
used, and the external input was taken to be constant in time
and equal for all neurons, I*(¢) = I. This choice corresponds
to the experimental situation of “stimulus-induced oscilla-
tions” (5), whereas the alternative scheme would model “stim-
ulus-locked oscillations.”

Square arrays with excitatory interactions and various
boundary conditions were used to experimentally explore the
similarities and differences between the variant models. For
simplicity, the initial values of the u; were chosen from a
uniform random distribution between 0 and 1. Synapses of
fixed strength a joined each neuron with its four nearest
neighbors. For such connection schemes with few interactions
per neuron, even large networks with up to 10 neurons can
efficiently be simulated on a workstation. (By using appropri-
ate variable transformations, a fast algorithm proposed in ref.
34 can be extended to all realizations of models A-E.)
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Fig. 1 A-C presents typical results of simulations with
periodic boundary conditions. The abscissae denote the dis-
crete times at which action potentials take place; the ordinates
show the number of simultaneous action potentials. When
viewed in space, large events are due to large connected
ensembles of synchronized neurons. To keep the number of
data points in a reasonable range, only results from relatively
small networks with 40 X 40 cells are shown.

All models exhibit rapid convergence to (approximately)
periodic solutions with locally synchronized neural ensembles
that are phase-locked with respect to each other. In models A
and C, and for the parameters used in the simulations, this
convergence process is completed after roughly five firing
cycles. Due to the larger average reset, the transient is slightly
longer in models B, D, and E. Further simulations show that
the convergence time is almost independent of the system size
and decreases quickly for decreasing a.

What takes place on a larger time scale, however, is different
for the variant models. Model A slowly reorganizes toward
global synchronization. During this relaxation process, clusters
of synchronized neurons usually merge to form larger clusters.
However, as shown in Fig. 14 Inset, synchronized groups may
also split. Model B reorganizes toward a reduced set of
phase-locked solutions. In general, this process terminates
before the state of global synchrony is reached (Fig. 1B Inset).
Both reorganization processes are governed by local adapta-
tions at the boundaries between synchronized clusters. Thus
the time needed to reach a stationary solution increases with
system size.

Cc
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FiG. 1. Synchronization of action potentials. Results from numerical simulations of models A, B, and C with 40 X 40 neurons, periodic boundary
conditions, / = 10, and nearest-neighbor interactions of strength a = 0.24 are shown in A4, B, and C, respectively. Each dot represents the number
of simultaneous action potentials as a function of (normalized) time. All models exhibit rapid local synchronization of action potentials, followed
by a slow convergence to globally synchronized solutions in model A (A4 Inset), and a slow reorganization to a reduced set of phase-locked solutions
in model B (B Inset). Model C does not exhibit slow relaxation phenomena (C). This is also visible from the time evolution of the Lyapunov function
E (solid line) and the Lyapunov functional L (dashed line) shown in D. As required, the latter approaches a constant value (D Inset).
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Models C and D do not show any slow reorganization after
the initial convergence to phase-locked oscillations (Fig. 1C).
During one period of the oscillation, every neuron fires exactly
once. For model C, this implies that the period is P = (1 —
4a)/I: when neuron i fires at time ¢, u; is reduced by 1. Each
of the four incoming action potentials increases u; by a.
Between the firings, u; increases at a rate I. At time ¢ + P, the
original value of u; is reached again and the cycle is completed.
Model D shows oscillations with the same period. For solutions
without multiple spikes, this follows from the above argument.
However, general limit cycles with period P and one spike per
neuron and cycle can only occur if the membrane potentials do
not exceed the threshold. Otherwise, they would decrease by
more than one during the firing of the action potential but still
only increase by one over the entire cycle. It follows that in
events with multiple neurons firing “at the same time,” the
potentials become fine-tuned such that if neuron i is triggered
by neuron j at time ¢, u(t”) = 1 — a. (The same argument
applies to P-periodic solutions of model E.) This implies that
although every periodic firing sequence of model C can be
realized in model D, the volume of all attractors is greatly
reduced when measured in the space of the dynamical variables
U;.

In contrast to models A-D, that is, to systems with action
potentials of fixed size, model E typically exhibits a few
transient bursts with many neurons firing in synchrony, after
which the system relaxes to simple periodic solutions with no
or only a few synchronized clusters (34-36). A heuristic
understanding of the difference in the collective behavior is
readily obtained. In all models, a neuron i is absorbed into an
adjacent synchronized cluster if its membrane potential u; at
the firing time ¢ of the cluster is close enough to the firing
threshold. In general, u;(¢) will be larger than the threshold and
differ from cycle to cycle during the formation of the cluster.
In model E, a fixed fraction of u;(t) is transmitted to all
neighbors, including cells that belong to the synchronized
cluster. Changes in the pulse size may cause some cells to fire
out of synchrony and thus result in a break-up of the cluster.
In systems with fixed action potentials, this phenomenon
cannot occur because the only information transmitted to
neighboring cells is in the firing time. We hypothesize that it
is this reduction of information that allows the dynamic
stabilization of synchronized ensembles. According to this
view, action potentials not only represent a static “yes-no”
decision of an isolated neuron but also play an important
dynamic role in networks of interconnected neurons.

To test the robustness of the synchronization process, var-
ious alterations of the network dynamics and architecture were
studied. Time-dependent noise was included in Eq. 4 to model
the stochastic nature of neurotransmitter release. Quenched
noise was added to the reset value of individual neurons to
allow different spontaneous firing rates. The simulations re-
veal that synchrony (as defined by the exact firing times) is not
a robust feature of the system dynamics. We attribute this
result in part to the strict measure of coherence used; inter-
spike-interval distributions show only a gradual loss of syn-
chrony with increasing noise level.

As an example of structural inhomogeneities, networks with
open boundary conditions were studied. Neurons at the edges
(and corners) of the simulated sheets receive less input and
cannot sustain the same firing rate as neurons inside the
network. The resulting dynamical perturbations are clearly
visible in the long-time behavior. In models A and C, the size
of synchronized clusters gradually changes since new neurons
constantly enter and leave a cluster. In models B and D,
however, the fine tuning described earlier is able to act as a
counterbalance. This leads to an intermittent behavior where
clusters stay unchanged over many iterations before they
suddenly merge or break apart. (For a model of mechanical
stick—slip friction that is equivalent to model D with o = 1/4,
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this behavior has also been reported in ref. 37.) Another
signature of open boundary conditions is a size-independent
change of the dominant firing frequency in model D—from
I/(1 — 4a) to I/(1 — 3a)—demonstrating the entrainment of
the entire system by its boundary (38). Model E, finally,
exhibits a power-law distribution of the cluster sizes with strong
temporal fluctuations (28, 34-36). The results show again that
pulses of fixed size are essential to stabilize locally synchro-
nized activity patterns.

Convergence in the Two Models Without Leakage

The rapid phase locking of models C and D observed in the
numerical experiments can be verified analytically (38).
THEOREM 1. Let all synapses be excitatory,

T =0, (8]

let all neurons have the same sum A of incoming synaptic
strengths,

2T;=A<1, 9]
J

and let the external input current be the same for all neurons,
=1 [10]

Then for arbitrary initial condition (uy, uy, .. ., Un), networks C
and D converge in finite time to a cyclic solution with period

P=(I-A)/L [11]

The attractor is reached as soon as every neuron has fired once.
Depending on the initial condition, the periodic solution can be
very complex and contain events in which one neuron fires alone
and others in which many fire in synchrony. On the attractor, each
neuron fires exactly once in a period.

Proof- We first show that under the conditions of the
theorem, no neuron fires more than once in any interval of
length P.

LEMMA. Let n(t,t") denote the number of times neuron i fires
in the interval [t,t'). If Eqs. 8-10 hold, then ni(tt + P) = 1.

Proof of the Lemma: Starting at time ¢, let i denote the first
neuron that fires twice and let #’ denote the time when it does
so. The total change in u; from ¢ to ¢’ due to synaptic currents
and the external input must be greater than or equal to 1,

1 —
¢ PA) + 2 Tyni(t, ) = 1. [12]
J

¢ -0

Since neuron i is the first to fire twice, the number of firings
of each of the other neurons up to ¢’ is less than or equal to 1.
For T; nonnegative, the lefthand side of Eq. 12 is, therefore,
less then or equal to (¢’ — ¢)(1 — A)/P + A. This implies that
Eq. 12 can only be satisfied if ' — ¢t = P.

Returning to the proof of Theorem 1, let tmax denote the first
time where every neuron has fired at least once. (Some cells
may have fired repeatedly before tm., depending on the
parameter values and initial conditions.) For all neurons i, let
t; denote the last firing time before tyax, fmin denote the
minimum of all these times ¢, and k denote a cell that fires
(without being triggered by other cells) at tm;, for the last time.

By definition, every cell discharges at least once in the
interval [fmin, #max]. This implies in particular that every neuron
j from which cell k receives synaptic input emits one or more
action potentials in that interval. Each spike adds T}; to ux. The
total change of u in [fmin, fmax] is thus equal or greater than A
+ I(tmax — tmin)- This number has to be smaller than 1 because
otherwise neuron k would fire a second time in the interval
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[tmin, tmax), in contradiction to the assumption. It follows that
tmax — fmin < P.

Combined with the Lemma (evaluated at time ¢ = tyax — P),
this means that every cell fires exactly once in [fmin, fmax] and
no cell fires in (tmax — P, tmin). SINCE fmax = I —1 the last result
proves that in finite time #max — P, a limit cycle is approached
in the sense that u;(t) = u;(t + P) fort > tyax — P. The argument
also shows that the attractor is reached as soon as every neuron
has fired once.

The proof does not depend in any way on the reset mech-
anism. This implies that it covers not only models C and D but
also all intermediate schemes where a neuron i firing at time
t is relaxed to some value between 0 and u;(t~) — 1. Perhaps
surprisingly, this includes stochastic updating rules.

Lyapunov Function for Model C

Model C admits a second unrelated convergence proof.§
Consider the quantity

E=-2u. (13]

THEOREM 2. In addition to the conditions of Theorem 1, let
all neurons also have the same sum A of outgoing synaptic
strengths,

2Ty=A<lL. [14]

Then
E(t + P) = E(t). [15]

On the attractor, E is cyclic with period P, though it can be a very
complicated function within one cycle.

Remark: Notice that as in Theorem 1, symmetry of the
synaptic connections, T; = Tj;, is not required.

Proof: The change of E in the interval P is

Et+P)—E@

= —(1—AN - X Tynit,t + P) + L nt,t + P). [16]
L) i

The first term comes from the constant input current, the
second term comes from the effect of the firing of other
neurons, and the third term comes from neuron i itself firing.
By using the sum rule (14), we find

Et+P)—E@®)=-(1-AN- 2nft,t+P). [17]

Since due to the Lemma, the change of E in each time
interval P is nonpositive and since E is bounded for all
solutions, the system performs a (discrete) downhill march in
the energy landscape generated by E—if E(t) is measured after
time steps of fixed length P (for an illustration, see Fig. 1D).
Independent from Theorem 1, the result implies that after a
finite time each u;(¢) is periodic with period P and that every
neuron fires once in any interval of length P.

To avoid the somewhat unfamiliar evaluation of the Lya-
punov function E at the discrete times ¢ + kP, one may
alternatively use the functional L = [, E(s)ds. Along solu-
tions of model C, L is differentiable with dL(t)/dt = E(t) —
E(t — P) for all t = P, and the same conclusions are reached.

SA similar proof has been given by Gabrielov (29, 30).
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Behavior of the Two Models with Leakage

For concreteness, the mathematical analysis of models A and
B will be restricted to the paradigm of Fig. 1: planar sheets of
neurons with periodic boundary conditions, nearest-neighbor
interactions of strength a, and constant uniform external input
If™(¢) = 1. Multiple instantaneous firings of the same neuron
are excluded by taking 4a < 1, and by choosing I > 1, neurons
cannot relax to a permanently quiescent state with subthresh-
old membrane potentials.

The most simple stationary solutions are periodic oscilla-
tions where all neurons fire in unison. At some time fg, a first
neuron reaches the firing threshold, resets to zero, and triggers
(directly or indirectly) all four neighbors. The period Py, of the
oscillation is then determined by the conditions u,(tg) = 4a
and u;(t; + PL) = 1. Solving Eq. 5 for P, gives

Py =In(I — 4a) — In(/ — 1). [18]

What can be said about the stability of this solution? First,
it can be shown that in the absence of external perturbations,
a triggered neuron cannot fall behind the wave of excitation.¥
Second, if a small perturbation ¢ in the firing time of the first
neuron still results in a globally synchronized firing pattern, the
network activity will simply be shifted in time (by &). Third, it
holds in general that if a neuron receives a fixed number of
action potentials between two of its firings, the interval
between the two firing times is maximal if the action potentials
arrive synchronized and immediately after the first firing. This
follows from the fact that the graph of u(t) is concave down
between firings (see Eq. 5) and suggests that if due to some
small external perturbation, a neuron fails to stay within the
synchronized pulse, the system will eventually return to global
synchrony even if during this process, other neurons become
desynchronized.

For model A, a heuristic argument implies that the fully
synchronized oscillation is also globally attractive. The argu-
ment is based on a comparison between the dynamics gener-
ated by model A and model C. Viewed in the phase space
spanned by the membrane potentials, the time evolution of
model C between firings is represented by straight lines parallel
to the diagonal u; = u; = ... = un. In model A, the trajectories
between firings are straight lines toward the point u; = u; =
... = un = I, the equilibrium in the absence of spike gener-
ation. In other words, the solutions of model A approach each
other between firings, whereas the solutions of model C stay
equidistant. The resets due to action potentials are the same
for both models. A solution of model A thus gradually shifts
between the periodic solutions of model C and approaches the
only orbit common to both models, the globally synchronized
state. The picture also explains why solutions of model A
exhibit a rapid (approximate) phase locking with a “period”
close to that of model C.

In a comparison between model B and model D, the above
argument cannot be used to prove convergence to global
synchronization: Because the membrane potential of a firing
neuron is reset to zero in these models, nearby but different
states may be mapped into one single state in an elementary
firing event. This restoration phenomenon can balance the

IThe membrane potential of a neuron triggered by k neighbors at time
to must satisfy 1 — ka < u(fg) <1 — (k — 1)a. In model B, it is reset
to zero and then receives input from the remaining (4 — k) neighbors,
that is, u(tg) = (4 — k)a. By using Eq. 5, one obtains u(ty + P.) =
1 — ka exp(—PL), or 1 — ka < u(ty + Pr) < 1. This implies that a
neuron may only move forward in the firing order and never surpasses
the first neuron. In model A, one has u(tg) = u(ty) + 4a — 1
independent of k (see Eq. 7). This gives u(tg + PL) = 1 + [u(ty)
— 1lexp(—PL) or u(ty) < u(ty + Pr) < 1, leading to the same
conclusion as above. In addition, it follows that for ¢ — o, the time
evolution of all membrane potentials in model A becomes equal.
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contracting process between firings and admits spatially non-
uniform periodic solutions (Fig. 1B). Numerical simulations
reveal that their period is the same as that of the globally
synchronized state and that every neuron fires once during one
period of the oscillation. This unexpected result implies that
there is a minimal size for any locally synchronized cluster of
neurons: The cluster has to contain the triggering neuron and
all neurons this cell is receiving input from. Otherwise, the
triggering neuron would receive input at some intermediate
time of its firing cycle, resulting in a decreased interspike
interval due to the convexity of u(f).

For a two-dimensional sheet of neurons with nearest-
neighbor interactions, the minimal cluster is a cross-shaped
pattern with five neurons. It is shown in the Appendix that an
(attractive) set of stable spatiotemporal spike patterns exists
where a discharge of these five neurons alternates with a
uniform firing of the “background” neurons. This disproves a
conjecture that networks of integrate-and-fire neurons with
uniform input and translationary invariant connection scheme
always approach the state of global synchronization (9). [It
should be noted that the mathematical proofs in ref. 9 refer to
avariant of model B where Eq. 6 is replaced by u;(t*) = 0.] The
present proof is readily extended to other activity patterns and
demonstrates that (leaky) integrate-and-fire neurons with
short-range interactions exhibit much richer collective phe-
nomena than systems with all-to-all couplings.

So far, only excitatory connections have been discussed.
There is, however, strong numerical evidence that inhibition
does not change the overall picture. We have studied networks
under conditions that exclude run-away solutions,! guaranteed
that no neuron relaxes permanently to a subthreshold state,
and satisfied Eqs. 9 and 10. All simulations approached
periodic limit cycles whose period is given by Eq. 11 or 18, with
4a replaced by A. This observation gives hope that further
analytical understanding of the models discussed in this paper
is possible, although we believe that the mathematical situation
is more complicated. A convergence proof based on Lyapunov
functions such as Eq. 13 is possible because every periodic
solution of model C has the same period. This is not the case
for models A and B, as shown by the following counterex-
ample. Consider a spatiotemporal “checkerboard” pattern,
where the “black” sites fire at even multiples of A/2, the
“white” sites fire at odd multiples of A/2. A self-consistent
calculation of the firing pattern leads to an implicit equation
for A, 4a exp(—A/2) + I[1 — exp(—A)] = 1. Comparison with
Eq. 18 shows that A # P.. Although this firing pattern is
unstable, its mere existence indicates that it will be difficult to
find Lyapunov functions for models A and B.

Toward Collective Computation with Action Potentials

The response of the networks to spatially structured stimuli
such as grey-valued (visual) patterns is best understood if one
first focuses on initial conditions drawn from a uniform
random distribution with mean z and width w. A simple natural
image may then be thought of as an array of noisy grey-valued

ISufficient conditions for bounded ; follow readily from a worst-case

analysis. Let T;" = Z;6(T;) denote the total incoming excitatory
synaptic strength of neuron i, T; = 3;6(—T;) denote the total
inhibitory strength, T+ = max;{7;' }, and T~ = max;{T; }. Let us focus
on model Cwith uniform input, I§*' = I. Multiple firings of one neuron
during a single event cannot occur if the total current of all neurons
that excite a given neuron does not drive that neuron above threshold
if it has just fired. For T+ < 1, the u;(¢) are thus bounded from above.
Each u; is bounded from below if in any time interval u; decreases less
due to inhibitory input than it increases due to the current I. The
shortest possible time interval between two spikes of the same neuron
is (1 — T*)/I In that time, the potential of a subthreshold neuron
increases by at least 1 — T* and decreases by at most 7. This defines
the condition 1 — (T* + T) > 0.
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plateaus, separated by sharp brightness variations at object
boundaries.

For nearest-neighbor interactions of strength «, the system
behavior is governed by two parameters, one characterizing
the dependence upon the internal dynamics (), the other
describing the dependence upon the statistics of the initial
conditions (w). For simplicity, we focus on two-dimensional
realizations of model C with periodic boundaries and If* = I.

If w < a, the first action potential of a cell activates all
neighboring neurons, which in turn trigger their neighbors, and
results in a global synchronization. For small a and large
enough w, such an avalanche is impossible. On the other hand,
there is also not enough time for gradual long-range ordering
to set in because the convergence takes place in finite time.
Thus the probability distribution of events of large size must
decrease exponentially with size for small a and large w.
Simulations show that for large systems the two dynamic
regimes are separated by a critical line where the probability
to obtain a cluster of a certain size is given by a power law (38).

When operating in the present mode of a stimulus-induced
oscillation, the computational capabilities of the network are
then as follows. With a fixed value for «, the network always
relaxes to a periodic oscillation of period P = 1 — 4a,
independent of the structure of the initial condition. The
spatiotemporal characteristics of the emergent oscillation,
however, strongly reflect the statistics of the initial pattern.
Regions with small variability are smoothed out and repre-
sented by locally synchronized clusters of neurons whose firing
times encode the stimulus quality. Regions with high variabil-
ity give rise to spatially uncorrelated firing patterns. Integrate-
and-fire networks thus operate like spatiotemporal extensions
of resistive grids with line-breaking elements (33, 39).

The picture emerging from these findings suggests that even
simple locally coupled integrate-and-fire neurons are able to
encode objects—herein defined as regions of similar grey
value—by synchronized firing patterns that are held in a
dynamic short-time memory through neural reverberations.
More general network architectures that include longer-range
connections and inhibitory synapses are able to perform
specific computations as demonstrated in Fig. 2. In a next step,
feature-sensitive neurons could be included and might help to
obtain a quantitative comprehension of the computations
involved in cortical object recognition.

Discussion

A “neurodynamics” including action potentials displays much
richer collective phenomena than do models that represent
action potentials only by their statistical average effect. Pre-
viously, this richness has prevented a thorough understanding
of how to compute in a useful fashion with a feedback network
of such (model) neurons. On the other hand, the notion of
attractors and a Lyapunov function has provided powerful
methods to analyze neural networks based on a firing-rate
description. The convergence proof (Theorem 1) and the
existence of a Lyapunov function (Theorem 2) for special cases
of networks of spiking neurons leads us to hope that it will be
possible to achieve a quantitative understanding of the rela-
tionship between connections, initial conditions, and compu-
tation in these systems as well.

Model C, which has a Lyapunov function, applies to patterns
of connectivity much more varied than have been previously
studied. In fact, all models with the same input current and
total incoming synaptic strength exhibit short-term conver-
gence to a periodic state whose nature is similar to that of the
model with a Lyapunov function. Furthermore, rapid (approx-
imate) phase locking of action potentials has been observed in
experiments (5, 6) and is also exhibited by a number of more
elaborate modeling approaches (13, 15, 20, 21). Thus it seems
appropriate to focus on this particular representative.
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F1G. 2. Collective computation with action potentials. Stimulus pattern (4) and response of three networks of type C with 40 X 40 neurons
(x and y axis) and periodic boundary conditions (B-D). The initial values for the membrane potentials (z axis in A4) are noisy plateaus with means
u = 0.9, 0.85, 0.8; 0.8, 0.7, 0.6; 0.7, 0.5, 0.3; and a background of 0.2. The ncise is uniform with width w = 0.1 (4). The output of the network is
represented by the (normalized) time elapsed since the last firing of a neuron (z axis in B-D). (B and C) Noise reduction through moderate local
excitation; the output patterns closely resemble the original (noiseless) image. (B) Each neuron is connected to its four nearest neighbors with «
= 0.06. (C) Additional couplings to the four next nearest neighbors (with strength g8 = 0.03) result in an overfitting of areas with little brightness
variation. Contrast enhancement is possible through long-range inhibition as shown in D where in addition to local excitation (a = 0.05 and B =
0.02), inhibitory long-range connections were included. They are of strength y = —0.03 and join each neuron i with 16 cells (out of 32) along the

boundary of a square of size 9 X 9, centered at i.

To stay within the present class of models, incoming infor-
mation has to be thought of as setting initial conditions for a
set of neurons, which then are allowed to follow their own
intrinsic dynamics. However, the presumption that all neurons
have the same steady input (or leakage) current is inadequate
for biology. Sufficiently different input currents would seem to
necessarily decouple neurons from the periodic behavior.
Undoubtedly, inputs are also constantly changing. Neverthe-
less, the initial-condition approach is similar to the way that the
mathematics of associative memory was described, and we can
similarly expect some useful insight into the computational
abilities of integrate-and-fire neurons from this approach.

In closing, let us point out that many natural phenomena
arise from the interaction of coupled threshold elements.
Networks of spiking nerve cells are just one example in a large
class of systems that includes swarms of flashing fireflies (9),
avalanches (31), and earthquakes (28). The corresponding
models show a high degree of similarity on the microscopic
level. For example, the time evolution of single earthquake
faults has been described by model E (28). For open boundary
conditions, this system approaches a self-organized critical
state with fluctuations on all length scales. It has been argued
that this result explains the power-law behavior observed in the
size-frequency relation of earthquakes. Similarly, the periodic
behavior of the present models provides a plausible explana-
tion of the quasi-cyclic behavior seen in the recurrence pattern
of some large earthquakes (38). :

In view of the hope of some physicists for a “theory of
everything” relating diverse complex systems, the generality
and specificity of the results in this area of modeling might be
noted. A range of models were shown to have similar short-
time behavior. However, the asymptotic behavior of the dif-
ferent models depends sensitively on model details, such as

boundary conditions, and ranges from self-organized criticality
to system-wide synchronization. The utility of a “theory of
everything” under such circumstances depends entirely on
what one hopes to learn.

Appendix: Nontrivial Oscillations in Model B

Let us focus on a cross-shaped pattern, the minimal synchro-
nized cluster possible for excitatory nearest-neighbor interac-
tions. Let us further assume that the background fires at times
kP., k € IN, and that the cross-shaped pattern is active at times
t = A + kP.. To analyze the existence and stability of this
solution, three particular classes of cells have to be studied:
The four nearest neighbors of the center of the cross will be
called a cells. Further away from the center and part of the
background are the four b and four c cells. The latter are the
diagonal neighbors of the center cell; the former are two lattice
sites away from the center, bordering one a cell and three other
background cells.

At time 0, a cells receive three action potentials (two from
¢ cells and one from a b cell), so that u(0*) = u(0~) + 3a. Just
before the-center neuron fires, Eq. 5 gives u(A~) = [u(0*) —
Ilexp(—A) + I; right after this event, u reaches the value u(A™)
+ a and is then reset to u(A*) = 0. Finally, at time Pr, the
initial state is reached again, u(07) = u(Pr) = I[1 — exp(A —
P.)]. By using the last expression to eliminate w(0~), one
verifies that a cells are below threshold at ¢ = A~ if

A>P; —In(4/3), [19]
and at or above threshold at ¢t = A if

A = —In[exp(—P.) — 1/4] — In(4/3). [20]
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Depending on their potential atf = 0~, b cells may be triggered
by k = 1, 2, or 3 cells at ¢ = 0. This leads to three possible
activity bands, labeled by k and defined by 1 — ka = u(07) <
1 — (k — 1)a. At time P7, solutions of each band are given by
u(Pf) = 1 + a exp(—P.)[exp(A) — k — 1]. The condition
u(Pr) = u(07) leads to three constraints for A. The strongest
condition is

A <In[4 — 2 exp(PL)]. [21]
Applied to ¢ cells, the same argument provides the bound
A <In[2 - 1/2 exp(PL)]. [22]

A final constraint is simply the requirement that the cross fires
before the background neurons become active again,

A<P,. (23]

A self-consistent solution may exist if all constraints are
compatible. Eqgs. 19 and 20 are always compatible, Egs. 19 and
21 are compatible if 5/ > 16 — 44a, and Eqgs. 19 and 22 are
compatible if 3/ > 8 — 20a. The example a = 0.2 and I = 2.0
satisfies both inequalities. In this case, A is only constrained by
Eq. 23. Numerical simulations confirm the existence of these
phase-locked but not globally synchronized solutions. They are
stable because triggered neurons have no memory about their
previous state and triggering neurons do not experience any
restoring forces when slightly perturbed.
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