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1. Gene Ontology annotations and temporal changes in biological processes. 

We performed Gene Ontology analysis for all quantifiable proteins and for the 323 significantly-

altered proteins (i.e. potential drug-responsive proteins). Of all quantifiable proteins with cellular 

component information available, 26% are associated with various membrane components, which 

is indicative of the excellent recovery of membrane proteins by our sample preparation method 

(SI Figure S5). Cellular locations of the drug-altered proteins are shown in Figure 5A. The 

percentages of the significantly altered proteins in relation to the total quantified proteins vary 

noticeably among different cellular components, suggesting that the drug actions may be 

location-specific. These results may reflect the known fact that CS regulate numerous signaling 

and metabolism pathways in specific cellular locations. These include highly-regulated protein 

degradation in lysosomes 1, very-long fatty acid chain metabolism in peroxisomes 2, long- and 

medium-size fatty acid chain metabolism in mitochondria 2, and protein synthesis machinery in 

the ribosome and endoplasmic reticulum 3. Figure 5B shows the distributions of significantly-

altered proteins by relevant biological processes. These altered proteins are consistent with 

reported CS hepatic drug actions 4.  

The global measurement of the expression dynamics permits comprehensive investigation of the 

drug-altered biological processes with the dimension of time. To gauge the extent of alteration in 

each biological process at different time points, we investigated the profiles of several altered 

proteins in each category. Representative time-courses are shown in Figures 5C-5F. For all time-

courses, little or no response was observed at very early time points (e.g. 0.5 and 1 h), followed 

by increases and then decays in the protein concentrations over the 66-h period post-dosing. MPL 

elicited sustained changes of proteins in "response to hormone stimulus" (Figure 5C), the 

majority of which belonging to the subcategories of “response to steroid”, and “corticosteroid 
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stimuli”. Many temporal changes of hepatic metabolic processes, such as gluconeogenesis, 

occurred.  The observed altered proteins in “gluconeogenesis” were all up-regulated, and the 

numbers peaked at 8 h (Figure 5D). Most of the altered proteins in the “inflammatory/anti-

inflammatory response” category were up-regulated and peaked at 12 h, as shown in Figure 5E. 

Further analysis revealed that most of these are among the acute response proteins, which are up-

regulated by CS as part of their anti-inflammatory response 5. The majority of proteins related to 

translation were up-regulated, as most sharply increased and peaked at 5.5 h followed by a 

decline (Figure 5F). This is consistent with the anabolic actions of CS in liver 6. Interestingly, the 

temporal characteristics, such as the peak times and the rates of decline, are quite distinct among 

various biological processes, reflecting diverse regulatory mechanisms and dynamics.  

2. Drug-responsive proteins in hepatic amino acid metabolism, gluconeogenesis and acute 

phase response  

Previously, systematic investigations of drug responses were mostly conducted on enzyme 

activity and transcriptional levels but rarely on multiple protein levels due to the technical 

limitations. The method developed here provides a practical tool for comprehensive time series 

studies of protein-level changes underlying drug effects. Although the drug has a rapid clearance, 

e.g. the plasma concentration decreased to <1% of its maximum concentration at 5.5 h 7, our 

temporal proteomics data showed many protein expression changes occurring for up to 66 h, 

indicating that many  biological cascades remained active well after the drug was cleared from 

the system. Investigation of the biological functions of the discovered drug-responsive proteins is 

our future plan; however, some key drug-responsive proteins involved in hepatic amino acid 

metabolism and gluconeogenesis are exemplified.     
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The CS-induced protein degradation, as illustrated in Figure 6A, provides the substrate 

for amino acid metabolism and gluconeogenesis8. Briefly, CS induce protein degradation through 

autophagocytosis via lysosomal machinery in hepatocytes 1, and the ATP-dependent ubiquitin-

proteasome system in skeletal muscle 9, which provides amino acid substrates to liver for further 

amino acid metabolism and subsequent gluconeogenesis 10. Three major aminotransferases that 

are CS-responsive were found in this study: alanine aminotranferase (AAT), cytosolic aspartate 

aminotransferase (cASAT), and tyrosine aminotransferase (TAT). The time-courses of the three 

aminotransferases as measured by the proteomic profiling are shown in Figures 6B and 6C. 

Interestingly, although all three enzymes contain glucocorticoid response elements (GRE) in their 

conserved promoter regions and thus they can be up-regulated by CS-induced GR binding 11, the 

three enzymes peaked at different times with markedly different time profiles. While the 

induction of AAT and cASAT peaked near 30 h and continued until  48 h after drug dosing 

(Figures 6B and 6C), the expression peaks for TAT are much narrower with maxima at much 

earlier times (5-8 h, Figures 6C and 6D). These distinct temporal features reflect the complex 

biochemical and dynamic features of the regulation of these proteins in liver. One potential 

explanation in part for the differences in time-courses could be found in the differential turnover 

rates of these proteins. For example, cASAT has a much longer half-life (5-11 days) than TAT 

(~4 h) 12,  which may account for the much wider response window of cASAT. Furthermore, in 

contrast to cASAT, the proteomic data showed no significant increase of mASAT, which is 

consistent with previous reports that mASAT is not responsive to CS 12 while CS can increase the 

expression of cASAT 12.  

Hepatic gluconeogenesis is downstream of amino acid metabolism (Figure 6A). The 

recycling of carbons are controlled by three key enzymes:  pyruvate carboxylase (PC), 
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phosphoenolpyruvatecarboxykinase (PEPCK), and fructose 2,6-bisphosphate (FBPase) 13 

(illustrated in Figure 6A). Among these, PEPCK (also with a GRE region) is the rate-limiting 

enzyme 14. The time courses of the three enzymes are shown in Figure 6D. Clearly, only the 

expression of PEPCK was elevated by MPL (peaking at 5.5 h), which is in agreement with 

previous observations of elevated mRNA 14 and enzyme activity 15 of PEPCK, while neither PC 

nor FBpase was altered. This result also correlates well with our observation that CS elevates 

glucose concentrations in plasma 16.  

Among the significantly up-regulated proteins in inflammatory responses, 7 proteins are 

associated with acute phase response including serpin A3n, serpin A1, alpha-2-macroglobulin, 

argininosuccinate synthase, complement C4, Haptoglobin, and signal transducer and transcription 

activator 3 (STAT3). The increase of these proteins may play a significant role in tissue and 

organ protection in response to diverse stimuli 17. Serpins and alpha-2-macroglobulin are 

antiproteases involved in fibrinolysis, the inhibition of blood clots, and may increase in 

circulation in response to various stimulations and inflammatory stresses 18. Complement C4 is a 

part of the complement system and is critical in host defense 19. Haptoglobin is a key transport 

protein in hepatic recycling of heme iron and tissue protection 20. Argininosuccinate synthase is 

an acute phase response protein involved in the control of blood pressure 21. STAT3 showed a 

time profile with significant up-regulation, showing its peak expression between 8-18 h. STAT3 

is of interest because it is a transcription factor responsible for regulation of many acute phase 

response proteins 22. The mRNA expression of STAT3 was also found to be up-regulated by 

MPL in previous work 23. The concordant up-regulation of STAT3 at both mRNA and protein 

levels supports the receptor/gene-mediated mechanism for enhanced expression of STAT3 at the 

transcriptional level, which in turn may contribute to the elevation of the downstream acute phase 
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response proteins observed here. The up-regulations of these proteins were supported by the 

reduction of white blood cells after MPL dosing 24.   
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