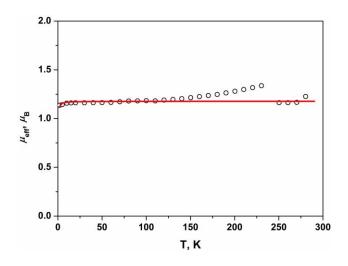
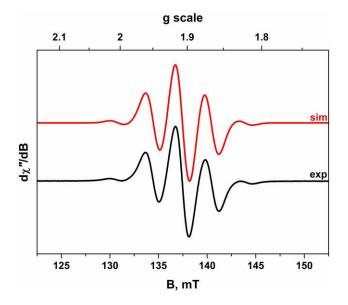
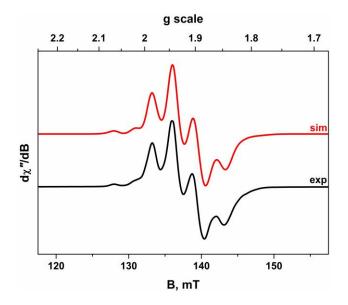
Supporting Information

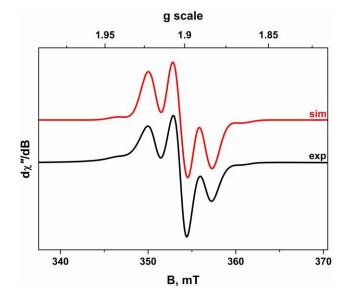

X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge

Upul Jayarathne,^{†,#} Perumalreddy Chandrasekaran,^{†,∥} Angelique F. Greene,[†] Joel T. Mague,[†] Serena DeBeer,^{⊥,∇} Kyle M. Lancaster,[⊥] Stephen Sproules,^{*,§} and James P. Donahue^{*,†}


[†]Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States, ^{II}Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States, ^{II}Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States, ^VMax-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany, and [§]WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom

[#]Present address: Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States


E-mail: stephen.sproules@glasgow.ac.uk; donahue@tulane.edu


Figure S1. Temperature dependence of the magnetic moment, μ_{eff} , μ_B , of powdered sample of $[W^{III}Cl_2(dppe)_2][PF_6]$ measured in a 1 T external field. Experimental data are shown as filled circles, and the red line indicates a best fit: $S = \frac{1}{2}$; g = 1.35; TIP = -157×10^{-6} cm³ mol⁻¹; $\theta_W = -0.09$ K.

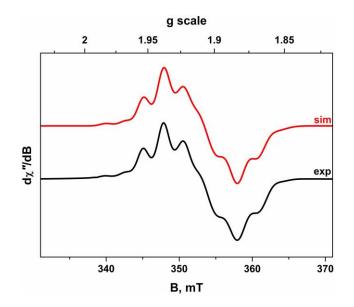

Figure S2. S-band EPR spectrum of $[W^{V}(NPh)Cl_{3}(PMe_{3})_{2}]$ recorded in CH₂Cl₂/THF solution at 190 K (experimental conditions: frequency, 3.6684 GHz; power 2.0 mW; modulation, 0.5 mT). Experimental data are depicted by the black line and simulation in red: $g_{iso} = 1.903$; $A_{W} = 60 \times 10^{-4}$ cm⁻¹; $A_{P} = 26 \times 10^{-4}$ cm⁻¹.

Figure S3. S-band EPR spectrum of $[W^{V}(NPh)Cl_{3}(PMe_{3})_{2}]$ recorded in CH₂Cl₂/THF solution at 30 K (experimental conditions: frequency, 3.7005 GHz; power 0.2 mW; modulation, 0.2 mT). Experimental data are depicted by the black line and simulation in red: g = (1.9372, 1.9066, 1.8829); $A_{W} = (91, 116, -25) \times 10^{-4} \text{ cm}^{-1}$; $A_{P} = (25, 28, 25) \times 10^{-4} \text{ cm}^{-1}$.

Figure S4. X-band EPR spectrum of $[W^{V}(NPh)Cl_{3}(PMe_{3})_{2}]$ recorded in CH₂Cl₂/THF solution at 190 K (experimental conditions: frequency, 9.4182 GHz; power 0.2 mW; modulation, 0.2 mT). Experimental data are depicted by the black line and simulation in red: $g_{iso} = 1.903$; $A_{W} = 60 \times 10^{-4}$ cm⁻¹; $A_{P} = 26 \times 10^{-4}$ cm⁻¹.

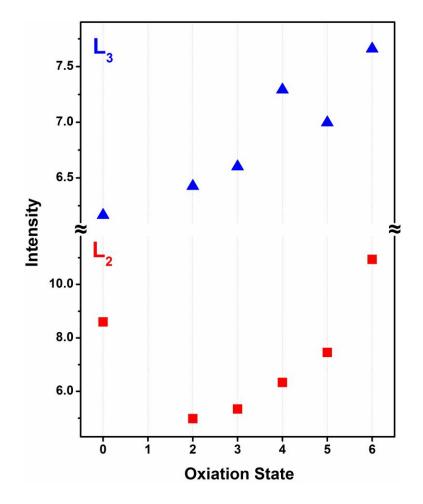


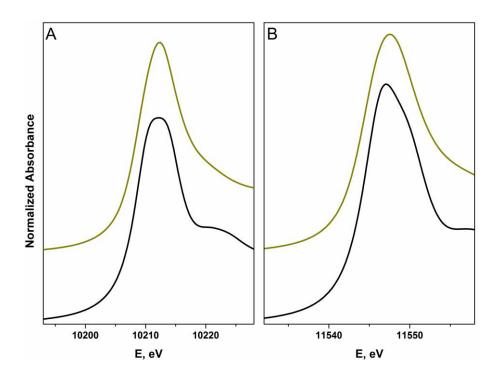
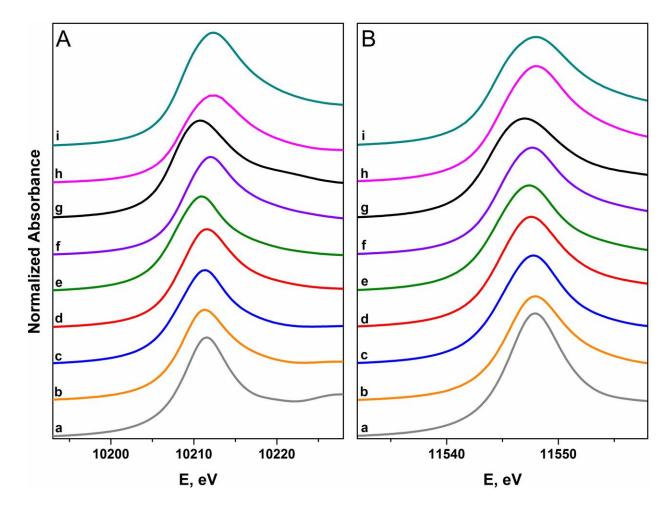
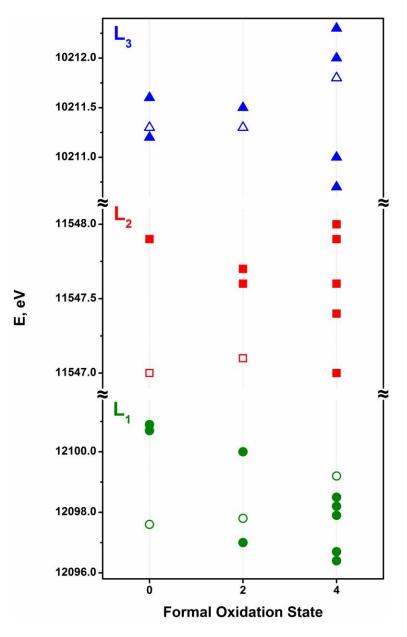
Figure S5. X-band EPR spectrum of $[W^{V}(NPh)Cl_{3}(PMe_{3})_{2}]$ recorded in CH₂Cl₂/THF solution at 30 K (experimental conditions: frequency, 9.4352 GHz; power 0.006 mW; modulation, 0.5 mT). Experimental data are depicted by the black line and simulation in red: $g = (1.9372, 1.9066, 1.8829); A_{W} = (91, 116, -25) \times 10^{-4} \text{ cm}^{-1}; A_{P} = (25, 28, 25) \times 10^{-4} \text{ cm}^{-1}.$

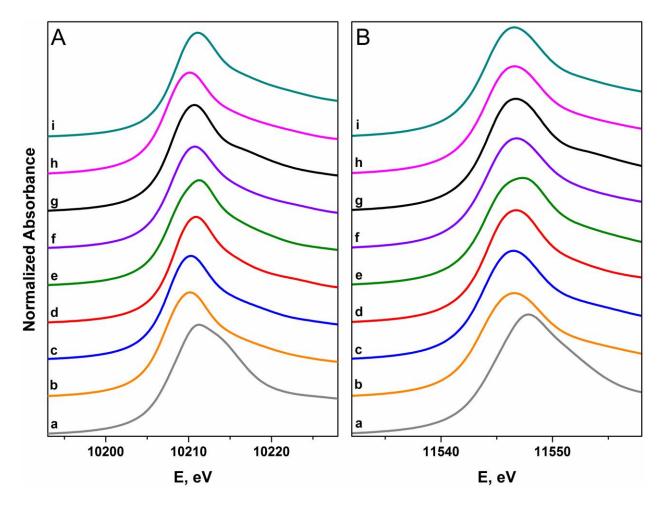
 Table S1. Experimental (L3 and L2-edge) and Calculated Ligand Field Splitting (eV) for

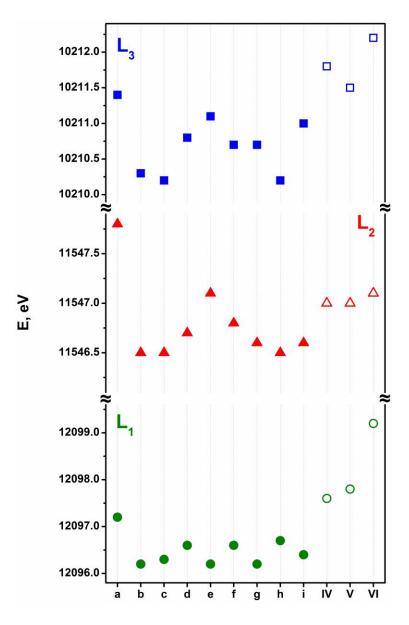
 Complexes

Compound	L_3	L_2	Calcd
[W ^{II} Cl ₂ (PMePh ₂) ₄]	2.3	2.2	2.9
$[W^{III}Cl_2(dppe)_2][PF_6]$	3.6	3.3	3.7
[W ^{IV} Cl ₄ (PMePh ₂) ₂]	3.0	2.7	3.3
[W ^V (NPh)Cl ₃ (PMe ₃) ₂]	1.1	1.6	1.6
$[W^{VI}Cl_6]$	3.3	3.4	3.3

Figure S6. Comparison of the L₃- (\blacktriangle) and L₂-edge (\blacksquare) intensities of the six reference compounds [W⁰(PMe₃)₆], [W^{II}Cl₂(PMePh₂)₄], [W^{III}Cl₂(dppe)₂][PF₆], [W^{IV}Cl₄(PMePh₂)₂], [W^V(NPh)Cl₃(PMe₃)₂], and [W^{VI}Cl₆].


Figure S7. Comparison of the normalized W L₃- (panel A) and L₂-edge (panel B) X-ray absorption spectra of $[W^{VI}Cl_6]$ (black) and $[W^{VI}(xylidene)_3]$ (dark yellow).


Figure S8. Comparison of the normalized W L₃- (panel A) and L₂-edge (panel B) X-ray absorption spectra of (a) $[W^0(CO)_6]$, (b) $[W^0(Me_2pipdt)(CO)_4]$, (c) $[W^{II}(mdt)(CO)_4]$, (d) $[W^{II}(mdt)(CO)_2(PMe_3)_2]$, (e) $[W^{IV}(mdt)_2(CO)_2]$, (f) $[W^{IV}(mdt)_2(CO)(PMe_3)]$, (g) $[W^{IV}(mdt)_2(PMe_3)_2]$, (h) $[W^{IV}(mdt)_2(CN^tBu)_2]$, (i) $[NEt_4]_2[W^{IV}(mdt)_2(CN)_2]$.

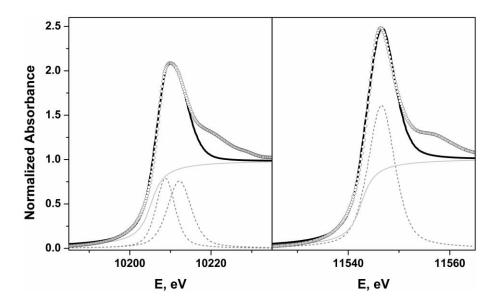

Figure S9. Comparison of the L₃- (\blacktriangle), L₂- (\blacksquare) and L₁-edge (\bullet) energies of formally W⁰ compounds [W⁰(CO)₆] and [W⁰(Me₂pipdt)(CO)₄], W^{II} complexes [W^{II}(mdt)(CO)₄] and [W^{II}(mdt)(CO)₂(PMe₃)₂], and W^{IV} compounds [W^{IV}(mdt)₂(CO)₂], [W^{IV}(mdt)₂(CO)(PMe₃)], [W^{IV}(mdt)₂(PMe₃)₂], [W^{IV}(mdt)₂(CN^{*t*}Bu)₂], and [NEt₄]₂[W^{IV}(mdt)₂(CN)₂], with their respective standards, [W⁰(PMe₃)₆], [W^{II}Cl₂(PMePh₂)₄], and [W^{IV}Cl₄(PMePh₂)₂], represented by the open shapes.

Figure S10. Comparison of the normalized W L₃- (panel A) and L₂-edge (panel B) X-ray absorption spectra of (a) $[PPh_4]_2[W^{IV}(mnt)_3]$, (b) $[PPh_4]_2[W^{IV}(bdt)_3]$, (c) $[NEt_4]_2[W^{IV}(bdt)_3]$, (d) $[NEt_4]_2[W^{IV}(mdt)_3]$, (e) $[PPh_4][W^V(bdt)_3]$, (f) $[NEt_4][W^V(mdt)_3]$, (g) $[W^{VI}(bdt)_3]$, (h) $[W^{VI}(mdt)_3]$, (i) $[W^{VI}(pdt)_3]$.

Figure S11. Comparison of the L₃- (\blacksquare), L₂- (\blacktriangle) and L₁-edge (\bullet) energies of (a) [PPh₄]₂[W^{IV}(mnt)₃], (b) [PPh₄]₂[W^{IV}(bdt)₃], (c) [NEt₄]₂[W^{IV}(bdt)₃], (d) [NEt₄]₂[W^{IV}(mdt)₃], (e) [PPh₄][W^V(bdt)₃], (f) [NEt₄][W^V(mdt)₃], (g) [W^{VI}(bdt)₃], (h) [W^{VI}(mdt)₃], (i) [W^{VI}(pdt)₃], with calibrants (IV) [W^{IV}Cl₄(PMePh₂)₂], (IV) [W^V(NPh)Cl₃(PMe₃)₂], (IV) [W^{VI}Cl₆], represented by the open shapes.

Figure S12. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of W reference foil.

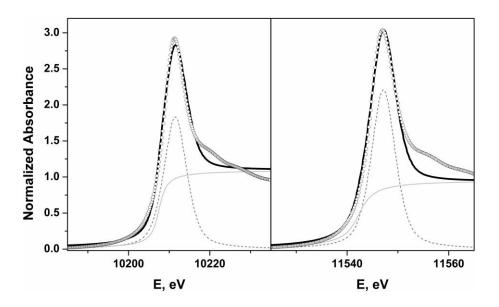


Figure S13. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^0(PMe_3)_6]$.

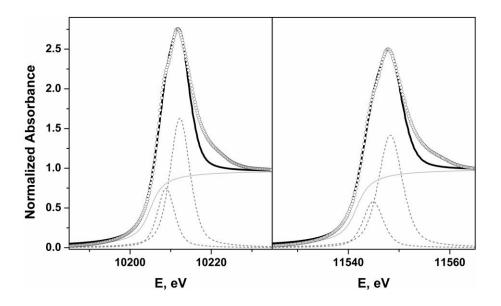


Figure S14. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{II}Cl_2(PMePh_2)_4]$.

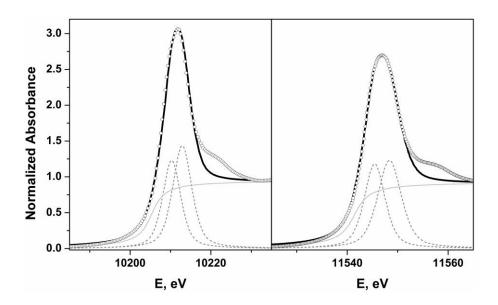


Figure S15. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{III}Cl_2(dppe)_2][PF_6]$.

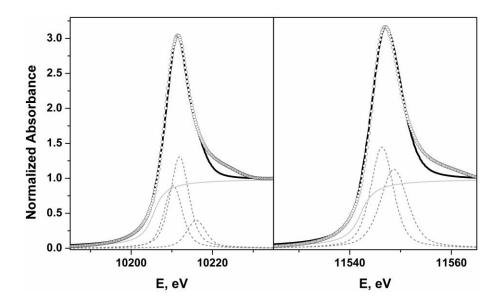


Figure S16. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{IV}Cl_4(PMePh_2)_2]$.

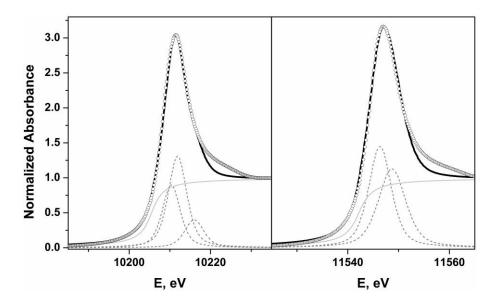


Figure S17. Pseudo-Voigt deconvolution of the W L₃-edge (left) and L₂-edge (right) spectra of $[W^V(NPh)Cl_3(PMe_3)_2]$.

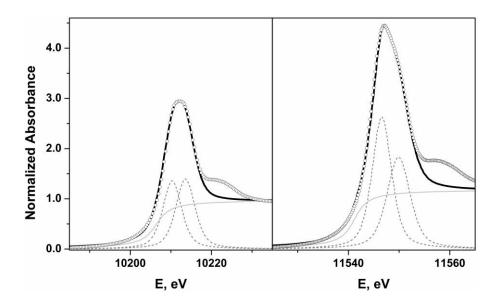


Figure S18. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{VI}Cl_6]$.

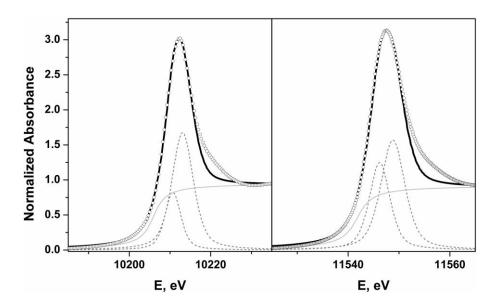


Figure S19. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{VI}(xylidene)_3]$.

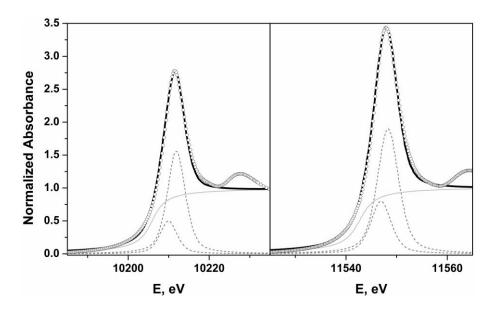


Figure S20. Pseudo-Voigt deconvolution of the W L₃-edge (left) and L₂-edge (right) spectra of $[W^0(CO)_6]$.

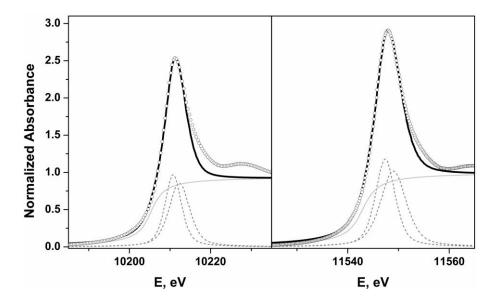


Figure S21. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^0(Me_2pipdt)(CO)_4]$.

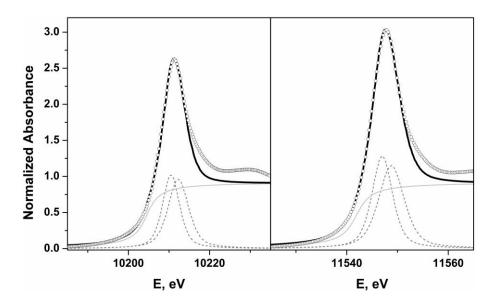


Figure S22. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{II}(mdt)(CO)_4]$.

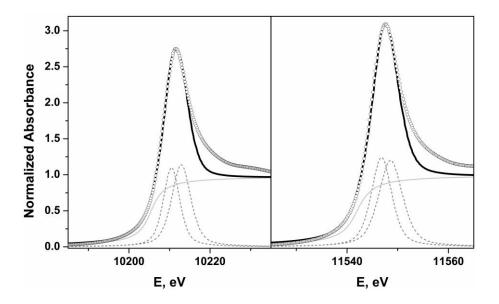


Figure S23. Pseudo-Voigt deconvolution of the W L₃-edge (left) and L₂-edge (right) spectra of $[W^{II}(mdt)(CO)_2(PMe_3)_2].$

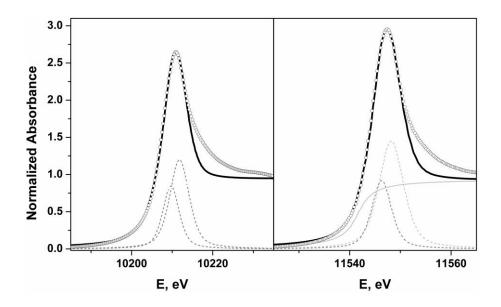


Figure S24. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{IV}(mdt)_2(CO)_2]$.

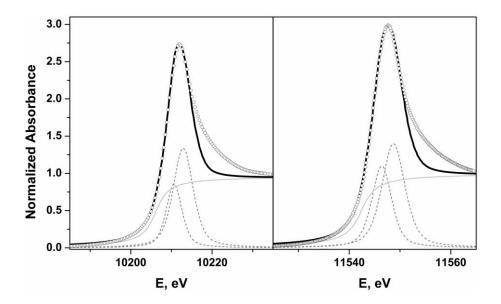


Figure S25. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{IV}(mdt)_2(CO)(PMe_3)]$.

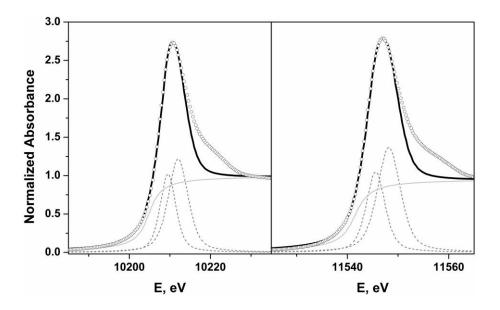


Figure S26. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{IV}(mdt)_2(PMe_3)_2]$.

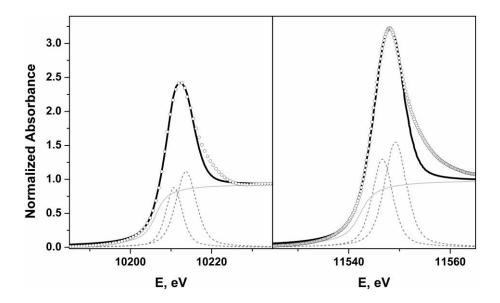


Figure S27. Pseudo-Voigt deconvolution of the W L₃-edge (left) and L₂-edge (right) spectra of $[W^{IV}(mdt)_2(CN^tBu)_2]$.

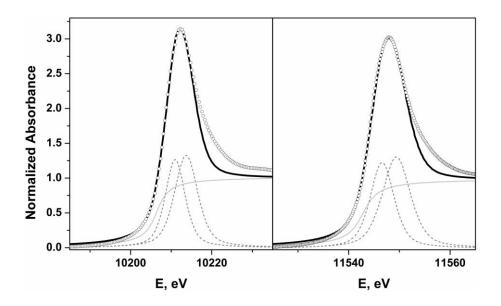


Figure S28. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[NEt_4]_2[W^{IV}(mdt)_2(CN)_2]$.

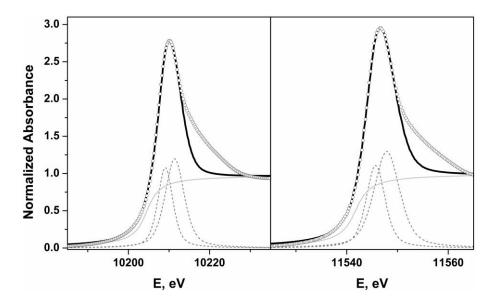


Figure S29. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[PPh_4]_2[W^{IV}(mnt)_3]$.

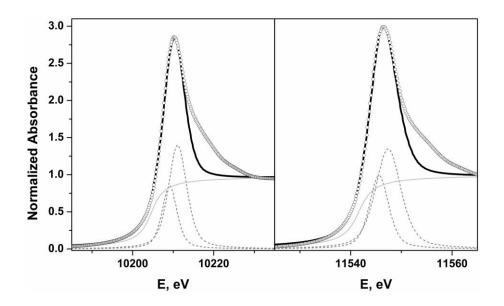


Figure S30. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[NEt_4]_2[W^{IV}(bdt)_3]$.

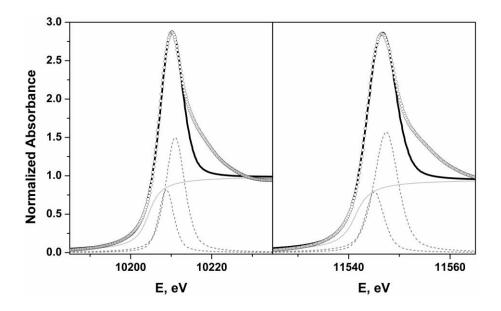


Figure S31. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[PPh_4]_2[W^{IV}(bdt)_3]$.

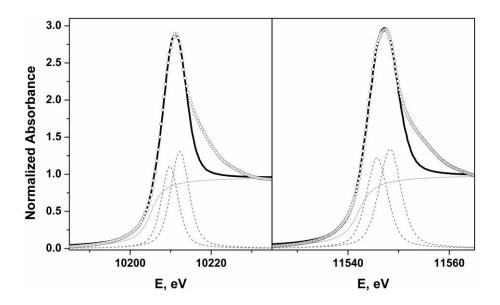


Figure S32. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[PPh_4][W^V(bdt)_3]$.

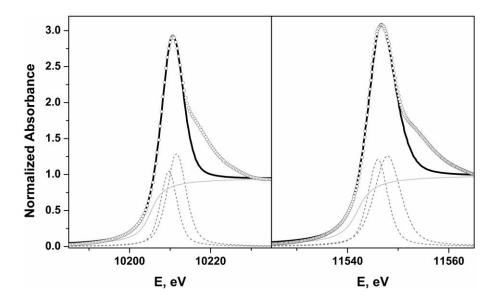


Figure S33. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{VI}(bdt)_3]$.

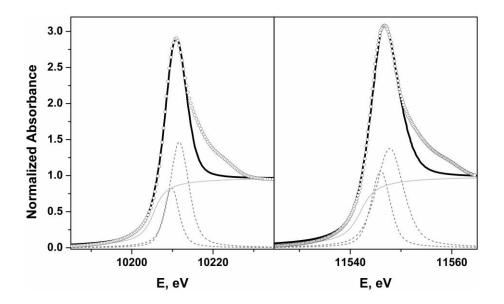


Figure S34. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[NEt_4]_2[W^{IV}(mdt)_3]$.

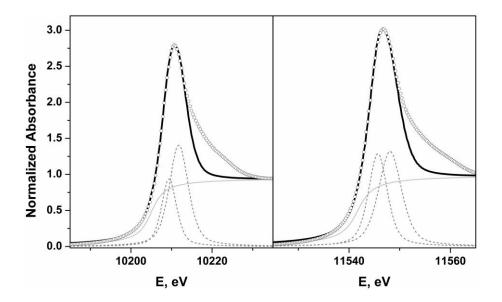


Figure S35. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[NEt_4][W^V(mdt)_3]$.

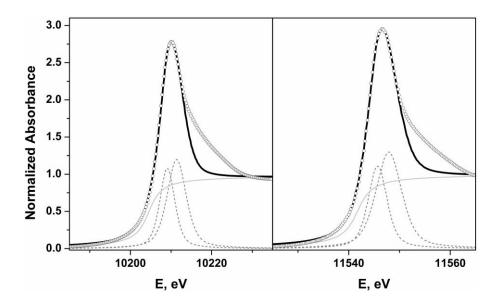
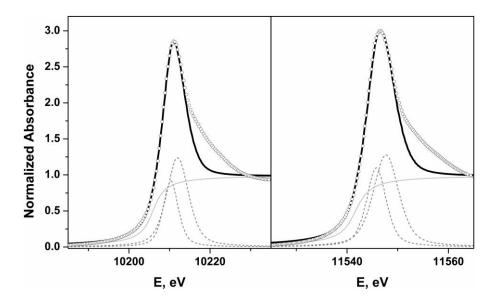
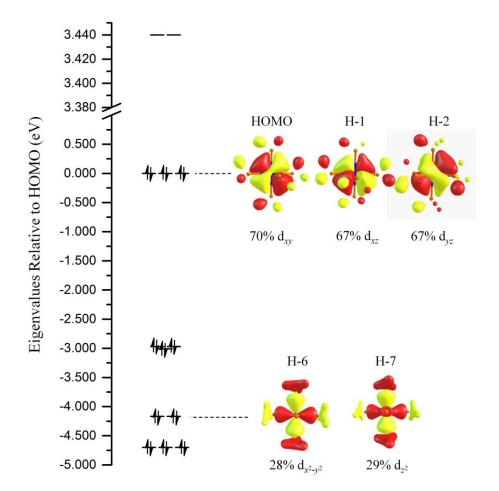


Figure S36. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{VI}(mdt)_3]$.




Figure S37. Pseudo-Voigt deconvolution of the W L_3 -edge (left) and L_2 -edge (right) spectra of $[W^{VI}(pdt)_3]$.

Compound	L_3	L_2	EBR
[W ^{VI} (xylidene) ₃]	10212.4	11547.6	0.490
$[W^0(CO)_6]$	10211.6	11547.9	0.447
[W ⁰ (Me ₂ pipdt)(CO) ₄]	10211.2	11547.9	0.459
[W ^{II} (mdt)(CO) ₄]	10211.3	11547.7	0.454
[W ^{II} (mdt)(CO) ₂ (PMe ₃) ₂]	10211.5	11547.6	0.479
$[W^{IV}(mdt)_2(CO)_2]$	10211.0	11547.4	0.463
[W ^{IV} (mdt) ₂ (CO)(PMe ₃)]	10212.0	11547.6	0.482
$[W^{IV}(mdt)_2(PMe_3)_2]$	10210.7	11547.0	0.495
$[W^{IV}(mdt)_2(CN^tBu)_2]$	10212.3	11548.0	0.435
$[NEt_4]_2[W^{IV}(mdt)_2(CN)_2]$	10212.3	11547.9	0.514
$[PPh_4]_2[W^{IV}(mnt)_3]$	10211.4	11547.8	0.504
$[PPh_4]_2[W^{IV}(bdt)_3]$	10210.2	11546.5	0.495
$[NEt_4]_2[W^{IV}(bdt)_3]$	10210.2	11546.5	0.474
$[NEt_4]_2[W^{IV}(mdt)_3]$	10210.8	11546.7	0.464
$[PPh_4][W^V(bdt)_3]$	10211.1	11547.1	0.491
$[NEt_4][W^V(mdt)_3]$	10210.7	11546.8	0.484
$[W^{VI}(bdt)_3]$	10210.7	11546.6	0.478
$[W^{VI}(mdt)_3]$	10210.2	11546.5	0.475
$[W^{VI}(pdt)_3]$	10211.0	11546.6	0.485

Table S2. L₃- and L₂-edge White-Line Energies (eV) and EBR for Complexes

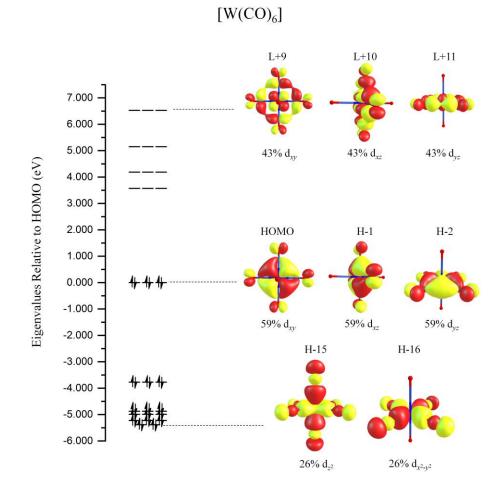

74	-0.013831	0.000548	0.000446
15	1.440206	0.517995	-1.838415
1	2.884958	0.436996	-1.697048
1	1.415745	-0.214967	-3.092269
1	1.468824	1.824282	-2.473468
15	-1.403326	-1.304880	-1.440822
15	-0.836626	-2.245190	-2.392585
1		-2.239047	
	-2.386701		-0.919210
1	-2.308300	-0.693409	-2.399058
15	-1.326853	1.941618	-0.469506
1	-0.707569	3.224460	-0.755231
1	-2.242334	1.994660	-1.596549
1	-2.278503	2.477994	0.488889
15	-1.431017	-0.527154	1.850856
1	-0.885512	-0.935769	3.133811
1	-2.353841	0.442872	2.415518
1	-2.405416	-1.603332	1.785247
15	1.345167	-1.923253	0.464649
1	2.796163	-1.831080	0.462199
1	1.286749	-2.645483	1.723705
1	1.313451	-3.122920	-0.353967
15	1.415285	1.294067	1.432014
1	2.861831	1.165959	1.360315
1	1.436208	2.746629	1.414209
1	1.372463	1.200861	2.880885
-			

Table S3. Optimized Coordinations for [W(PH₃)₆]

 $[W(PH_3)_6]$

Figure S38. MO energy level diagram for $[W(PH_3)_6]$. Contour levels for the orbital images are drawn at the 0.05 level.

Figure S39. MO energy level diagram for $[W(CO)_6]$. Contour levels for the orbital images are drawn at the 0.05 level.

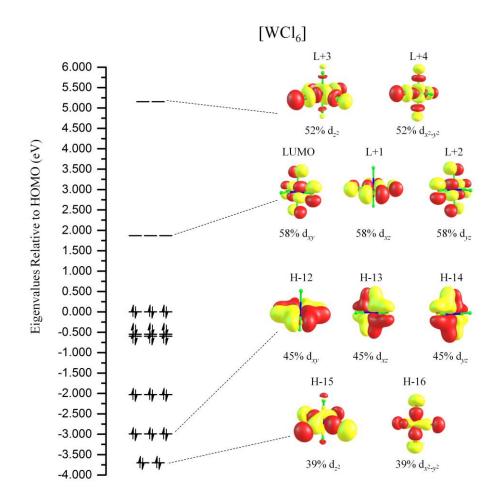
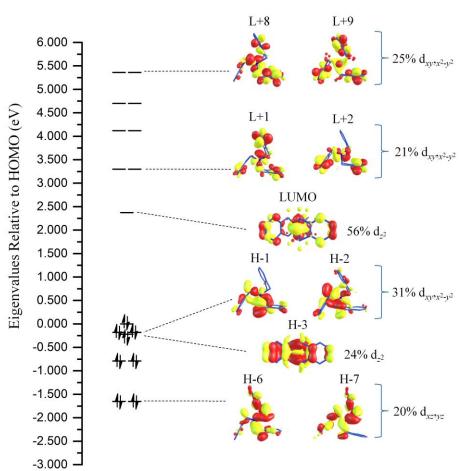
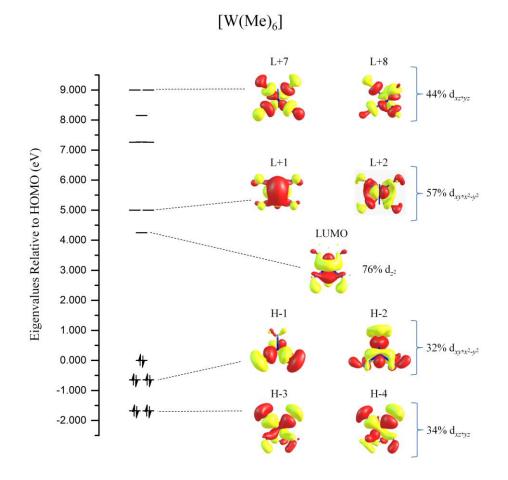
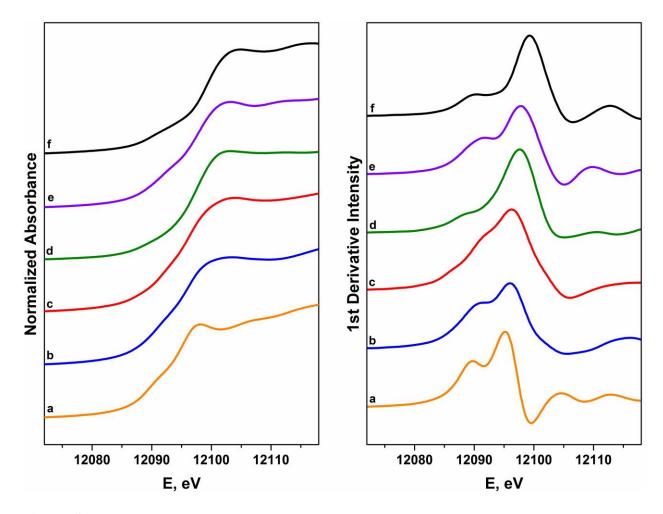




Figure S40. MO energy level diagram for $[WCl_6]$. Contour levels for the orbital images are drawn at the 0.05 level.



[W(xylidene)₃]

Figure S41. MO energy level diagram for [W(xylidene)₃]. Contour levels for the orbital images are drawn at the 0.05 level.

Figure S42. MO energy level diagram for $[W(Me)_6]$. Contour levels for the orbital images are drawn at the 0.05 level.

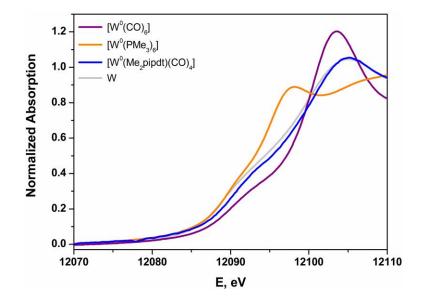


Figure S43. Comparison of the L₁-edge (panel A) and FFT smoothed first derivative (panel B) X-ray absorption spectra of (a) [W⁰(PMe₃)₆], (b) [W^{II}Cl₂(PMePh₂)₄], (c) [W^{III}Cl₂(dppe)₂][PF₆], (d) [W^{IV}Cl₄(PMePh₂)₂], (e) [W^V(NPh)Cl₃(PMe₃)₂], (f) [W^{VI}Cl₆].

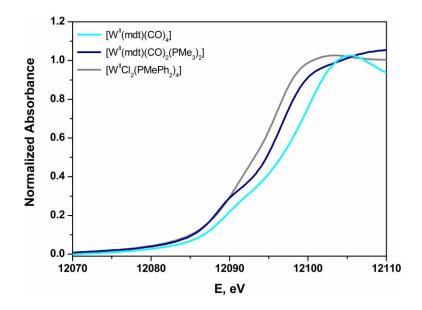

	Pre-Edge	Rising-Edge	W 6p	Θ
$[NEt_4]_2[W(mdt)_3]$	12089.8	12096.6	3.5	2.4
$[NEt_4][W(mdt)_3]$	12089.8	12096.4	3.6	2.9
[W(mdt) ₃]	12090.2	12096.5	4.5	0.7
$[NEt_4]_2[W(bdt)_3]$	12091.0	12096.3	3.4	1.9
$[PPh_4]_2[W(bdt)_3]$	12090.1	12096.2	1.9	23.0
[PPh ₄][W(bdt) ₃]	12090.0	12096.2	1.3	32.3
$[W(bdt)_3]$	12090.4	12096.2	3.9	0

Table S4. W L₁-Pre- and Rising-Edge Energies (eV), W 6p% in LUMO and LUMO+1, and

Trigonal Twist Angle, Θ (°)

Figure S44. Overlay of the normalized W L₁-edge X-ray absorption spectra of $[W^0(CO)_6]$, $[W^0(PMe_3)_6]$, $[W^0(Me_2pipdt)(CO)_4]$, and W foil.

Figure S45. Overlay of the normalized W L₁-edge X-ray absorption spectra of formally W^{II} compounds $[W^{II}(mdt)(CO)_4]$, $[W^{II}(mdt)(CO)_2(PMe_3)_2]$, and $[W^{II}Cl_2(PMePh_2)_4]$.

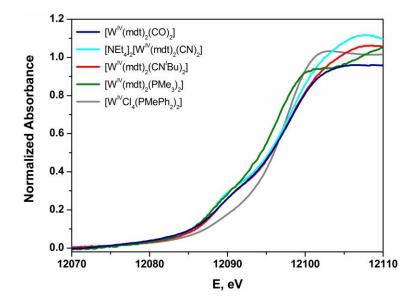
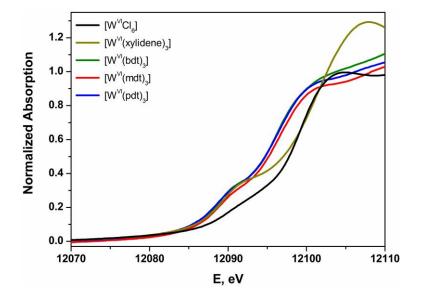
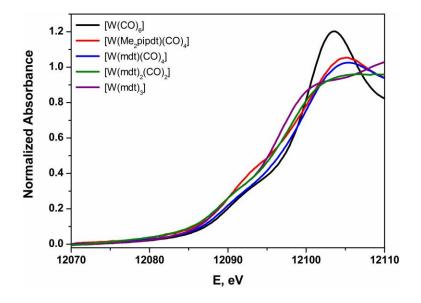
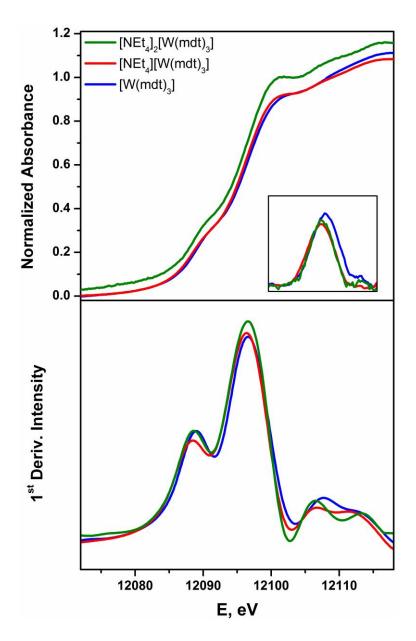
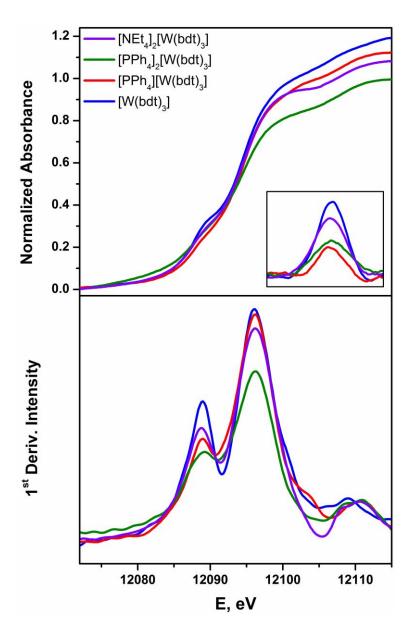
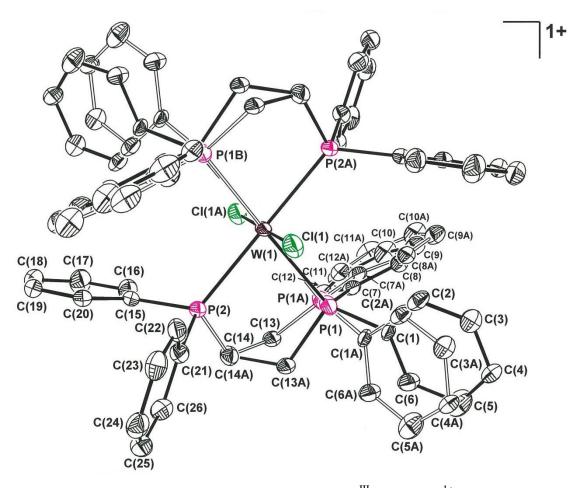
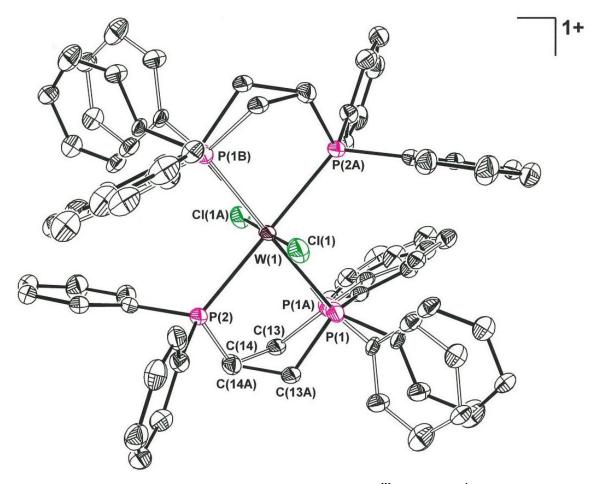




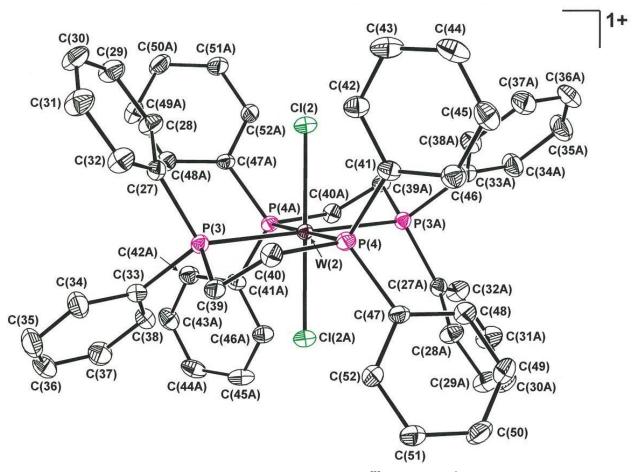
Figure S46. Overlay of the normalized W L1-edge X-ray absorption spectra of formally WIVcompounds $[W^{IV}(mdt)_2(CO)_2],$ $[W^{IV}(mdt)_2(CO)(PMe_3)],$ $[W^{IV}(mdt)_2(PMe_3)_2],$ $[W^{IV}(mdt)_2(CN^tBu)_2],$ $[NEt_4]_2[W^{IV}(mdt)_2(CN)_2],$ and $[W^{IV}Cl_4(PMePh_2)_2].$

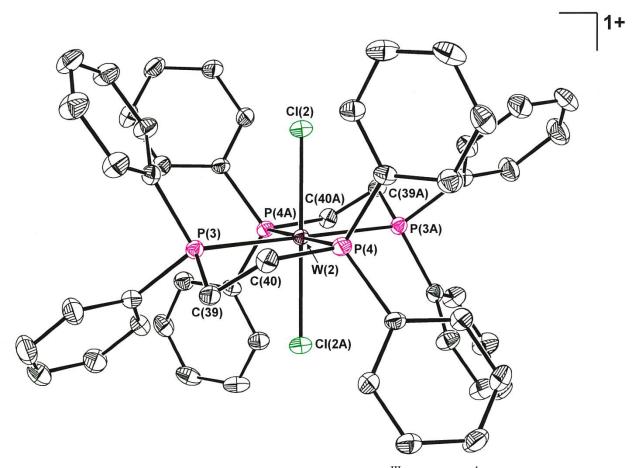

Figure S47. Overlay of the normalized W L₁-edge X-ray absorption spectra of formally W^{VI} compounds [W^{VI} Cl₆], [W^{VI} (xylidene)₃], [W^{VI} (bdt)₃], [W^{VI} (mdt)₃], and [W^{VI} (pdt)₃].

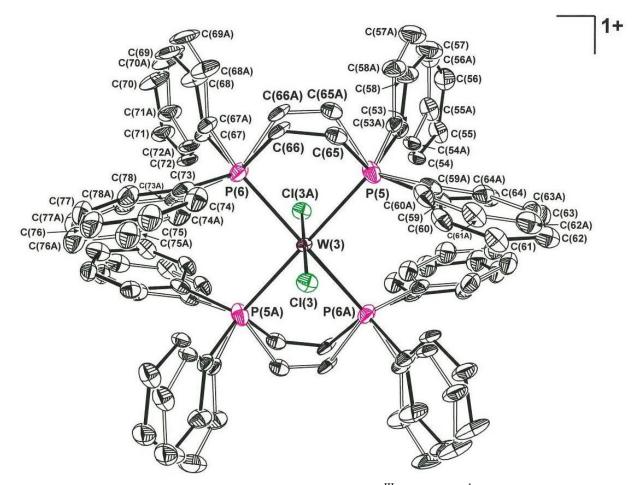

Figure S48. Overlay of the normalized W L₁-edge X-ray absorption spectra of $[W^0(CO)_6]$, $[W^0(Me_2pipdt)(CO)_4]$, $[W^{II}(mdt)(CO)_4]$, $[W^{IV}(mdt)_2(CO)_2]$, and $[W^{VI}(mdt)_3]$.

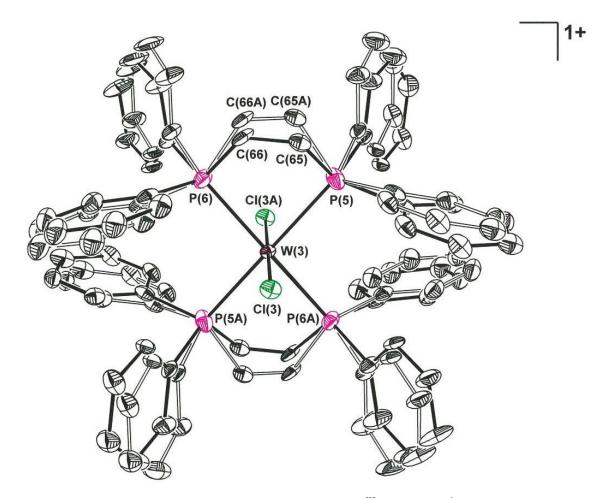

Figure S49. (a) Illustration of the HOMO-2 in $[W(mdt)_2(CO)_2]$, which is dithiolene-to-CO π^* donating, via tungsten. (b) Illustration of the "synergistic" π -donating oxo and π -accepting carbonyl in *cis*-W^{IV}O(CO) complexes, which is analogous to the MO shown in (a).

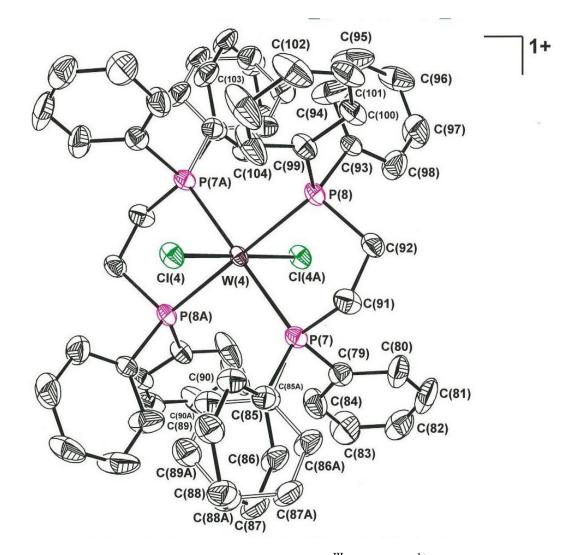

Figure S50. Overlay of the normalized W L₁-edge X-ray absorption (top) and first derivative spectra (bottom) of the series $[W(mdt)_3]^{0,1-,2-}$. Inset shows the relative intensity of the pre-edge peak at ~12090 eV.

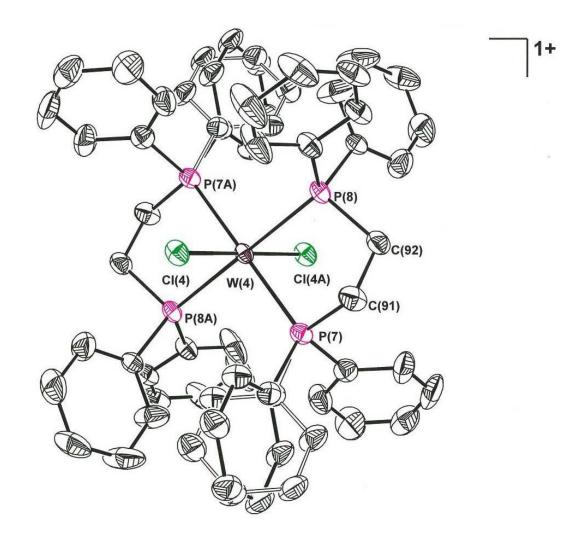

Figure S51. Overlay of the normalized W L₁-edge X-ray absorption (top) and first derivative spectra (bottom) of the series $[W(bdt)_3]^{0,1-,2-}$. Inset shows the relative intensity of the pre-edge peak at ~12090 eV.


Figure S52. Thermal ellipsoid plot of cation 1 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with complete atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.


Figure S53. Thermal ellipsoid plot of cation 1 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with partial atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.


Figure S54. Thermal ellipsoid plot of cation 2 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with complete atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.


Figure S55. Thermal ellipsoid plot of cation 2 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with partial atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.


Figure S56. Thermal ellipsoid plot of cation 3 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with complete atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

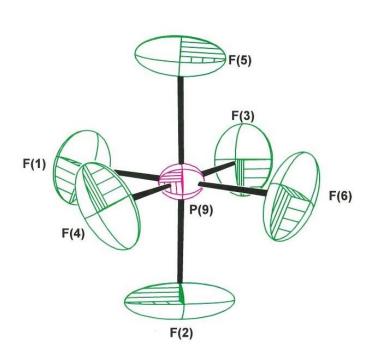

Figure S57. Thermal ellipsoid plot of cation 3 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with partial atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure S58. Thermal ellipsoid plot of cation 4 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with complete atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

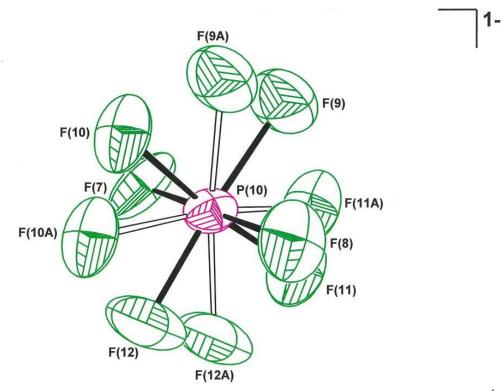
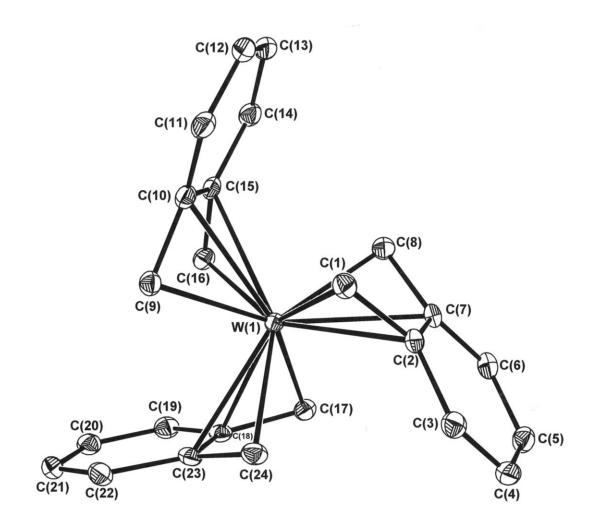


Figure S59. Thermal ellipsoid plot of cation 4 of $[W^{III}Cl_2(dppe)_2]^{1+}$ with partial atom labeling. The tungsten atom resides on an inversion center, which requires that only half of the cation be crystallographically unique. The ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.



1-

Figure S60. Thermal ellipsoid plot at the 50% probability level of anion 1 of $[PF_6]^{1-}$.

Figure S61. Thermal ellipsoid plot at the 50% probability level of anion 2 of $[PF_6]^{1-}$.

Figure S62. Thermal ellipsoid plot of $[W(o-(CH_2)_2C_6H_4)_3]$ drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.