

Figure S1 Recombinantly expressed and purified fragments of *S. gordonii* DL1 FL^{SspB} , $A_3VP_1^{SspB}$, and C_{123}^{SspB} stained with coomassie blue on a 12.5% SDS-PAGE gel.

Figure S2A. Sensorgrams from surface plasmon resonance studies showing the interaction of FL^{AgI/II} and FL^{SspB} at various concentrations with immobilized *i*SRCR₁, *i*SRCR₁₂₃ and SAG.

Figure S2B. Sensorgrams from surface plasmon resonance studies showing the interaction of $A_3VP_1^{AgI/II}$ and $A_3VP_1^{SspB}$ at various concentrations with immobilized *i*SRCR₁, *i*SRCR₁₂₃ and SAG.

Figure S2C. Sensorgrams from surface plasmon resonance studies showing the interaction of $C_{123}^{AgI/II}$ and C_{123}^{SspB} at various concentrations with immobilized *i*SRCR₁, *i*SRCR₁₂₃ and SAG.

Figure S3: Concentration of $FL^{AgI/II}$ and FL^{SspB} bound to immobilized *i*SRCR₁ and *i*SRCR₁₂₃ on CM5 sensor chip.

Figure S4. Glycoprotein stained SDS-PAGE gel containing *i*SRCR's, horse radish peroxidase (HRP, positive control) and soybean trypsin inhibitor (SBTI, negative control).

Figure S5. Binding of *i*SRCR₁₂₃ in solution with FL^{AgI/II}. S1 Methods. Calorimetric titrations of iSRCR123 with FL^{AgI/II} was performed using Auto-ITC titration calorimetry (MicroCal, LLC). The iSRCR₁₂₃ at a concentration of 20 µM of 400 µI was loaded onto calorimetric cell and FL^{AgI/II} of 200 µM of 120 µl at 10 fold higher concentration to that of cell concentration was loaded in syringe. Buffer containing 20 mM HEPES, 150 mM NaCl and 2.5 mM CaCl₂ and temperature of 25°C was maintained throughout the experiment. After the initial injection of 1 µL, 19 injections of 6 µl each from the syringe was injected at 300 seconds interval. Similarly, for control instead of FL^{AgI/II} in syringe, buffer was titrated against SRCRs in the cell. The heat evolved or absorbed during the reaction between the titrant and reactant was noted and the resulting data was fit to a single binding site model using Origin software (Version 7.0383 with MicroCal ITC-analysis module) from which the Kd was calculated. Result: The ITC experiment clearly indicated the weak millimolar level binding of iSRCR₁₂₃ in solution $(K_D = 1.03 \times 10^4 \text{ M})$ with FL^{AgI/II}. The data fit had very large chi² values, and this is indicative of non-specific interactions with very weak affinity.

Figure S6. Large changes in RU were observed upon the addition of 2.5 mM $CaCl_2$ to the immobilized *i*SRCR₁ and *i*SRCR₁₂₃. Such changes in RU are directly attributable to the SRCR conformational changes. In control experiments, the immobilized FL^{AgI/II} had no changes upon calcium addition (data not shown).

Table S1. Primers used for cloning fragments of SspB of S. gordonii DL1.	
Construct	Primers
FL ^{SspB} (Ncol) Forward	5'-TATAACCATGGATGAAGTTACAGAGACAACTAGTACAAG-3'
(39-1433) (Notl) Reverse	5'-TTATAGCGGCCGCAGGATCCTTTGGTTTTGGCGTTGG-3'
A ₃ VP ₁ ^{SspB} (Ncol) Forward	5'-GCGCCATGGATACCAATGAAGCAGACTACCAA-3'
(386-805) (Notl) Reverse	5'-ATAATTTGCGGCCGCTGGTTTTGATGGCTCCGG-3'
C ₁₂₃ ^{SspB} (BamHI) Forward	5'-TATAAGGATCCATTTCCACTATAGCAGTTTATTAGC-3'
(913-1406) (Xhol) Reverse	5'-TTATACTCGAGAGATGCATAAGCAACCTTATTAACAG-3'

Table S2. Analytes, Ligand and buffer details of SPR experiments. Ligand **Running Buffer** Regeneration Buffer for Regeneration buffer for Analyte Ligands 1 and 2 Ligand 3 Ligand 1 Ligand 2 Ligand 3 20 mM HEPES, pH 7.4, 1 M NaCl, FI Agl/II *i*SRCR₁ **iSRCR**₁₂₃ SAG 150 mm NaCl, 20 mM EDTA, pH 7.4 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, 1 M NaCl. A₃VP₁^{Agl/II} SAG 150 mm NaCl, 20 mM EDTA, pH 7.4 *i*SRCR₁ *i*SRCR₁₂₃ 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, 1 M NaCl, $C_{123}^{Agl/II}$ *i*SRCR₁ **iSRCR**₁₂₃ SAG 150 mm NaCl. 20 mM EDTA, pH 7.4 10 mM HCI 2.5 mM CaCl₂ 1 M NaCl, 20 mM HEPES, pH 7.4, **FL**SspB *i*SRCR₁ SAG 150 mm NaCl, *i*SRCR₁₂₃ 20 mM EDTA pH 7.4 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, 1 M NaCl, A₂VP₁SspB SAG 150 mm NaCl, 20 mM EDTA, pH 7.4 *i*SRCR₁ *i*SRCR₁₂₃ 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, 1 M NaCl, C123 SspB *i*SRCR₁ **iSRCR**₁₂₃ SAG 150 mm NaCl. 20 mM EDTA, pH 7.4 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, *i*SRCR₁₂₃ *i*SRCR₁ *i*SRCR₁ 150 mm NaCl. 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, *i*SRCR₁₂₃ *i*SRCR₁ *i*SRCR₁₂₃ 150 mm NaCl, 10 mM HCI 2.5 mM CaCl₂ 20 mM HEPES, pH 7.4, 1 M NaCl, 2.5 mM CaCl₂ *i*SRCR₁ *i*SRCR₁₂₃ 20 mM EDTA, pH 7.4 150 mm NaCl