## Identification of microRNAs specific for high producer CHO cell lines using steady-state cultivation

Andreas Maccani<sup>1,2</sup>, Matthias Hackl<sup>2</sup>, Christian Leitner<sup>3</sup>, Willibald Steinfellner<sup>2</sup>, Alexandra B. Graf<sup>1,4</sup>, Nadine E. Tatto<sup>1</sup>, Michael Karbiener<sup>5</sup>, Marcel Scheideler<sup>5</sup>, Johannes Grillari<sup>2</sup>, Diethard Mattanovich<sup>1,2</sup>, Renate Kunert<sup>1,2</sup>, Nicole Borth<sup>1,2</sup>, Reingard Grabherr<sup>2</sup>, Wolfgang Ernst<sup>1,2</sup>

<sup>1</sup> Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria

<sup>2</sup> Department of Biotechnology, VIBT – BOKU – University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria

<sup>3</sup> Department of Food Science and Technology, VIBT – BOKU – University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria

<sup>4</sup> School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 56, 1190 Vienna, Austria

<sup>5</sup> Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria

## **Correspondence:**

Andreas Maccani, Tel: +43 1 47654 6908, Email: andreas.maccani@acib.at Wolfgang Ernst, Tel: +43 1 47654 6944, Email: wolfgang.ernst@boku.ac.at

## Table S1: Primers used for qRT-PCR

| Target               | Primer sequence (5'-3') or Qiagen miScript Primer Assay |
|----------------------|---------------------------------------------------------|
| Actr5 sense          | CTCCTTCCAGGTTCAGCTTG                                    |
| Actr5 antisense      | GGCACAATGTTCCTTGAGGT                                    |
| Gapdh sense          | GTAAGAAGCCCACCCTGGA                                     |
| Gapdh antisense      | GTGAGGGAGATGATCGGTGT                                    |
| 3D6scFv-Fc sense     | CCCAAGCTGCTGATCTACAA                                    |
| 3D6scFv-Fc antisense | GATGGTCAGGGTGAACTCG                                     |
| HSA sense            | CCTGGAAGTGGACGAGACATAC                                  |
| HSA antisense        | GTCTGCTTCTTGATCTGCCTTT                                  |
| let-7b-5p            | MS00001225                                              |
| let-7c-5p            | MS00005852                                              |
| miR-100-5p           | MS00032214                                              |
| miR-10b-5p           | MS00032249                                              |
| miR-125b-5p          | MS00005992                                              |
| miR-19a-3p           | MS00001302                                              |
| miR-185-5p           | MS00001736                                              |
| miR-193a-3p          | MS00001785                                              |
| miR-21-5p            | MS00011487                                              |
| miR-221-3p           | MS00032585                                              |
| miR-350-3p           | MS00007938                                              |
| miR-99a-5p           | MS00033117                                              |



**Fig. S1** Time courses of steady-state cultivations. Glucose (Glc), glutamine (Gln), lactate (Lac) and ammonium (NH<sub>4</sub><sup>+</sup>) concentration of (**a**) CHO 3D6scFv-Fc low-producer, (**b**) CHO 3D6scFv-Fc high-producer, (**c**) CHO HSA low-producer, (**d**) CHO HSA high-producer and (**e**) CHO empty vector (non-producer). Cells were cultivated in a 0.8 L cell culture bioreactor. After three days of batch cultivation, the process was switched to continuous cultivation (dilution rate  $D = 0.5 d^{-1}$ ). The culture volume was maintained at a constant level of 400 mL. Data represent mean values of three independent cultivations (error bars: SD). No data points are shown for glucose concentration below the detection limit of 0.2 g L<sup>-1</sup>



**Fig. S2** Distribution of Pearson correlation coefficients (PCC) between miRNAs and validated or predicted targets. Superimposed kernel density plots were computed with equal bandwidths. All genes: 2843 mRNAs which were identified as differentially expressed (adj. p < 0.05 and fold change > 1.5) between the cell lines used in this study. Predicted targets: Differentially expressed target mRNAs that were computationally predicted by more than half of nine applied algorithms. Validated targets: Differentially expressed target mRNAs which have been experimentally validated in human, mouse or rat (miRTarBase 4.5)