Supporting Information

UV-Photoelectron Spectroscopy of BN Indoles: Experimental and Computational Electronic Structure Analysis

Anna Chrostowska,*^{,§} Senmiao Xu,^{†,‡} Audrey Mazière,[§] Katherine Boknevitz,[†] Bo Li,[†] Eric R. Abbey,[‡] Alain Dargelos,[§] Alain Graciaa,[§] and Shih-Yuan Liu^{†,‡}*

[†]Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States [‡]Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253, United States [§]Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR CNRS 5254, Université de Pau

et des Pays de l'Adour, Avenue de l'Université, 64 000 Pau, France

Index	page
General	S2
Electrophilic Aromatic Substitution Reaction of I, II and indole (Figure 5, eqs 2-4)	S3-S4
Competitive Electrophilic Aromatic Substitution Reactions (Scheme 2)	S5
Supporting UV-PES and Computational Data	S6-S14
Crystal structure of "fused" BN gramine	S15-S24
NMR spectra collection	S25-S27

General

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box.

Et₂O, CH₂Cl₂, and CH₃CN were purified by passing through a neutral alumina column under argon. All other chemicals and solvents were purchased and used as received. "External" BN indole I,¹ "fused" BN indole II^2 were prepared according to the literature procedures.

¹¹B NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer at ambient temperature. ¹¹B NMR chemical shifts are externally referenced to $BF_3 \cdot Et_2O$ (δ 0). ¹H NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer. ¹³C NMR spectra were recorded on a Unity/Inova 600 spectrometer. IR spectra were recorded on a Bruker FTIP Alpha (ATR mode) spectrometer. UV-vis spectra were recorded on a Agilent Cary 100 UV-vis spectrophotometer with concentration 1.0 X 10⁻⁴ M in CH₃CN.

Cyclic Voltammetry was conducted on a SP-200 Potentiostat using glassy carbon working electrode, Pt coil counter electrode, and Ag wire pseudo-reference. Experiments were performed using 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in high purity CH₃CN, and conducted under N₂ atmosphere. E_{ox} values were reported as anodic peak potentials internally calibrated to Fc/Fc⁺ standard ($E_{1/2} = 0.40$ V vs. SCE³ under this conditions). CVs were collected at a sweep rate of 50 mV/s. The analyte concentration was ~ 2 mM.

Complete reference 24:

Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

⁽¹⁾ Hadebe, S. W.; Robinson, R. S. Eur. J. Org. Chem. 2006, 4898-4904.

⁽²⁾ Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2011, 133, 11508-11511.

⁽³⁾ Connelly, N. G.; W. E. Geiger. Chem. Rev. 1996, 96, 877-910.

Electrophilic aromatic substitution (EAS) reaction of "external" BN indole I (Figure 5, eq 2)

To a 5-mL vial charged with "external" BN indole I (23.6 mg, 0.200 mmol) and CH₂Cl₂ (2.0 mL) was added dimethylmethyleneiminium chloride (28.0 mg, 0.300 mmol). The resulting mixture was allowed to stir at room temperature for 0.5 h. The mixture was then passed through an Acrodisc (0.45 μ m, PTFE) to remove unreacted iminium salt. Triethylamine (0.1 mL, 0.7 mmol, 3.5 equiv) was then added to release free EAS adduct. After removal of the solvent under reduced pressure, the residue was extracted by ether (3 x 1 mL) to remove ammonium salts. The combined ethereal solution was then concentrated to afford the crude EAS adduct. ¹H NMR indicated the reaction was not complete. The molar ratio of I to EAS adduct is approximately 1.3:1. We were not able to isolate the EAS adduct by column chromatography due to its instability on either silica gel or alumina. Characteristic ¹H NMR and ¹¹B NMR chemical shifts for the EAS adduct: ¹H NMR (CD₂Cl₂, 160 MHz) δ 25.3 (d, ²*J*_{HB} = 166 Hz). HRMS (DART) calcd 176.13590 [(M + H)]⁺, found 176.13527.

Electrophilic aromatic substitution reaction of "fused" BN indole II (Figure 5, eq 3)

To a 5-mL vial charged with "fused" BN indole II (23.6 mg, 0.200 mmol) and CH_2Cl_2 (2.0 mL) was added dimethylmethyleneiminium chloride (28.0 mg, 0.300 mmol). The resulting mixture was allowed to stir at room temperature for 0.5 h. After removal of the solvent under reduced pressure, the resulting crude residue was purified by column chromatography on silica gel with Et_2O/Et_3N (80/20) as the eluent to afford the desired EAS adduct as white solid (33.3 mg, 95%).

Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a concentrated solution of BN gramine in Et₂O at -35 °C.

¹H NMR (CD₂Cl₂, 500 MHz) δ 8.02 (d, *J* = 6.5 Hz, 1H), 7.56 (dd, *J* = 6.0, 1.5 Hz, 1H), 6.69-6.72 (m, 2H), 6.48 (brs, 1H), 6.37 (td, *J* = 6.5, 1.0 Hz, 1H), 3.51 (s, 2H), 2.21 (s, 6H); ¹³C NMR (CD₂Cl₂, 150 MHz) δ 138.8, 128.3, 120.9, 119.2, 117.1 (br), 108.5, 55.1, 45.3; ¹¹B NMR (CD₂Cl₂, 162 MHz) δ 23.5; IR (ATR) 3265, 2975, 2943, 2818, 2711, 1623, 1583, 1495, 1466, 1449, 1384, 1339, 1307, 1276, 1248, 1226, 1169, 1144, 1095, 1081, 1035, 996, 845, 813, 708, 692 cm⁻¹.

Electrophilic aromatic substitution reaction of indole (Figure 5, eq 4)

To a 5-mL vial charged with indole (23.4 mg, 0.200 mmol) and CH_2Cl_2 (2.0 mL) was added dimethylmethyleneiminium chloride (28.0 mg, 0.300 mmol). The resulting mixture was allowed to stir at room temperature for 0.5 h. After removal of the solvent under reduced pressure, the resulting crude residue was purified by column chromatography on silica gel with Et_2O/Et_3N (80/20) as the eluent to afford a mixture of gramine and bisalkylated indole (molar ratio: gramine : bisalkylated indole = 2.1: 1) as white solid (34.7 mg, total yield: 90%). The characterization data of gramine⁴ and the bisalkylated indole⁵ are consistent with those reported in the literature.

Gramine: ¹H NMR (CDCl₃, 500 MHz) δ 8.35 (br s, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.19 (td, *J* = 7.0, 1.0 Hz, 1H), 7.09-7.13 (m, 2H), 3.65 (s, 2H), 2.30 (s, 6H); bisalkylated indole: ¹H NMR (CDCl₃, 500 MHz) δ 7.69 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.21 (td, *J* = 7.0, 1.0 Hz, 1H), 7.09-7.13 (m, 2H), 4.73 (s, 2H), 3.64 (s, 2H), 2.31 (s, 6H), 2.29 (s, 6H).

⁽⁴⁾ Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533-9538.

⁽⁵⁾ Love, B. E. J. Org. Chem. 2006, 72, 630-632.

Competitive Electrophilic Aromatic Subistution Experiments (Scheme 2)

General procedueres. To a 5-mL vial charged with 2 different indoles (0.05 mmol for each) and CD_2Cl_2 (1.0 mL) was added dimethylmethyleneiminium chloride (4.7 mg, 0.05 mmol). The resulting mixture was allowed to stir at room temperature for 15 min. The crude ¹H NMR and ¹¹B NMR was then taken to identify relative reactivity between 2 indoles.

Figure S1. Competitive EAS experiments of "fused" BN indole vs. "external" BN indole (top); "fused" BN indole vs. indole (middle); indole vs. "external" BN indole (bottom). Red arrows point toward signals of the EAS adduct of indole; blue arrows point toward EAS adduct of "fused" BN indole.

Table S1. CAM-B3LYP/6-311G(d,p) geometrical parameters of **Indole**, **I** and **II** (bond angles in Å, angles in degrees).

	$\begin{array}{c} & H \\ & H \\ & N_{3} \\ & N_{1} \\ & B \\ & H \\ & C_{2v} \end{array}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	5 6 7 Cs H
	I	II	Indole
Distances:			
1 - 2	1.426	1.386	1.377
2 - 3	1.426	1.349	1.360
3 – 9	1.392	1.396	1.435
9 – 8	1.406	1.454	1.411
8 - 1	1.392	1.435	1.375
9-4	1.384	1.361	1.400
4 - 5	1.391	1.358	1.379
5 - 6	1.391	1.428	1.404
6 – 7	1.391	1.365	1.379
7 – 8	1.384	1.504	1.394
Angles.			
4-9-3	131.2	128 7	134 3
3-9-8	108.0	108.9	106.9
8-9-4	120.8	122.4	118.9
9-3-2	109.3	108.3	107.0
3-2-1	105.3	110.4	109.7
2-1-8	109.3	108.7	109.2
1-8-9	108.0	103.7	107.3
1-8-7	131.2	139.1	130.5
7-8-9	120.8	117.2	122.2
8-7-6	118.3	116.4	117.5
7-6-5	121.0	122.9	121.2
6-5-4	121.0	121.3	121.1
5-4-9	118.3	119.8	119.1

Table S2. Atomic coordinates for [CAM-B3LYP/6-311G(d,p)] optimized geometry, value of total energy of Indol

6	1.775070	-1.391599	0.000000
6	0.425124	-1.671498	0.000000
6	-0.489982	-0.612269	0.000000
6	0.000000	0.711320	0.000000
6	1.363939	0.998902	0.000000
6	2.240222	-0.066421	0.000000
6	-1.922114	-0.526228	0.000000
6	-2.240980	0.795439	0.000000
7	-1.089311	1.550160	0.000000
1	2.492652	-2.203129	0.000000
1	0.074780	-2.697215	0.000000
1	1.725270	2.020803	0.000000
1	3.307118	0.121768	0.000000
1	-2.621778	-1.346444	0.000000
1	-3.207834	1.273228	0.000000
1	-1.052706	2.553987	0.000000

 $E_{TOT} = -363,702677211$ au

Table S3. Atomic coordinates for [CAM-B3LYP/6-311G(d,p)] optimized geometry, value of total energy of Molecule I.

6	0.000000	0.695670	-2.125095
6	0.000000	1.411130	-0.932481
6	0.000000	0.702831	0.256963
6	0.000000	-0.702831	0.256963
6	0.000000	-1.411130	-0.932481
6	0.000000	-0.695670	-2.125095
5	0.000000	0.000000	2.445277
7	0.000000	-1.133195	1.580293
7	0.000000	1.133195	1.580293
1	0.000000	1.231628	-3.066235
1	0.000000	2.494971	-0.935192
1	0.000000	-2.494971	-0.935192
1	0.000000	-1.231628	-3.066235
1	0.000000	0.000000	3.628185
1	0.000000	-2.110187	1.815769
1	0.000000	2.110187	1.815769

 $E_{TOT} = -367,189195686$ au

Table S4. Atomic coordinates for [CAM-B3LYP/6-311G(d,p)] optimized geometry, value of total energy of Molecule II.

6	-2.227892	-0.044488	0.000000
6	-1.334349	0.978127	0.000000
7	0.000000	0.709251	0.000000
5	0.520154	-0.648085	0.000000
6	-0.481714	-1.769295	0.000000
6	-1.798025	-1.406407	0.000000
6	1.071945	1.604271	0.000000
6	2.217519	0.892430	0.000000
7	1.943309	-0.465925	0.000000
1	-3.284931	0.185491	0.000000
1	-1.634172	2.019601	0.000000
1	-0.235795	-2.825669	0.000000
1	-2.573124	-2.167711	0.000000
1	0.933041	2.672927	0.000000
1	3.226624	1.272983	0.000000
1	2.679510	-1.148309	0.000000

 $E_{TOT} = -367, 16106098$ au

Calculated UV-Vis Spectra (by [CAM-B3LYP/6-311++G(d,p)] with optimized geometry) *Indole*

Excited State 1: Singlet-A'	5.0512 eV	245.46 nm	f=0.0401
Excited State 2: Singlet-A'	5.1020 eV	243.01 nm	f=0.1085
Excited State 3: Singlet-A"	5.1763 eV	239.52 nm	f=0.0031
Excited State 4: Singlet-A"	5.6469 eV	219.56 nm	f=0.0050
Excited State 5: Singlet-A"	5.7458 eV	215.78 nm	f=0.0012
Excited State 6: Singlet-A	5.7731 eV	214.76 nm	f=0.0001
Excited State 7: Singlet-A"	6.1133 eV	202.81 nm	f=0.0072
Excited State 8: Singlet-A'	6.2773 eV	197.51 nm	f=0.5347
Excited State 9: Singlet-A"	6.2786 eV	197.47 nm	f=0.0155
Excited State 10: Singlet-A"	6.3673 eV	194.72 nm	f=0.0029
Excited State 11: Singlet-A"	6.4251 eV	192.97 nm	f=0.0038
Excited State 12: Singlet-A'	6.5405 eV	189.56 nm	f=0.3216
Excited State 13: Singlet-A"	6.6633 eV	186.07 nm	f=0.0047
Excited State 14: Singlet-A'	6.7206 eV	184.48 nm	f=0.0688
Excited State 15: Singlet-A"	6.7966 eV	182.42 nm	f=0.0090
Excited State 16: Singlet-A"	6.8352 eV	181.39 nm	f=0.0003
Excited State 17: Singlet-A'	6.9993 eV	177.14 nm	f=0.0512
Excited State 18: Singlet-A"	7.0525 eV	175.80 nm	f=0.0003
Excited State 19: Singlet-A'	7.1101 eV	174.38 nm	f=0.1932
Excited State 20: Singlet-A"	7.1304 eV	173.88 nm	f=0.0016

Figure S2: UV-Vis spectrum of Indole

External BN Indole I

Excited State 1: Singlet-A1	5.0154 eV	247.21 nm	f=0.1108
Excited State 2: Singlet-B1	5.3816 eV	230.39 nm	f=0.0081
Excited State 3: Singlet-B2	5.5780 eV	222.27 nm	f=0.0043
Excited State 4: Singlet-A2	5.6394 eV	219.85 nm	f=0.0000
Excited State 5: Singlet-B1	5.8765 eV	210.98 nm	f=0.0019
Excited State 6: Singlet-A2	5.9610 eV	207.99 nm	f=0.0000
Excited State 7: Singlet-B1	6.2121 eV	199.58 nm	f=0.0042
Excited State 8: Singlet-A1	6.3460 eV	195.37 nm	f=0.2592
Excited State 9: Singlet-A2	6.3657 eV	194.77 nm	f=0.0000
Excited State 10: Singlet-B2	6.4353 eV	192.66 nm	f=0.3276
Excited State 11: Singlet-B1	6.4664 eV	191.74 nm	f=0.0018
Excited State 12: Singlet-A2	6.4696 eV	191.64 nm	f=0.0000
Excited State 13: Singlet-B1	6.6657 eV	186.00 nm	f=0.0186
Excited State 14: Singlet-A1	6.7733 eV	183.05 nm	f=0.5284
Excited State 15: Singlet-B1	6.8635 eV	180.64 nm	f=0.0129
Excited State 16: Singlet-A2	7.0084 eV	176.91 nm	f=0.0000
Excited State 17: Singlet-A1	7.0955 eV	174.74 nm	f=0.1011
Excited State 18: Singlet-A2	7.1396 eV	173.66 nm	f=0.0000
Excited State 19: Singlet-B2	7.1555 eV	173.27 nm	f=0.0151
Excited State 20: Singlet-B1	7.2384 eV	171.29 nm	f=0.0012

Figure S3: UV-Vis spectrum of I.

Fused BN Indole II

Excited State 1: Singlet-A'	4.8408 eV	256.12 nm	f=0.1600
Excited State 2: Singlet-A'	5.0935 eV	243.41 nm	f=0.0819
Excited State 3: Singlet-A"	5.1629 eV	240.14 nm	f=0.0041
Excited State 4: Singlet-A"	5.5313 eV	224.15 nm	f=0.0025
Excited State 5: Singlet-A"	5.6809 eV	218.25 nm	f=0.0140
Excited State 6: Singlet-A"	5.8460 eV	212.08 nm	f=0.0009
Excited State 7: Singlet-A"	5.9269 eV	209.19 nm	f=0.0043
Excited State 8: Singlet-A"	6.1001 eV	203.25 nm	f=0.0055
Excited State 9: Singlet-A'	6.2266 eV	199.12 nm	f=0.2130
Excited State10: Singlet-A'	6.3480 eV	195.31 nm	f=0.2434
Excited State 11: Singlet-A"	6.3608eV	194.92 nm	f=0.0158
Excited State 12: Singlet-A"	6.3872 eV	194.11 nm	f=0.0008
Excited State 13: Singlet-A"	6.5303 eV	189.86 nm	f=0.0010
Excited State 14: Singlet-A"	6.5853 eV	188.27 nm	f=0.0068
Excited State 15: Singlet-A"	6.6145 eV	187.44 nm	f=0.0013
Excited State 16: Singlet-A'	6.6182 eV	187.34 nm	f=0.0563
Excited State 17: Singlet-A"	6.6529 eV	186.36 nm	f=0.0021
Excited State 18: Singlet-A'	6.8437 eV	181.16 nm	f=0.0210
Excited State 19: Singlet-A'	6.9039 eV	179.59 nm	f=0.2411
Excited State 20: Singlet-A'	7.0657 eV	175.47 nm	f=0.0094

Figure S4: UV-Vis spectrum of II.

Figure S5: Mass spectrum of I.

Figure S6: Mass spectrum of II.

Calculated Mulliken Charges [CAM-B3LYP/6-311G(d,p)]

Calculated Natural Charges [CAM-B3LYP/6-311G(d,p)]

Crystal structure of "fused" BN gramine.

Identification code	C9H14BN3		
Empirical formula	C9 H14 B N3		
Formula weight	175.04		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 10.0589(17) Å	α= 90°.	
	b = 8.5755(14) Å	β=102.345(4)°.	
	c = 11.8802(18) Å	$\gamma = 90^{\circ}$.	
Volume	1001.1(3) Å ³		
Ζ	4		
Density (calculated)	1.161 Mg/m ³		
Absorption coefficient	0.071 mm ⁻¹		
F(000)	376		
Crystal size	0.320 x 0.170 x 0.050 mm ³		
Theta range for data collection	2.073 to 30.486°.		
Index ranges	-14<=h<=13, -12<=k<=11, 0<=l<=16		
Reflections collected	5326		
Independent reflections	2838 [R(int) = 0.0604]		
Completeness to theta = 28.000∞	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7461 and 0.4876		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	2838 / 1 / 123		
Goodness-of-fit on F ²	1.080		
Final R indices [I>2sigma(I)]	R1 = 0.0551, $wR2 = 0.1510$		
R indices (all data)	R1 = 0.0666, wR2 = 0.1576		
Extinction coefficient	na		
Largest diff. peak and hole	0.482 and -0.176 e. Å ⁻³		

Table S5. Crystal data and structure refinement for BN gramine.

-					
	Х	У	Z	U(eq)	
_					
N(1)	4400(1)	-3340(1)	3807(1)	21(1)	
N(2)	3894(1)	-5225(1)	2420(1)	26(1)	
N(3)	7686(1)	-2707(1)	4254(1)	22(1)	
C(1)	4237(1)	-2108(1)	4505(1)	24(1)	
C(2)	2997(1)	-1383(2)	4335(1)	28(1)	
C(3)	1874(1)	-1862(2)	3452(1)	29(1)	
C(4)	1945(1)	-3094(1)	2725(1)	27(1)	
C(5)	5234(1)	-5381(1)	3020(1)	25(1)	
C(6)	5570(1)	-4273(1)	3852(1)	22(1)	
C(7)	6902(1)	-3983(1)	4656(1)	24(1)	
C(8)	8846(1)	-2277(2)	5176(1)	29(1)	
C(9)	8189(1)	-3218(2)	3237(1)	30(1)	
B(1)	3295(1)	-3927(2)	2895(1)	23(1)	

Table S6. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for BN gramine. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1.3740(13)
N(1)-C(6)	1.4147(14)
N(1)-B(1)	1.4654(16)
N(2)-C(5)	1.3898(16)
N(2)-B(1)	1.4378(16)
N(2)-H(2N)	0.881(12)
N(3)-C(8)	1.4663(15)
N(3)-C(9)	1.4737(13)
N(3)-C(7)	1.4859(14)
C(1)-C(2)	1.3690(17)
C(1)-H(1)	0.9500
C(2)-C(3)	1.4278(18)
C(2)-H(2)	0.9500
C(3)-C(4)	1.3767(16)
C(3)-H(3)	0.9500
C(4)-B(1)	1.5092(18)
C(4)-H(4)	0.9500
C(5)-C(6)	1.3607(16)
C(5)-H(5)	0.9500
C(6)-C(7)	1.4906(16)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800

Table S7. Bond lengths [Å] and angles [°] for BN gramine.

C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(1)-N(1)-C(6)	128.16(10)
C(1)-N(1)-B(1)	122.74(10)
C(6)-N(1)-B(1)	109.07(9)
C(5)-N(2)-B(1)	108.34(10)
C(5)-N(2)-H(2N)	124.7(9)
B(1)-N(2)-H(2N)	126.9(9)
C(8)-N(3)-C(9)	109.25(9)
C(8)-N(3)-C(7)	109.74(8)
C(9)-N(3)-C(7)	110.09(9)
C(2)-C(1)-N(1)	118.84(11)
C(2)-C(1)-H(1)	120.6
N(1)-C(1)-H(1)	120.6
C(1)-C(2)-C(3)	122.07(11)
C(1)-C(2)-H(2)	119.0
C(3)-C(2)-H(2)	119.0
C(4)-C(3)-C(2)	122.83(11)
С(4)-С(3)-Н(3)	118.6
С(2)-С(3)-Н(3)	118.6
C(3)-C(4)-B(1)	116.45(11)
C(3)-C(4)-H(4)	121.8
B(1)-C(4)-H(4)	121.8
C(6)-C(5)-N(2)	111.63(10)
C(6)-C(5)-H(5)	124.2

N(2)-C(5)-H(5)	124.2
C(5)-C(6)-N(1)	106.99(10)
C(5)-C(6)-C(7)	129.17(11)
N(1)-C(6)-C(7)	123.79(10)
N(3)-C(7)-C(6)	112.54(9)
N(3)-C(7)-H(7A)	109.1
C(6)-C(7)-H(7A)	109.1
N(3)-C(7)-H(7B)	109.1
C(6)-C(7)-H(7B)	109.1
H(7A)-C(7)-H(7B)	107.8
N(3)-C(8)-H(8A)	109.5
N(3)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
N(3)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
N(3)-C(9)-H(9A)	109.5
N(3)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
N(3)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
N(2)-B(1)-N(1)	103.97(10)
N(2)-B(1)-C(4)	138.97(11)
N(1)-B(1)-C(4)	117.06(10)

Symmetry transformations used to generate equivalent atoms:

	<u></u>	<u></u>	<u></u>		<u></u>		
	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}	
N(1)	30(1)	19(1)	16(1)	1(1)	9(1)	0(1)	
N(2)	36(1)	24(1)	18(1)	-3(1)	7(1)	-3(1)	
N(3)	30(1)	23(1)	16(1)	0(1)	9(1)	-1(1)	
C(1)	35(1)	22(1)	17(1)	-1(1)	10(1)	-3(1)	
C(2)	38(1)	24(1)	25(1)	-2(1)	14(1)	2(1)	
C(3)	32(1)	29(1)	29(1)	5(1)	12(1)	3(1)	
C(4)	30(1)	29(1)	22(1)	3(1)	6(1)	-3(1)	
C(5)	35(1)	22(1)	20(1)	0(1)	11(1)	1(1)	
C(6)	30(1)	20(1)	18(1)	2(1)	10(1)	0(1)	
C(7)	33(1)	22(1)	18(1)	3(1)	9(1)	1(1)	
C(8)	34(1)	31(1)	22(1)	-3(1)	7(1)	-2(1)	
C(9)	36(1)	35(1)	21(1)	-4(1)	14(1)	-2(1)	
B(1)	33(1)	22(1)	16(1)	2(1)	8(1)	-2(1)	

Table S8. Anisotropic displacement parameters (Å²x 10³) for BN gramine. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	у	Z	U(eq)	
H(2N)	3497(13)	-5829(16)	1845(11)	31	
H(1)	4971	-1766	5095	28	
H(2)	2881	-536	4820	33	
H(3)	1041	-1305	3363	35	
H(4)	1185	-3403	2146	32	
H(5)	5840	-6164	2867	30	
H(7A)	6739	-3711	5425	28	
H(7B)	7449	-4952	4737	28	
H(8A)	9448	-3179	5375	43	
H(8B)	8515	-1943	5856	43	
H(8C)	9349	-1420	4914	43	
H(9A)	8668	-2353	2956	45	
H(9B)	7419	-3543	2629	45	
H(9C)	8816	-4097	3448	45	

Table S9. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for BN gramine.

C(6)-N(1)-C(1)-C(2)	-178.16(10)
B(1)-N(1)-C(1)-C(2)	-0.84(15)
N(1)-C(1)-C(2)-C(3)	-0.37(17)
C(1)-C(2)-C(3)-C(4)	1.14(18)
C(2)-C(3)-C(4)-B(1)	-0.62(16)
B(1)-N(2)-C(5)-C(6)	-0.47(12)
N(2)-C(5)-C(6)-N(1)	0.19(12)
N(2)-C(5)-C(6)-C(7)	-177.54(9)
C(1)-N(1)-C(6)-C(5)	177.77(9)
B(1)-N(1)-C(6)-C(5)	0.16(11)
C(1)-N(1)-C(6)-C(7)	-4.35(16)
B(1)-N(1)-C(6)-C(7)	178.04(9)
C(8)-N(3)-C(7)-C(6)	169.08(9)
C(9)-N(3)-C(7)-C(6)	-70.63(12)
C(5)-C(6)-C(7)-N(3)	98.45(13)
N(1)-C(6)-C(7)-N(3)	-78.94(11)
C(5)-N(2)-B(1)-N(1)	0.53(11)
C(5)-N(2)-B(1)-C(4)	-178.75(13)
C(1)-N(1)-B(1)-N(2)	-178.19(8)
C(6)-N(1)-B(1)-N(2)	-0.42(11)
C(1)-N(1)-B(1)-C(4)	1.28(15)
C(6)-N(1)-B(1)-C(4)	179.05(9)
C(3)-C(4)-B(1)-N(2)	178.70(12)
C(3)-C(4)-B(1)-N(1)	-0.52(15)

Table S10. Torsion angles [°] for BN gramine.

Symmetry transformations used to generate equivalent atoms:

Table S11. Hydrogen bonds for BN gramine [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2N)N(3)#1	0.881(12)	2.248(13)	3.1079(14)	165.2(12)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1/2

NMR Spectra

S25

