Facile Synthesis of Saponins Containing 2,3-Branched Oligosaccharides by Using Partially Protected Glycosyl Donors Guofeng Gu¹, Yuguo Du^{*1} and Robert J. Linhardt^{*2}

¹Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and ²Department of Chemistry, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Supporting Information

Contents:

S 1	Table of Contents
S 3	General Methods
S 3	Experimental procedures and analytical data for compound 3
S 4	Experimental procedures and analytical data for compounds 5, 6
S 5	Experimental procedures and analytical data for compounds 7, 12
S 6	Experimental procedures and analytical data for compounds 12a, 13
S 7	Experimental procedures and analytical data for compounds 8, 1
S 8	General procedures for compounds 16,19,24,27 and analytical data for 16
S 9	Analytical data for compounds 19,24,27
S 10	Experimental procedures and analytical data for compound 25, 28
S 11	Experimental procedures and analytical data for compound 2
S12	¹ H NMR spectrum of 3
S13	¹ H NMR spectrum of 4
S14	¹ H NMR spectrum of 5
S15	¹ H NMR spectrum of 6

S16	¹ H NMR spectrum of 7
S17	¹ H NMR spectrum of 12
S18	¹ H NMR spectrum of 12a
S19	¹ H NMR spectrum of 13
S20	¹ H NMR spectrum of 8
S21	¹³ C NMR spectrum of 8
S22	¹ H NMR spectrum of 1
S23	¹ H NMR spectrum of 16
S24	¹ H NMR spectrum of 19
S25	¹ H NMR spectrum of 24
S26	¹ H NMR spectrum of 25
S27	¹ H NMR spectrum of 27
S28	¹ H NMR spectrum of 28
S29	¹³ C NMR spectrum of 28
S30	¹ H NMR spectrum of 2

General Methods. Optical rotations were determined at 20 °C with an automatic polarimeter. ¹H, ¹³C NMR and ¹H-¹C COSY spectra were recorded at 400 MHz in CDCl₃ or pyridine- d_6 . Chemical shifts are given in ppm downfield from internal Me₄Si. Mass spectra were measured using MALTI-TOF-MS with dihydroxybenzoic acid (DHB) as matrix. Thin layer chromatography (TLC) was performed on silica gel HF₂₅₄ with detection by charring with 30% (v/v) H₂SO₄ in MeOH or in some cases by a UV detector.

Isopropyl 4,6-di-*O*-benzylidene-1-thio-β-D-galactopyranoside (3).

To a solution of isopropyl 1-thio- β -D-galactopyranoside (2.0 g, 8.40 mmol) and PhCH(OMe)₂ (1.54 g, 10.1 mmol) in DMF (10 mL) at 0 °C was added catalytic amount of camphorsulfonic acid (CSA) until the pH of the solution reached pH 2-3. The reaction mixture was stirred at rt overnight, neutralized with triethylamine, diluted with ethyl acetate (100 mL), then washed with brine, dried over anhydrous MgSO₄, and concentrated. Column chromatography of the crude product on a silica gel column (1:1 petroleum ether/EtOAc) gave **3** as a white solid (2.24 g, 82%); [α]²⁰ D -62° (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.34, 1.38 (2 d, 2×3 H, *J* = 6.9 Hz), 3.24-3.32 (m, 1 H), 3.53 (d, 1 H, *J* = 1.2 Hz), 3.68 (dd, 1 H, *J* = 9.3, 3.6 Hz), 3.77 (t, 1 H, *J* = 9.3 Hz), 4.02 (d, 1 H, *J* = 12.5 Hz), 4.24 (br s, 1 H), 4.33 (d, 1 H, *J* = 12.5 Hz), 4.40 (d, 1 H, *J* = 9.3 Hz), 5.53 (s, 1 H), 7.35-7.51 (m, 5 H). Anal. Calcd for C₁₆H₂₂O₅S: C, 58.87; H, 6.79%. Found: C, 58.72; H, 6.85%.

Isopropyl3-O-fluorenylmethoxycarbonyl-4,6-di-O-benzylidene-1-thio-β-D-
galactopyranoside (4).

To a solution of compound **3** (2.15 g, 6.60 mmol) in pyridine (15 mL) at 0 °C was added FmocCl (2.05 g, 7.92 mmol) and catalytic amount of DMAP (60 mg). The reaction mixture was stirred at rt for 16 h, then co-evaporated with toluene under diminished pressure to remove pyridine. The residue was purified on a silica gel column with 4:1 petroleum ether/EtOAc as the eluent to afford **4** as a white solid (3.15 g, 87%); $[\alpha]^{20}_{D}$ +31° (*c* 1.8, CHCl₃); ¹H NMR (CDCl₃): δ 1.36, 1.39 (2 d, 2×3 H, *J* = 6.9 Hz), 3.45-3.35 (m, 1 H), 3.53

(d, 1 H, J = 1.0 Hz), 4.02 (dd, 1 H, J = 12.5, 1.7 Hz), 4.12 (t, 1 H, J = 9.6 Hz), 4.29 (t, 1 H, J = 7.6 Hz), 4.34 (dd, 1 H, J = 12.5, 1.5 Hz), 4.43-4.46 (m, 3 H), 4.49 (d, 1 H, J = 9.6 Hz), 4.77 (dd, 1 H, J = 9.6, 3.5 Hz), 5.50 (s, 1 H), 7.21-7.76 (m, 13 H). Anal. Calcd for $C_{31}H_{32}O_7S$: C, 67.86; H, 5.88%. Found: C, 67.99; H, 5.80%.

Diosgenyl 3-*O*-fluorenylmethoxycarbonyl-4,6-di-*O*-benzylidene-β-D-galactopyranoside (5).

To a solution of compound 4 (1.1 g, 2.01 mmol) and diosgenin (833 mg, 2.01 mmol) in anhydrous CH₂Cl₂ (10 mL), NIS (497 mg, 2.21 mmol) and catalytic amount of TMSOTF (36 μ L, 0.2 mmol) were added at - 42 °C under a N₂ protection. The mixture was stirred under these conditions for 45 min, at the end of which time TLC indicated the reaction was complete. The reaction mixture was neutralized with Et₃N and concentrated to dryness. The residue was subject to column chromatography on a silica gel column with 5:1 petroleum ether/EtOAc as the eluent to give **5** as a white solid (1.34 g, 75%); [α]²⁰_D -34° (*c* 1.3, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, *J* = 6.2 Hz), 0.89-0.96 (m, 2 H), 0.97 (d, 3 H, *J* = 6.9 Hz), 1.03 (s, 3 H), 1.04-2.38 (m, 22 H), 3.37 (t, 1 H, *J* = 10.9 Hz), 3.46-3.50 (m, 2 H), 3.55-3.66 (m, 1 H), 4.04-4.09 (m, 2 H), 4.27-4.34 (m, 2 H), 4.35-4.50 (m, 5 H), 4.75 (dd, 1 H, *J* = 10.2, 3.7 Hz), 5.34 (br d, 1 H, *J* = 5.6 Hz), 5.51 (s, 1 H), 7.42-8.11 (13 H, *Ph*). Anal. Calcd for C₅₅H₆₆O₁₀: C, 74.47; H, 7.50%. Found: C, 74.69; H, 7.41%.

Diosgenyl 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-3-*O*-fluorenylmethoxycarbonyl-4,6-di-*O*-benzylidene- β -D-galactopyranoside (6).

To a mixture of compound **5** (443 mg, 0.50 mmol) and fully acetylated rhamnose imidate **9** (222 mg, 0.51 mmol) in anhydrous CH₂Cl₂ (5 mL) at 0 °C was added TMSOTf (9 μ L, 0.05 mmol) under a N₂ protection. The reaction mixture was stirred for 1 h, at the end of which time TLC indicated the completion of the reaction. The reaction was neutralized with Et₃N, concentrated, and subjected to a silica gel column with 4:1 petroleum ether/EtOAc as the eluent to give **6** as a white solid (510 mg, 88%); [α]²⁰ _D -74° (*c* 0.25, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, *J* = 4.3 Hz), 0.95 (d, 3 H, *J* = 5.9 Hz), 1.03 (s, 3 H), 1.23 (d,

3 H, J = 6.2 Hz), 1.96, 2.01, 2.02 (3 s, 3×3 H), 3.38 (t, 1 H, J = 10.9 Hz), 3.45-3.50 (m, 2 H), 3.61-3.72 (m, 1 H), 4.06 (d, 1 H, J = 11.7 Hz), 4.17 (dd, 1 H, J = 9.9, 7.6 Hz), 4.24-4.39 (m, 3 H), 4.40-4.45 (m, 2 H), 4.49-4.58 (m, 2 H), 4.61 (d, 1 H, J = 7.6 Hz), 4.83 (dd, 1 H, J = 9.9, 3.6 Hz), 5.08 (t, 1 H, J = 9.9 Hz), 5.16 (d, 1 H, J = 1.4 Hz), 5.25-5.30 (m, 2 H), 5.39 (d, 1 H, J = 5.0 Hz), 5.50 (s, 1 H), 7.20-7.76 (m, 13 H). Anal. Calcd for C₆₇H₈₂O₁₇: C, 69.41; H, 7.13%. Found: C, 69.63; H, 7.09%.

Diosgenyl 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -4,6-di-*O*-benzylidene- β -D-galactopyranoside (7).

To a solution of compound **6** (430 mg, 0.37 mmol) in CH₂Cl₂ (5 mL) was added triethylamine (1 mL, 7.2 mmol). The reaction mixture was stirred at rt for 2 h, concentrated to dryness under reduced pressure. Purification of the residue on a silica gel column (3:2 petroleum ether/EtOAc) furnished **7** as a foam (333 mg, 96%); $[\alpha]^{20}_{D}$ -95° (*c* 0.75, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, *J* = 5.0 Hz), 0.97 (d, 3 H, *J* = 6.9 Hz), 1.07 (s, 3 H), 1.21 (d, 3 H, *J* = 6.2 Hz), 1.98, 2.00, 2.12 (3 s, 3×3 H), 3.37 (t, 1 H, *J* = 10.9 Hz), 3.45-3.50 (m, 2 H), 3.58-3.67 (m, 1 H), 3.75-3.85 (m, 2 H), 4.07 (d, 1 H, *J* = 12.3 Hz), 4.16 (d, 1 H, *J* = 2.4 Hz), 4.31 (d, 1 H, *J* = 12.4 Hz), 4.41 (q, 1 H, *J* = 7.5 Hz), 4.47-4.54 (m, 2 H), 5.07 (t, 1 H, *J* = 10.0 Hz), 5.28 (dd, 1 H, *J* = 10.0, 3.4 Hz), 5.32 (d, 1 H, *J* = 1.6 Hz), 5.36 (dd, 1 H, *J* = 3.4, 1.6 Hz), 5.39 (d, 1 H, *J* = 5.0 Hz), 5.54 (s, 1 H), 7.36-7.51 (m, 5 H). Anal. Calcd for C₅₂H₇₂O₁₅: C, 66.65; H, 7.74%. Found: C, 66.93; H, 7.67%.

Isopropyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -4,6-di-*O*-benzylidene -1-thio- β -D-galactopyranoside (12).

To a mixture of compound **3** (326 mg, 1.0 mmol), fully benzoylated glucose imidate **10** (760 mg, 1.02 mmol), and 4 Å MS (150 mg) in anhydrous CH₂Cl₂ (6 mL) at 0 °C was added TMSOTf (18 μ L, 0.1 mmol) under a N₂ protection. The reaction mixture was stirred for 1 h, neutralized with Et₃N, and filtered. The filtrates were concentrated, and the residue was subjected to a silica gel column with 4:1 petroleum ether/EtOAc as the eluent to afford **12** as a foam (776 mg, 86%); [α]²⁰ _D -87° (*c* 0.25, CHCl₃); ¹H NMR (CDCl₃): δ 1.25, 1.31 (2 d, 2×3 H, *J* = 6.9 Hz), 3.14-3.21 (m, 1 H), 3.27 (br s, 1 H), 3.75 (dd, 1 H, *J* = 9.4, 3.2

Hz), 3.83 (dd, 1 H, J = 11.8, 1.3 Hz), 3.90 (t, 1 H, J = 9.4 Hz), 4.16-4.24 (m, 2 H), 4.25 (d, 1 H, J = 3.2 Hz), 4.33 (d, 1 H, J = 9.4 Hz), 4.54 (dd, 1 H, J = 12.2, 5.7 Hz), 4.68 (dd, 1 H, J = 12.2, 2.8 Hz), 5.39 (s, 1 H), 5.40 (d, 1 H, J = 7.8 Hz), 5.58 (t, 1 H, J = 9.6, 7.8 Hz), 5.68 (t, 1 H, J = 9.6 Hz), 5.92 (t, 1 H, J = 9.6 Hz), 7.25-7.94 (m, 25 H). Anal. Calcd for C₅₀H₄₈O₁₄S: C, 66.36; H, 5.35%. Found: C, 66.57; H, 5.28%.

Isopropyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-bezylidiene-1-thio- β -D-galactopyranoside (12a).

To a solution of compound **12** (54 mg, 0.06 mmol) in pyridine (1 mL) was added Ac₂O (0.5 mL). The reaction mixture was stirred at rt for 3 h, then co-evaporated with toluene under diminished pressure to remove pyridine, and purified the residue by silica-gel column chromatography (2:1 petroleum ether–EtOAc) to give quantitative yield of **12a** as a syrup; $[\alpha]^{20}_{D}$ +9° (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 1.15, 1.33 (2 d, 2×3 H, *J* = 6.9 Hz), 1.49 (s, 3 H), 3.15-3.27 (m, 2 H), 3.70-3.79 (m, 2 H), 4.09-4.21 (m, 2 H), 4.32-4.37 (m, 2 H), 4.56 (dd, 1 H, *J* = 12.2, 5.1 Hz), 4.73 (dd, 1 H, *J* = 12.2, 2.9 Hz), 5.08 (d, 1 H, *J* = 7.6 Hz), 5.31 (t, 1 H, *J* = 9.6 Hz), 5.39 (s, 1 H), 5.52 (dd, 1 H, *J* = 9.6, 7.6 Hz), 5.68 (t, 1 H, *J* = 9.6 Hz), 5.92 (t, 1 H, *J* = 9.6 Hz), 7.25-7.94 (m, 25 H). Anal. Calcd for C₅₂H₅₀O₁₅S: C, 65.95; H, 5.32%. Found: C, 66.13; H, 5.38%.

Diosgenyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4,6-di-*O*-benzylidene- β -D-galactopyranoside (13).

To a solution of compound **12** (452 mg, 0.50 mmol) and diosgenin (207 mg, 0.50 mmol) in anhydrous dichloromethane (8 mL), NIS (124 mg, 0.55 mmol) and catalytic amount of TMSOTf (11 μ L, 0.06 mmol) were added at - 42 °C under a N₂ protection. The reaction mixture was stirred under these conditions for 45 min, at the end of which time TLC indicated the completion of the reaction. The mixture was then neutralized with Et₃N, and concentrated. The residue was subject to column chromatography on a silica gel column with 3:1 petroleum ether/EtOAc as the eluent to give **13** as a white solid (391 mg, 63%); [α]²⁰_D -24° (*c* 1, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, *J* = 6.3 Hz), 0.97 (d, 3 H, *J* = 6.9 Hz), 1.00 (s, 3 H), 3.23 (br s, 1 H), 3.37 (t, 1 H, *J* = 10.9 Hz), 3.45-3.57 (m, 2 H),

3.74 (dd, 1 H, J = 9.6, 3.3 Hz), 3.81-3.88 (m, 2 H), 4.15-4.22 (m, 3 H), 4.33 (d, 1 H, J = 7.6 Hz), 4.39 (q, 1 H, J = 7.5 Hz), 4.53 (dd, 1 H, J = 12.2, 5.3 Hz), 4.68 (dd, 1 H, J = 12.2, 3.0 Hz), 5.32 (d, 1 H, J = 5.0 Hz), 5.38 (d, 1 H, J = 7.9 Hz), 5.40 (s, 1 H), 5.57 (dd, 1 H, J = 9.6, 7.9 Hz), 5.69 (t, 1 H, J = 9.6 Hz), 5.91 (t, 1 H, J = 9.6 Hz), 7.25-8.05 (m, 25 H). Anal. Calcd for C₇₄H₈₂O₁₇: C, 71.48; H, 6.65%. Found: C, 71.69; H, 6.48%.

Diosgenyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$]-4,6-di-*O*-benzylidene- β -D-galactopyranoside (8).

The mixture of compound 13 (323 mg, 0.26 mmol) and fully acetylated rhamnose imidate 9 (126 mg, 0.29 mmol) was dissolved in anhydrous CH₂Cl₂ (4 mL). To the solution was added TMSOTf (5.5 µL, 0.03 mmol) at 0 °C under a N₂ protection. The reaction mixture was stirred for 1.5 h, neutralized with Et₃N, and concentrated to dryness. Purification of the residue by silica-gel column chromatography with 3:1 petroleum ether/EtOAc as the eluent to afford **8** as a foam (329 mg, 84%); $[\alpha]^{20}$ -44° (*c* 1, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, J = 6.3 Hz), 0.97 (d, 3 H, J = 6.9 Hz), 1.01 (s, 3 H), 1.10 (d, 3 H, J = 5.9 Hz), 2.02 (s, 3 H), 2.08 (s, 6 H), 3.20 (br s, 1 H), 3.38 (t, 1 H, J = 10.9 Hz), 3.45-3.62 (m, 2 H), 3.91-4.06 (m, 2 H), 4.07 (dd, 1 H, J = 9.6, 3.6 Hz), 4.18-4.22 (m, 2 H), 4.25-4.30 (m, 1 H), 4.37 (d, 1 H, J = 7.7 Hz), 4.39-4.47 (m, 2 H), 4.56 (dd, 1 H, J = 12.3, 4.2 Hz), 4.73 (dd, 1 H, J = 12.2, 3.3 Hz, 5.06 (t, 1 H, J = 10.0 Hz), 5.23 (br s, 1 H), 5.27 (d, 1 H, J = 7.8 Hz), 5.34 (dd, 1 H, J = 10.0, 3.6 Hz), 5.36-3.91 (m, 3 H), 5.55 (dd, 1 H, J = 9.4, 7.8 Hz), 5.78 (t, 1 H, J = 9.4 Hz), 5.91 (t, 1 H, J = 9.4 Hz), 7.20-8.09 (m, 25 H); Selected ¹³C NMR (CDCl₃): δ 14.5, 16.2, 17.1 (2 C), 19.2, 20.8 (3 C), 28.8, 29.4, 30.2, 31.3, 31.4, 31.8, 32.1, 36.9, 37.2, 38.2, 39.7, 40.2, 41.6, 50.1, 56.2, 56.5, 62.1, 62.6, 66.2, 66.3, 66.8, 68.9, 69.0, 69.7, 70.1, 71.4, 72.2, 72.4, 72.9, 73.0, 75.8, 76.9, 77.6, 80.8, 96.8 (C-1^{II}), 98.9 (C-1^I), 99.1 (C-1^{III}), 100.4, 109.2, 121.6, 140.5, 165.2, 165.4, 165.5, 165.9, 169.98, 170.05, 170.4. Anal. Calcd for C₈₆H₉₈O₂₄: C, 68.15; H, 6.52%. Found: C, 68.41; H, 6.46%.

Diosgenyl β -D-glucopyranosyl- $(1 \rightarrow 3)$ - $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 2)$]- β -D-galactopyranoside (1).

A solution of compound 8 (256 mg, 0.17 mmol) in 80% AcOH (20 mL) was stirred at 70

^oC for 3 h. The solvent was removed under reduced pressure to give a residue, which was dissolved in a solution of MeOH-CH₂Cl₂ (2:1, 9 mL). To the above solution was added aqueous 1 N NaOH until pH 9-10 was reached. The reaction mixture was stirred at rt for 6 h, then neutralized with Amberlite IR-120 (H⁺). The solvents were filtered, and the filtrate was concentrated. The residue was subjected to a silica gel column with CH₂Cl₂/MeOH (5:2) as the eluent to give **1** as a white solid (122 mg, 81%); Selected ¹H NMR (pyridine-*d*₆): δ 0.69 (d, 3 H, *J* = 5.1 Hz), 0.86 (s, 3 H), 1.04 (s, 3 H), 1.13 (d, 3 H, *J* = 6.9 Hz), 1.69 (d, 3 H, *J* = 6.1 Hz), 3.49-3.60 (m, 2 H), 3.92-4.04 (m, 4 H), 4.18-4.26 (m, 3 H), 4.27-4.40 (m, 4 H), 4.47 (dd, 1 H, *J* = 11.8, 2.2 Hz), 4.52 (q, 1 H, *J* = 7.5 Hz), 4.60 (dd, 1 H, *J* = 9.2, 3.2 Hz), 4.68 (t, 1 H, *J* = 8.0 Hz), 4.80 (d, 1 H, *J* = 2.4 Hz), 4.90-4.92 (m, 2 H), 4.94 (d, 1 H, *J* = 7.9 Hz), 5.20 (d, 1 H, *J* = 7.8 Hz), 5.32 (d, 1 H, *J* = 4.2 Hz), 6.30 (s, 1 H). MALDITOF-MS found for C₄₅H₇₂O₁₇: 907.5 [M + Na]⁺. Anal. Calcd for C₄₅H₇₂O₁₇: C, 61.07; H, 8.20%. Found: C, 60.92; H, 8.32%.

General procedure for preparation of compounds 16, 19, 24 and 27.

To a mixture of glycosyl acceptor (0.10 mmol), glycosyl donor (0.1 mmol), and 4 Å MS in anhydrous CH₂Cl₂ (3 mL) at 0 °C was added TMSOTf (2 μ L, 0.01 mmol) under a N₂ protection. The reaction mixture was stirred for 2 h, at the end of which time TLC indicated glycosyl donor was completely consumed. The reaction mixture was neutralized with Et₃N, and filtered. The filtrates were concentrated, and the crude product was then dissolved in pyridine-acetic anhydride (1.5 mL, v/v 2:1). The resulting mixture was stirred at rt for 2 h, then co-evaporated with toluene under reduced pressure to remove pyridine. Purification of the residue by silica-gel column chromatography (3:1~2:1 petroleum ether–EtOAc) gave desired products.

Isopropyl 2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl- $(1 \rightarrow 2)$ -3-*O*-acetyl-4,6-di-*O*bezylidiene-1-thio-β-D-galactopyranoside (16)

Yield: 54%; $[\alpha]^{20}_{D}$ -23° (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 1.30, 1.37 (2 d, 2×3 H, *J* = 6.9 Hz), 2.00, 2.01, 2.03, 2.16 (4 s, 4×3 H), 3.27-3.40 (m, 2 H), 3.48 (br s, 1 H), 3.99 (dd, 1 H, *J* = 12.5, 1.6 Hz), 4.16 (t, 1 H, *J* = 9.6 Hz), 4.25 (dd, 1 H, *J* = 12.1, 5.1 Hz), 4.31 (dd, 1 H, *J*

= 12.5, 1.3 Hz), 4.34 (d, 1 H, J = 3.5 Hz), 4.52 (d, 1 H, J = 9.6 Hz), 4.83 (d, 1 H, J = 6.9 Hz), 4.93 (dd, 1 H, J = 9.6, 3.5 Hz), 4.96 (dd, 1 H, J = 8.7, 6.9 Hz), 4.98-5.04 (m, 1 H), 5.10 (t, 1 H, J = 8.7 Hz), 5.46 (s, 1 H), 7.36-7.52 (m, 5 H). Anal. Calcd for C₂₉H₃₈O₁₃S: C, 55.58; H, 6.11%. Found: C, 55.26; H, 6.21%.

Isopropyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -3-*O*-acetyl-4,6-di-*O*-benzylidene-1-thio- β -D-galactopyranoside (19).

Yield: 65%; $[\alpha]^{20}_{D}$ -38° (*c* 0.75, CHCl₃); ¹H NMR (CDCl₃): δ 1.35, 1.44 (2 d, 2×3 H, *J* = 6.9 Hz), 1.99 (s, 3 H), 3.38-3.45 (m, 1 H), 3.48 (br s, 1 H), 3.84 (dd, 1 H, *J* = 12.9, 4.2 Hz), 3.98 (dd, 1 H, *J* = 12.4, 1.4 Hz), 4.28-4.35 (m, 2 H), 4.40 (d, 1 H, *J* = 3.4 Hz), 4.58 (d, 1 H, *J* = 9.6 Hz), 4.86 (dd, 1 H, *J* = 9.5, 3.4 Hz), 4.90 (dd, 1 H, *J* = 12.9, 3.4 Hz), 5.28 (d, 1 H, *J* = 3.9 Hz), 5.29-5.35 (m, 2 H), 5.58 (s, 1 H), 5.68 (t, 1 H, *J* = 5.7 Hz), 7.27-8.09 (m, 20 H). Anal. Calcd for C₄₄H₄₄O₁₃S: C, 65.01; H, 5.46%. Found: C, 65.36; H, 5.38%.

Isopropyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-chloroacetyl-4,6-di-*O*-benzylidene-1-thio- β -D-glucopyranoside (24).

Yield: 83%; ¹H NMR (CDCl₃): δ 1.23, 1.25 (2 d, 2×3 H, *J* = 6.9 Hz), 3.09-3.12 (m, 1 H), 3.46-3.52 (m, 1 H), 3.69-3.89 (m, 5 H), 4.10 (t, 1 H, *J* = 9.1 Hz), 4.27 (dd, 1 H, *J* = 12.1, 4.2 Hz), 4.31 (d, 1 H, *J* = 10.5, 4.9 Hz), 4.47 (dd, 1 H, *J* = 12.1, 3.4 Hz), 4.51 (d, 1 H, *J* = 10.2 Hz), 5.07 (t, 1 H, *J* = 9.1 Hz), 5.10 (d, 1 H, *J* = 7.8 Hz), 5.47 (dd, 1 H, *J* = 9.6, 7.8 Hz), 5.61 (s, 1 H), 5.65 (t, 1 H, *J* = 9.6 Hz), 5.82 (t, 1 H, *J* = 9.6 Hz), 7.36-7.52 (m, 5 H). Anal. Calcd for C₅₂H₄₉ClO₁₅S: C, 63.64; H, 5.03%. Found: C, 63.91; H, 4.95%.

Diosgenyl 2,3,4-tri-*O*-acetyl-β-D-xylopyranosyl-(1→2)-3-*O*-acetyl-4,6-di-*O*-bezylidiene -1-thio-β-D-galactopyranoside (27).

Yield: 51%; $[\alpha]^{20}_{D}$ -242° (*c* 0.25, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.79 (d, 6 H, *J* = 6.1 Hz), 0.97 (d, 3 H, *J* = 6.9 Hz), 1.03 (s, 3 H), 2.00, 2.02, 2.07, 2.11 (4 s, 4×3 H), 3.34-3.50 (m, 4 H), 3.53-3.61 (m, 1 H), 4.01 (dd, 1 H, *J* = 11.4, 1.4 Hz), 4.07 (dd, 1 H, *J* = 10.1, 7.7 Hz), 4.23-4.33 (m, 3 H), 4.40 (q, 1 H, *J* = 7.4 Hz), 4.53 (d, 1 H, *J* = 7.7 Hz), 4.82-4.98 (m, 4 H), 5.09 (t, 1 H, *J* = 7.9 Hz), 5.34 (br d, 1 H, *J* = 5.3 Hz), 5.46 (s, 1 H),

7.34-7.50 (m, 5 H). Anal. Calcd for $C_{53}H_{72}O_{16}$: C, 65.96; H, 7.52%. Found: C, 66.28; H, 7.55%.

Diosgenyl 4,6-di-*O*-benzylidene-1-thio-β-D-galactopyranoside (25).

To a solution of compound **5** (150 mg, 0.17 mmol) in CH₂Cl₂ (3 mL) was added triethylamine (0.5 mL, 3.6 mmol). The reaction mixture was stirred at rt for 2 h, concentrated to dryness under diminished pressure. Purification of the residue on a silica gel column (1:1 petroleum ether/EtOAc) furnished **25** as a white solid (108 mg, 97%); $[\alpha]^{20}_{D}$ -133° (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 0.78-0.80 (m, 6 H), 0.89-0.96 (m, 2 H), 0.97 (d, 3 H, *J* = 6.9 Hz), 1.03 (s, 3 H), 1.04-2.38 (m, 22 H), 3.37 (t, 1 H, *J* = 10.9 Hz), 3.46-3.50 (m, 2 H), 3.58-3.66 (m, 1 H), 3.67-3.75 (m, 2 H), 4.07 (dd, 1 H, *J* = 12.5, 1.5 Hz), 4.20 (d, 1 H, *J* = 2.6 Hz), 4.31 (dd, 1 H, *J* = 12.5, 1.0 Hz), 4.02-4.45 (m, 2 H), 5.36 (d, 1 H, *J* = 5.1 Hz), 5.54 (s, 1 H), 7.35-7.52 (m, 5 H). Anal. Calcd for C₄₀H₅₆O₈: C, 72.26; H, 8.49%. Found: C, 72.41; H, 8.38%.

Diosgenyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$]-4,6-di-*O*-benzylidene- β -D-galactopyranoside (28).

The mixture of compound 7 (206 mg, 0.22 mmol) and fully benzoylated xylose imidate 17 (150 mg, 0.25 mmol) was dissolved in anhydrous CH₂Cl₂ (4 mL). To the solution was added TMSOTf (5 μ L, 0.03 mmol) at 0 °C under a N₂ protection. The reaction mixture was stirred for 2 h, neutralized with Et₃N, and concentrated to dryness. The residue was subjected to a silica gel column with 3:1 petroleum ether/EtOAc as the eluent to give **28** as a foam (238 mg, 78%); [α]²⁰ $_{\rm D}$ -102° (*c* 0.5, CHCl₃); Selected ¹H NMR (CDCl₃): δ 0.78 (d, 6 H, *J* = 4.9 Hz), 0.96 (d, 3 H, *J* = 6.9 Hz), 1.02 (s, 3 H), 1.10 (d, 3 H, *J* = 6.1 Hz), 1.87, 1.94, 2.03 (3 s, 3×3 H), 3.36 (t, 1 H, *J* = 10.9 Hz), 3.40-3.48 (m, 2 H), 3.54-3.62 (m, 1 H), 3.85 (dd, 1 H, *J* = 12.9, 1.1 Hz), 3.91 (dd, 1 H, *J* = 9.6, 3.5 Hz), 4.06-4.4.14 (m, 2 H), 4.31 (dd, 1 H, *J* = 11.9, 1.0 Hz), 4.40 (q, 1 H, *J* = 8.0 Hz), 4.46 (d, 1 H, *J* = 3.5 Hz), 4.47-4.53 (m, 1 H), 4.57 (d, 1 H, *J* = 7.7 Hz), 4.69 (dd, 1 H, *J* = 12.9, 2.1 Hz), 4.97 (t, 1 H, *J* = 9.9 Hz), 5.07 (d, 1 H, *J* = 3.0 Hz), 5.20 (d, 1 H, *J* = 1.1 Hz), 5.24-5.30 (m, 3 H), 5.29 (dd, 1 H, *J* = 3.3, 1.1 Hz), 5.38 (d, 1 H, *J* = 5.1 Hz), 5.53 (s, 1 H), 5.64 (t, 1 H, *J* = 3.2 Hz), 7.08-8.06

(m, 20 H); Selected ¹³C NMR (CDCl₃): δ 14.5, 16.2, 17.1, 17.1, 19.3, 20.5, 20.76, 20.80 (2 C), 28.8, 29.4, 30.2, 31.35, 31.38, 31.8, 32.1, 36.9, 37.2, 38.2, 39.7, 40.2, 41.6, 50.1, 56.4, 58.8, 62.1, 65.9, 66.2, 66.3, 66.8, 67.0, 68.3, 69.0, 69.2, 69.9, 71.5, 71.8, 75.9, 77.9, 80.8, 83.5, 97.1 (C-1^{II}), 99.0 (C-1^I), 100.0 (C-1^{III}), 100.8, 109.2, 121.8, 140.4, 164.6, 165.0, 165.5, 169.9 (2 C), 170.0. Anal. Calcd for C₇₈H₉₂O₂₂: C, 67.81; H, 6.71%. Found: C, 67.66; H, 6.84%.

Diosgenyl β -D-xylopyranosyl- $(1\rightarrow 3)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$]-

β-D-galactopyranoside (2).

A solution of compound **28** (183 mg, 0.133 mmol) in 80% AcOH (15 mL) was stirred at 70 °C for 2 h. The solvent was removed under reduced pressure to give a residue, which was dissolved in a solution of MeOH-CH₂Cl₂ (2:1, 6 mL). To the above solution was added aqueous 1 N NaOH until pH 9-10 was attained. The reaction mixture was stirred at rt for 6 h, then neutralized with Amberlite IR-120 (H⁺). The solvents were filtered, and the filtrates were concentrated. The residue was subjected to a silica gel column with CH₂Cl₂/MeOH (3:1) as the eluent to give **2** as a white solid (96 mg, 85%); Selected ¹H NMR (pyridine-*d*₆): δ 0.69 (d, 3 H, *J* = 5.3 Hz), 0.87 (s, 3 H), 1.05 (s, 3 H), 1.13 (d, 3 H, *J* = 6.9 Hz), 1.69 (d, 3 H, *J* = 6.1 Hz), 3.49-3.68 (m, 3 H), 3.91 (t, 1 H, *J* = 8.0 Hz), 3.98-4.04 (m, 1 H), 4.06-4.15 (m, 3 H), 4.20-4.32 (m, 3 H), 4.38-4.43 (m, 2 H), 4.53 (q, 1 H, *J* = 7.3 Hz), 4.60 (dd, 1 H, *J* = 9.2, 3.3 Hz), 4.73 (t, 1 H, *J* = 7.9 Hz), 4.80 (d, 1 H, *J* = 2.5 Hz), 4.90 (d, 1 H, *J* = 1.8 Hz), 4.93 (dd, 1 H, *J* = 9.6, 3.2 Hz), 4.99 (d, 1 H, *J* = 7.7 Hz), 5.05 (d, 1 H, *J* = 7.5 Hz), 5.31 (d, 1 H, *J* = 4.7 Hz), 6.29 (s, 1 H). MALDITOF-MS found for C₄₄H₇₀O₁₆: 877.2 [M + Na]⁺. Anal. Calcd for C₄₄H₇₀O₁₆: C, 61.81; H, 8.25%. Found: C, 62.03; H, 8.07%.

¹H NMR Spectra of Compound **16**

¹³C NMR Spectra of Compound **28**

