Rank	Gene name	Chromosome	T_2	Rank	Gene name	Chromosome	T_2
1	HLA-DPB1 ¹⁴	6	405.3	51	WFDC8 ⁸³	20	204.2
2	HLA-DPA1 ⁷⁶	6	363.5	52	USP20	9	203.7
3	SLC2A9 ¹⁵	4	350.0	53	CCDC146	7	201.5
4	FANK1	10	330.0	54	HLA-DRB1 14,75	6	197.9
5	CPE	4	317.9	55	POLR1E	9	197.1
6	$HLA-C^{75}$	6	317.7	56	ADH4	4	196.5
7	DMBT1	10	312.2	57	OR5W2	11	195.8
8	$HLA-A^{74,75}$	6	309.6	58	ASB18	2	195.0
9	ARPC5	1	297.8	59	BICC1	10	194.3
10	CCDC169	13	286.0	60	SH3RF3	2	192.6
11	CCDC169-SOHLH2	13	286.0	61	BMPR1B	4	192.1
12	LGALS8 ¹⁵	1	277.0	62	NUP88	17	190.9
13	APBB1IP	10	274.0	63	ADAMTS12	5	190.1
14	RGL1	1	268.4	64	ADH1C	4	188.7
15	TEKT4	2	261.8	65	APOBEC4	1	187.8
16	STK32A	5	259.2	66	SNX31	8	187.5
17	CEP112	17	257.7	67	SGCZ	8	187.1
18	CPNE4	3	253.0	68	PANK1	10	187.0
19	RNF144B	6	252.0	69	ANK3	10	186.9
20	C4orf37	4	245.2	70	PKD1L1	7	186.8
21	MLF1IP	4	244.1	71	ZNF717	3	186.5
22	HLA-B ^{15,74,75}	6	237.0	72	KLHL14	18	184.2
23	RGS6	14	236.1	73	FXN	9	184.0
24	ABHGAP42	11	234.8	74	MAPT	17	182.6
25	POLN	4	233.4	75	TYW1	7	182.0
26	SLC15A2	3	232.8	76	BCAS1	20	180.4
27	KALBN	3	227.2	77	NTN4	12	179.8
28	FOPNL	16	227.1	78	THSD7B	2	177.7
29	KIAA1267	17	226.7	79	COL5A2	2	177.6
30	ZNF568	19	226.4	80	LRP1B	2	175.6
31	HEATR1	1	225.7	81	SNX19	- 11	175.4
32	KIAA1324L	7	223.4	82	OB4C3	11	174.7
33	MSH3	5	222.5	83	KRT83	12	173.5
34	FRAS1	4	221.2	84	LRRC16A	6	171.5
35	EMB1	19	221.1	85	C18orf1	18	170.3
36	GRIN2A	16	220.1	86	HLA-DRA	6	169.8
37	BNC2	9	220.1	87	PTPN14	1	169.5
38	HLA-DQA1 ^{14,75}	6	220.1	88	CNBD1	8	167.1
39	KDM4C	9	217.8	89	GPC5	13	166.6
40	AXDND1	1	217.1	90	MAP2K3	17	164.6
41	MYRIP	3	215.8	91	CSMD1	8	164.5
42	SPEF2	5	210.0 214 2	92	CADM2	3	162.8
43	PLCB4	20	212.3	93	MYO1B	2	162.6
44	SLC38A9	5	210.2	94	MYLK4	5	162.0
45	ABT3	4	209.3	95	OB511 ⁵⁵	11	162.0
46	CTNNA3	10	208.3	96	FHIT ⁷⁷	3	161.9
47	$EBAP1^{81}$	5	203.5	97	CUBN	10	161.8
48	HLA-DOR1 14,75	6	206.8	98	ULK4	3	161.8
49	EMID2	7	206.1	99	ASTN2	9	161.6
50	ADCY5	3	205.4	100	PGLVRP4	1	161 3
			200.4	100			101.0

Table S3: Top 100 signals in the CEU population using the T_2 test statistic.

Previously-hypothesized genes are indicated in bold. Genes overlapping with Table S4 are highlighted in gray.

- 74 P. W. Hedrick, T. S. Whittam, and P. Parham, "Heterozygosity at individual amino acid sites: extremely high levels for *HLA-A* and *-B* genes," *Proc. Natl. Acad. Sci.* USA, vol. 88, pp. 58975901, 1991.
- 75 A. Sánchez-Mazas, "An apportionment of human HLA diversity," *Tissue Antigens*, vol. 69, pp. 198202, 2005.
- 76 P. G. Bronson, S. J. Mack, H. A. Erlich, and M. Slatkin, "A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric," *Hum. Mol. Genet.*, vol. 22, pp. 252261, 2013.
- 77 Y. Ding, G. Larson, G. Rivas, C. Lundberg, L. Geller, C. Ouyang, J.Weitzel, J. Archambeau, J. Slater, M. B. Daly, A. B. Benson, J. M. Kirkwood, P. J. ODwyer, R. Sutphen, J. A. Stewart, D. Johnson, M. Nordborg, and T. G. Krontiris, "Strong signature of natural selection within an *FHIT* intron implicated in prostate cancer risk," *PLoS ONE*, vol. 3, p. e3533, 2008.
- 81 R. Cagliani, S. Riva, M. Biasin, M. Fumagalli, U. Pozzoli, S. Lo Caputo, F. Mazzotta, L. Piacentini, N. Bresolin, M. Clerici, and M. Sironi, "Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection," *Hum. Mol. Genet.*, vol. 10, pp. 47054714, 2010.
- 83 Z. Ferreira, B. Hurle, J. Rocha, and S. Seixas, "Differing evolutionary histories of WFDC8 (short-term balancing) in Europeans and SPINT4 (incomplete selective sweep) in Africans," Mol. Biol. Evol., vol. 28, pp. 28112822, 2011.