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Thresholds and criteria for selection

Even if we develop a score that measures the importance of genes and we rank all genes based on

this score, there are no strict criteria available that could be used to decide how many genes we

should consider as significant for three autoimmune diseases. If we consider larger numbers of

genes, although their significance decreases monotonically, this would allow us to analyze more

factors that may have critical roles in three autoimmune diseases. However, using a limited number

of genes increases significance but may be too stringent. Therefore, for practical use, a threshold

value can be chosen to keep consistency between gene selections for each disease.

As described in the main text, we selected genes for each disease as follows:

• SLE: a set of genes GSLE is defined as

GSLE ≡ {g | PC2g < d}
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• RA: a set of genes GRA is defined as

GRA ≡ {g | PC2g > d}

• DM: a set of genes GDM is defined as

GDM ≡ {g | PC3g < d}

where PCNg is the Nth principal component score of gth gene and d is the threshold value. Then we

computed the ratio r of the number of genes commonly selected for three diseases to the number

of genes selected for a single disease,

r ≡
N(GSLE

⋂
GRA

⋂
GDM)

N(GSLE
⋃

GRA
⋃

GDM)
,

where N(G) is the number of genes that belong to set G, as a function of d (Fig. S18). As d

increases, r also increases, but as d further increases, r starts to decrease. Regarding values of r,

0.1 < d < 0.2 values are equally significant. However, since a larger d implies greater significance

in each selection, we chose a value of d = 0.2 as a maximum that does not reduce r.

Comparisons with previous feature selection methods

Although it was apparent that our proposed method successfully selected common genes that are

critical for all three autoimmune diseases, it would be interesting to compare the standard or con-

ventional feature selection methods to see if they were equal to or better than this method. There-

fore, we compared the performance of methods employed by two previous studies[1, 2].

2



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Threshold value

R
at

io

Figure S18: The dependence of the ratio r on threshold value d.

Weka

Weka[3] is a popular and conventional package that includes several feature selection methods.

Wang et al. [1] used Weka to check the abilities of several feature selection methods when applied

to gene selection based on gene expression. Here, we applied their trials to our data set.

Minimum description length (MDL) based discretization

First, we tried to discretize methylation values so we could apply ranking methods based on the

discretized values similar to the study by Wang et al. However, discretization obtained by MDL

based discretization methods attributed the same constant to most values of many features. This

may be because we only used 20 samples, consisting of five patients and 14 or 15 healthy controls.

The discretized values obtained were used for χ2-statistic, InfoGain, ReliafF and Symmetrical

uncertainty.
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Gene selection

In Tables S2, S3, S4, and S5, we listed genes that were highly ranked based on several scores.

Although we tried to rank the top 10 genes as in Wang et al., because of many tied values, this was

not possible. Thus, we applied an alternative approach. As SLE had many tied top ranked genes,

we first listed all of them. Then, we listed genes for RA whose number was not less than that of the

genes listed in SLE but as small as possible. Because of tied values, we could not select the exact

same number of highly ranked genes as in SLE. As DM always had a limited number of genes to

which non-zero scores were attributed and the number was always less than those listed genes for

both SLE and RA, we listed all genes to which non-zero scores were attributed in DM. In Tables S6

and S7, we listed genes selected by correlation-based feature selection (CFS) and several wrapper

methods with best first criterion.

Genes overlaps

For tables S2, S3,S4,S5,S6, and S7, we identified gene overlaps as follows:

• Bold indicates overlap with genes selected by the present study (Table 2).

• Italic indicates genes selected by only one method for each disease.

• Underlined indicates genes selected for more than one disease for each method.

It is clear that the number of bold faced genes outperforms the number of both italic and underlined

genes. This demonstrates the plausibility of our method. In contrast to this, there is only one

underlined gene (TES in Table S6). This suggests that none of the methods listed here have the

ability to list selected genes common for three diseases. Despite this, the dependence of gene

selection by the method used is low. There are few Italic faced genes. Although there is a relatively

high number of Italic faced genes in Table S6, this is simply because CFS for SLE lists more genes

than for other methods. Thus, any methods that make use of classification or labeling information

cannot list selected genes common for three diseases.
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Random forest

Diaz-Uriarte et al. employed random forest for gene selection based on gene expression [2]. In

this subsection, we tried to apply their methodology to our data set. We used varSelRF[4] (ntree =

2000, ntreeIterat = 1000, vars.drop.frac = 0.2) following the procedure described by Diaz-Uriarte

et al. We executed varSelRF a number of times, but it provided only a few genes (see typical

examples in Fig. S19) and the selected genes heavily fluctuated between trials. Thus, to collect

enough numbers of selected genes, we executed varSelRF 100 times (see results in Table S8). The

meanings of Bold, Italic and underlined are the same as those in the previous subsection. The

outcome was quite similar to the previous section. Again, there were high numbers of bold faced

genes and TES was the only gene selected for more than one disease. One difference was increased

numbers of Italic faced genes in DM, but this reflected that very few genes were selected for DM

in the previous subsection, while random forest listed more genes. In conclusion, random forest is

not useful for the selection of critical genes common for three autoimmune diseases.
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Figure S19: Typical examples of error rates of random forest as a function of the number of
selected genes. Solid curves: mean, upper/lower dotted curves: upper/lower bounds, respec-
tively. (a) SLE, selected genes are RARA_P1076_R and S100A2_E36_R. (b) RA, selected
genes are PLAGL1_P334_F, CDC25B_E83_F, and ABCA1_P45_F. (c) DM, selected genes are
ESR1_P151_R and IL4_P262_R.
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Comparisons with other data sets

Although we successfully selected important genes common for three autoimmune diseases, if we

could reproduce the outcome using an independent dataset, our results would be more feasible.

We could not find an identical data set, i.e., one that consisted of MZ twins of SLE, RA and DM

patients with samples taken from white blood cells, so we used two similar data sets for RA[5] and

SLE[6]. Here, we present the results for these two data sets.

RA

Liu et al. [5] recently reported methylation patterns of genomes from peripheral blood lymphocytes

(PBL) of RA patients and healthy controls. Since they did not collect MZ twins, they collected

a large number of samples (335 patients and 354 healthy controls). Although the study did not

include SLE or DM, the number of samples is huge, and therefore is a good data set to check the

feasibility of our method. First, we downloaded GSE42861_processed_methylation_matrix.txt.gz

from GEO ID: GSE42861. Then we selected probes annotated as either TSS200 or TSS1500 to

collect methylation patterns limited to promoter regions. Then, promoters of genes that exist on

microarray plates used in our study were chosen. Finally, 3540 probes were chosen, more than

twice as many probes as used in our study (1505). Fig. S20(a) shows two dimensional embeddings

by PCA (the first and second PCs). Similar to Fig. S1(a), it shows a barb-like structure. This

structure vanished after removing genes located on the X chromosome (red dots in Fig. S20(a) and

see Fig. S20(b) for the embeddings after removing genes on the X chromosome). Next, we checked

which PC represented the distinction between RA patients and normal controls. Fig. S21 shows the

contributions of each sample to the first, second and third principal components. As expected, the

first principal components have almost constant values for both RA patients and normal controls.

However, the second principal components seem to represent a distinction between RA patients

and normal controls. To confirm this, we applied Wilcoxon Rank sum test between the second

principal components of patients and normal controls and found that P < 1× 10−16. Thus, PC2

6



likely represents a distinction between RA patients and normal controls. Furthermore, the third PC

may represent an odd structure that is beyond the scope of this paper.
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Figure S20: Two dimensional PCA embeddings of 3540 probes extracted from GEO ID:
GSE41861. (a) PC1 vs PC2 before removing genes located on the X chromosome (red dots).
(b) PC1 vs PC2 after removing genes located on the X chromosome.

Next, we attempted to select genes as we did in the present study (red dots in Fig. S22 and

Table S9). The number of genes was not uniquely decided but we selected 40 genes. However,

since more than one probe is sometimes attributed to one gene only, 34 genes were selected. In

this study, we selected 36 genes among 813 genes (Table 2). Thus, the expected number of bold

faced genes in Table S9 was 34× 36
813 ' 1.5, which was markedly lower than the number of bold

faced genes, 11, in Table S9. This strong coincidence demonstrates the feasibility of our method,

if we consider the fact that samples were not taken from white blood cells (as in our study) but

were extracted from peripheral blood lymphocytes (PBLs).

SLE

Jeffries et al. [6] collected genomes from T-cells of 11 female SLE patients and 12 normal female

controls. Although the number of samples was not much larger than the number of SLE sam-
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Figure S21: The first (a), second (b) and third (c) principal components. Green circles and blue
crosses are RA patients and normal controls, respectively.

ples in the present study, 19 (Table 1), and did not include MZ twins, application of our method

to this data set may also validate our method. Promoter methylation pattern, GSE27895_non-

normalized_ratios.txt was downloaded from GEO ID: GSE27895. Then, probes annotated as genes

that existed on our microarray plate and used in the present study were collected. The number of

probes collected was 2138. Since the sample consisted only of females, there was no need to

exclude genes located on the X chromosome. Figs. S23 and S24 represent two dimensional em-

beddings and principal components, respectively. Initially, the principal component that represents

distinction between SLE patients and normal controls did not appear to exist. However, if one

compares Fig. 1 from Jeffries et al. with Fig. S24(b), PC2 corresponds to Fig. 1 from Jeffries

et al., which represents the expression of genes selected to represent distinctions between SLE

patients and normal controls. In both Fig. 1 from Jeffries et al. and Fig. S24(b), Control 9, 10

and 12 have a distinct expression from other control samples. PC2 simply reflects this feature cor-

rectly. It should be noted that this kind of anomaly, i.e., diversity not between but within normal

controls or patient samples, was also observed in the present study. We also noted that promoter

methylation differed within normal or patient samples dependent upon gender (e.g., Figs. S2(b),

S11(a) and S11(b)). Although the anomaly in Fig. S24 was not due to gender because all samples

were female, it is reasonable to treat Control 9, 10 and 12 as distinct samples from other controls
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Figure S22: Two dimensional PCA re-embeddings of 3540 probes extracted from GEO ID:
GSE41861 after removing genes on the X chromosome. (a) PC1 vs PC2 (b) PC2 vs PC3. Red
dots represent genes selected as critical for RA.

because of their unknown biologically distinct features.

Next, we attempted to select genes based on the proposed method. Close examination of

Fig. S23(b) shows the hump is directly along the second PC but is slightly tilted (dotted line

in Fig. S23(b)). To determine whether this direction represented a distinction between normal

controls and SLE patients, we generated combined PC, 0.7PC2−0.3PC3 (Fig. S24(d)). Although

it was not apparent, the new combined PC, 0.7PC2−0.3PC3, does represent a distinction between

SLE patients and normal controls if we compare Control 9, 10 and 12 or other controls with

SLE patients. P-values computed by Wilcoxon Rank sum test of combined PC,0.7PC2−0.3PC3,

between Control 9, 10 and 12 or other controls and SLE patients were 0.005 and 0.03, respectively.

Thus, the difference is statistically significant. Selected genes based on the combined PC (red and

green dots in Fig. S23) are listed in Table S9. P-values for the number of bold faced genes (i.e.,

overlaps between Table 2 and S9) were computed by binomial distribution. P = 0.02 and 0.28

for red and green dots, respectively. Thus, red dots significantly overlapped with genes selected

by the present study (Table 2). Although this coincidence is not very strong, it is remarkable if

we consider that samples were taken not from white blood cells as in the present study, but were
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extracted from T-cells. Thus, this demonstrates that the PCA based feature extraction method can

work for other data sets.
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Figure S23: The two dimensional PCA embeddings of 2138 probes extracted from GEO ID:
GSE27895. (a) PC1 vs PC2 (b) PC2 vs PC3. Red and green dots represent genes selected as
critical for SLE. Dotted line, 0.7PC2− 0.3PC3 = 0, represents the distinction between normal
controls and SLE patients (see text for more details).
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Table S2: χ2-statistic based feature extraction.

SLE RA DM
Score gene Score gene Score gene
19 CD34_P780_R 20 ABCA1_P45_F 10.588 CARD15_P302_R
19 CD9_P585_R 15.556 NQO1_E74_R 10.588 ESR1_P151_R
19 CSF3R_P8_F 15.556 PLAGL1_P334_F 10.588 IL4_P262_R
19 DHCR24_P652_R 15.556 PTGS1_E80_F 10.588 MCAM_P265_R
19 EMR3_E61_F 15 CDC25B_E83_F 10.588 PRSS1_E45_R
19 EPHA2_P203_F 15 CDH3_P87_R 0
19 EPHA5_P66_F 15 CDKN1C_P6_R 0
19 HOXB2_P99_F 15 DLL1_P386_F 0
19 IFNGR2_P377_R 15 GNMT_E126_F 0
19 IL10_P348_F 15 IGSF4C_P533_R 0
19 IL10_P85_F 15 IRAK3_P13_F 0
19 LMO2_E148_F 15 ONECUT2_P315_R 0
19 LMO2_P794_R 15 PLAU_P176_R 0
19 MAP3K8_P1036_F 15 TERT_E20_F 0
19 MMP14_P13_F 15 TK1_E47_F 0
19 PECAM1_P135_F 12.381 APC_E117_R 0
19 PMP22_P1254_F 12.381 ARHGAP9_P260_F 0
19 RARA_P1076_R 12.381 E2F3_P840_R 0
19 S100A2_E36_R 12.381 EDN1_E50_R 0
19 SLC22A18_P216_R 12.381 FVT1_P225_F 0
19 SPI1_E205_F 12.381 IL12B_P1453_F 0
19 SPI1_P48_F 12.381 ITGB1_P451_F 0
19 SPI1_P48_F 12.381 JAK3_P156_R 0

12.381 PLAU_P11_F 0
12.381 TES_E172_F 0
12.381 TNC_P198_F 0
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Table S3: InfoGain based feature extraction.

SLE RA DM
Score gene Score gene Score gene
0.831 CD34_P780_R 0.811 ABCA1_P45_F 0.367 CARD15_P302_R
0.831 CD9_P585_R 0.616 NQO1_E74_R 0.367 ESR1_P151_R
0.831 CSF3R_P8_F 0.616 PLAGL1_P334_F 0.367 IL4_P262_R
0.831 DHCR24_P652_R 0.616 PTGS1_E80_F 0.367 MCAM_P265_R
0.831 EMR3_E61_F 0.541 CDC25B_E83_F 0.367 PRSS1_E45_R
0.831 EPHA2_P203_F 0.541 CDH3_P87_R 0
0.831 EPHA5_P66_F 0.541 CDKN1C_P6_R 0
0.831 HOXB2_P99_F 0.541 DLL1_P386_F 0
0.831 IFNGR2_P377_R 0.541 GNMT_E126_F 0
0.831 IL10_P348_F 0.541 IGSF4C_P533_R 0
0.831 IL10_P85_F 0.541 IRAK3_P13_F 0
0.831 LMO2_P794_R 0.541 ONECUT2_P315_R 0
0.831 LMO2_E148_F 0.541 PLAU_P176_R 0
0.831 MAP3K8_P1036_F 0.541 TERT_E20_F 0
0.831 MMP14_P13_F 0.541 TK1_E47_F 0
0.831 PECAM1_P135_F 0.509 APC_E117_R 0
0.831 PMP22_P1254_F 0.509 ARHGAP9_P260_F 0
0.831 RARA_P1076_R 0.509 E2F3_P840_R 0
0.831 SLC22A18_P216_R 0.509 EDN1_E50_R 0
0.831 SPI1_E205_F 0.509 FVT1_P225_F 0
0.831 SPI1_P48_F 0.509 IL12B_P1453_F 0
0.831 S100A2_E36_R 0.509 ITGB1_P451_F 0
0.831 SPI1_P48_F 0.509 JAK3_P156_R 0

0.509 PLAU_P11_F 0
0.509 TES_E172_F 0
0.509 TNC_P198_F 0
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Table S4: Relief based feature extraction.

SLE RA DM
Score gene Score gene Score gene
1 CD34_P780_R 1 ABCA1_P45_F 0.45 CARD15_P302_R
1 CD9_P585_R 0.87 NQO1_E74_R 0.45 ESR1_P151_R
1 CSF3R_P8_F 0.87 PTGS1_E80_F 0.45 IL4_P262_R
1 DHCR24_P652_R 0.825 PLAGL1_P334_F 0.45 MCAM_P265_R
1 EMR3_E61_F 0.76 E2F3_P840_R 0.45 PRSS1_E45_R
1 EPHA2_P203_F 0.76 ITGB1_P451_F 0
1 EPHA5_P66_F 0.76 JAK3_P156_R 0
1 HOXB2_P99_F 0.76 PLAU_P11_F 0
1 IFNGR2_P377_R 0.75 APC_E117_R 0
1 IL10_P348_F 0.75 FVT1_P225_F 0
1 IL10_P85_F 0.75 IL12B_P1453_F 0
1 LMO2_E148_F 0.74 ARHGAP9_P260_F 0
1 LMO2_P794_R 0.705 EDN1_E50_R 0
1 MAP3K8_P1036_F 0.7 CDC25B_E83_F 0
1 MMP14_P13_F 0.7 CDH3_P87_R 0
1 PECAM1_P135_F 0.7 CDKN1C_P6_R 0
1 PMP22_P1254_F 0.7 DLL1_P386_F 0
1 RARA_P1076_R 0.7 GNMT_E126_F 0
1 S100A2_E36_R 0.7 IGSF4C_P533_R 0
1 SLC22A18_P216_R 0.7 IRAK3_P13_F 0
1 SPI1_E205_F 0.7 ONECUT2_P315_R 0
1 SPI1_P48_F 0.7 PLAU_P176_R 0
1 SPI1_P48_F 0.7 TERT_E20_F 0

0.7 TK1_E47_F 0
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Table S5: Symmetrical Uncertainty based feature extraction.

SLE RA DM
Score gene Score gene Score gene
1 CD34_P780_R 1 ABCA1_P45_F 0.517 CARD15_P302_R
1 CD9_P585_R 0.728 NQO1_E74_R 0.517 ESR1_P151_R
1 CSF3R_P8_F 0.728 PLAGL1_P334_F 0.517 IL4_P262_R
1 DHCR24_P652_R 0.728 PTGS1_E80_F 0.517 MCAM_P265_R
1 EMR3_E61_F 0.706 CDC25B_E83_F 0.517 PRSS1_E45_R
1 EPHA2_P203_F 0.706 CDH3_P87_R
1 EPHA5_P66_F 0.706 CDKN1C_P6_R
1 HOXB2_P99_F 0.706 DLL1_P386_F
1 IFNGR2_P377_R 0.706 GNMT_E126_F
1 IL10_P348_F 0.706 IGSF4C_P533_R
1 IL10_P85_F 0.706 IRAK3_P13_F
1 LMO2_E148_F 0.706 ONECUT2_P315_R
1 LMO2_P794_R 0.706 PLAU_P176_R
1 MAP3K8_P1036_F 0.706 TERT_E20_F
1 MMP14_P13_F 0.706 TK1_E47_F
1 PECAM1_P135_F 0.583 APC_E117_R
1 PMP22_P1254_F 0.583 ARHGAP9_P260_F
1 RARA_P1076_R 0.583 E2F3_P840_R
1 S100A2_E36_R 0.583 EDN1_E50_R
1 SLC22A18_P216_R 0.583 FVT1_P225_F
1 SPI1_E205_F 0.583 IL12B_P1453_F
1 SPI1_P48_F 0.583 ITGB1_P451_F
1 SPI1_P48_F 0.583 JAK3_P156_R

0.583 PLAU_P11_F
0.583 TES_E172_F
0.583 TNC_P198_F
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Table S6: CFS based feature extraction

SLE RA DM
ABCC2_P88_F ABCA1_P45_F BCAP31_P1072_F
ACTG2_E98_R ARHGAP9_P518_R CARD15_P302_R
AIM2_P624_F CDC25B_E83_F E2F3_P840_R
ATP10A_P147_F GABRA5_E44_R ESR1_P151_R
BIRC4_P500_F IGSF4C_P533_R
BTK_P105_F KLK10_P268_R
CD34_P780_R NQO1_E74_R
CD82_P557_R PLAGL1_P334_F
CD9_P585_R PTGS1_E80_F
CSF3R_P8_F TES_E172_F
DHCR24_P652_R TK1_E47_F
EMR3_E61_F
EPHA2_P203_F
EPHA5_P66_F
EPHB2_P165_R
HDAC9_P137_R
HOXB2_P99_F
HPN_P374_R
HTR1B_E232_R
IFNGR2_P377_R
IGFBP6_P328_R
IL10_P348_F
IL10_P85_F
LMO2_E148_F
LMO2_P794_R
MAP3K8_P1036_F
MMP14_P13_F
PECAM1_P135_F
PMP22_P1254_F
RARA_P1076_R
S100A2_E36_R
SLC22A18_P216_R
SPI1_E205_F
SPI1_P48_F
SPI1_P48_F
TES_E172_F
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Table S7: Wrapper based feature extraction.

SLE RA DM
J48 CD34_P780_R ABCA1_P45_F IL4_P262_R

CCNC_P132_R
Naive Bayes CD9_P585_R ABCA1_P45_F CDKN2B_E220_F

IGFBP5_P9_R
CD34_P780_R AATK_E63_R

SMO IMPACT_P186_F ABCA1_P45_F MYH11_P22_F
TES_E172_F NGFR_P355_F

Table S8: Random forest based feature selection. N represents the selection frequencies of each
gene during 100 trials.

SLE RA DM
gene N gene N gene N
S100A2_E36_R 18 ABCA1_P45_F 100 ESR1_P151_R 61
EMR3_E61_F 18 PTGS1_E80_F 42 IL4_P262_R 61
LMO2_E148_F 18 NQO1_E74_R 36 PRSS1_E45_R 51
SPI1_P48_F 16 PLAGL1_P334_F 34 NGFR_P355_F 23
CSF3R_P8_F 16 IGSF4C_P533_R 9 MCAM_P265_R 15
LMO2_P794_R 15 ONECUT2_P315_R 5 LYN_P241_F 13
CD9_P585_R 13 DLL1_P386_F 4 SNRPN_seq_12_S127_F 6
DHCR24_P652_R 13 GNMT_E126_F 4 CARD15_P302_R 6
EPHA2_P203_F 13 CDKN1C_P6_R 3 FGF6_E294_F 4
HOXB2_P99_F 13 PLAU_P176_R 2 HLA-DOB_E432_R 3
CD34_P780_R 12 TK1_E47_F 2 IPF1_P750_F 3
MAP3K8_P1036_F 12 CDC25B_E83_F 2 MAD2L1_E93_F 3
IL10_P85_F 11 IRAK3_P13_F 2 TES_P182_F 2
MMP14_P13_F 9 TES_E172_F 1 FGF9_P862_R 2
PMP22_P1254_F 8 ARHGAP9_P518_R 2
RARA_P1076_R 8 MMP7_E59_F 2
SYK_P584_F 8 BCAP31_P1072_F 2
IL10_P348_F 8 PENK_E26_F 1
PECAM1_P135_F 7 PTHR1_P258_F 1
IFNGR2_P377_R 7 RASGRF1_P768_F 1
SPI1_E205_F 5 TGFB1_P833_R 1
EPHA5_P66_F 5 ELK3_P514_F 1
SLC22A18_P216_R 3 FGR_P39_F 1

IGFBP5_P9_R 1
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Table S9: Genes selected in RA samples (red dots in Fig. S20) and SLE samples (red and green
dots in Fig. S23). N is the number of probes selected and annotated to the gene.

RA (red) SLE (red) SLE (green)
gene N gene N gene N gene N gene N
ERCC3 2 ATP10A 4 CHFR 3 DCC 4 CASP8 3
IFNGR2 2 HOXB2 2 MMP8 2 SLC22A18 2 H19 2
RARA 2 DAPK1 2 DIRAS3 2 IL8 2 AIM2 1
FGR 2 GNAS 2 KCNQ1 2 RARA 1 SPP1 1
IL10 2 MGMT 2 PEG10 2 ABCG2 1 ACVR1B 1
TP73 2 WT1 2 CARD15 1 ATP10A 1 APC 1
DHCR24 1 CSF3R 1 MPL 1 BCAP31 1 BRCA1 1
HOXB2 1 SLC22A18 1 ABCC2 1 CALCA 1 CASP10 1
IFNGR2 1 ACVR1 1 AFP 1 CCND1 1 CD2 1
LCN2 1 AR 1 ASB4 1 CDKN2A 1 CHD2 1
LMO2 1 B3GALT5 1 BCL2A1 1 CHI3L2 1 COL6A1 1
MMP14 1 BLK 1 BRCA1 1 DIRAS3 1 DSP 1
PI3 1 CCKAR 1 CCNC 1 EPHA3 1 EPHA7 1
S100A12 1 CXCL9 1 DDR2 1 EPHB6 1 ERBB2 1
AGXT 1 DMP1 1 EDNRB 1 ERCC1 1 ERG 1
AREG 1 FANCG 1 FGR 1 ESR1 1 ETS2 1
CD9 1 FHL1 1 FMR1 1 FER 1 FGF1 1
ENC1 1 FRK 1 GABRA5 1 FGF2 1 FGFR4 1
EPHA2 1 GSTP1 1 H19 1 FLI1 1 GPATC3 1
EXT1 1 HLA-DOB 1 HSPA2 1 HDAC6 1 HFE 1
FER 1 HTR2A 1 LIG4 1 HLA-DPB1 1 IGF2AS 1
FLI1 1 IL1RN 1 IL3 1 IGFBP7 1 INSR 1
GFI1 1 IL10 1 KRT1 1 IRF7 1 ITK 1
GNMT 1 MAPK9 1 MC2R 1 KCNQ1 1 KLK11 1
GPX3 1 MGMT 1 MUC1 1 MAGEL2 1 MAP2K6 1
GSTP1 1 NID1 1 NOS3 1 MGMT 1 MLH1 1
HOXA9 1 SGCE 1 SNRPN 1 MME 1 MMP10 1
ISL1 1 TIMP3 1 TNK1 1 MYLK 1 PDE1B 1
NPR2 1 TP73 1 WNT8B 1 PLAGL1 1 PEG10 1
NR2F6 1 XRCC2 1 ZIM2 1 PLAGL1 1 PRKCDBP 1
NRG1 1 PTGS1 1 RAD50 1
PIK3R1 1 RAD54B 1 RIPK4 1
PRSS8 1 RUNX3 1 SEMA3B 1
SFTPD 1 SNRPN 1 SOX17 1

TEK 1 TFRC 1
TFPI2 1 TGFB2 1
TJP2 1 THBS1 1
TNC 1 TNFRSF10C 1
TRIM29 1 VEGFB 1
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Figure S24: The first (a), second (b) and third (c) principal components. Red triangles and circles
represent SLE patients and normal controls, respectively. (d) The combined PC, 0.7PC2−0.3PC3,
represents the distinction between SLE patients and normal controls.
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