Supplementary Figure 1. *Distribution of Fluo-2 basal intensity values is similar in Con and ADCY5 shRNA-treated islets.* The cumulative frequency of Fluo-2 intensity values (AU, arbitrary units) at 3 mM glucose is not significantly altered by ADCY5 knockdown (P>0.05; two-way ANOVA).

Supplementary Figure 2. Donor age and BMI do not alter the magnitude suppression of glucosestimulated insulin release following ADCY5-silencing. (A) Age of donors is not significantly correlated with the percentage suppression of insulin secretion in ADCY5-silenced islets ($R^2 = 0.0001$; linear regression) (P values shown on graph). (B) As for (A) but BMI ($R^2 = 0.05$; linear regression) (P values shown on graph).

Supplementary Figure 3. *ADCY5 silencing does not alter insulin granule distribution near the plasmamembrane.* (A) TIRF imaging reveals similar insulin granule distribution in control (Con)- and shRNA-treated islets (scale bar 5 μ m). (B) Insulin granule:plasmamembrane (PM) ratio is unaffected by ADCY5 silencing (n = 18 cells from multiple islets from three donors).

Supplementary Figure 4. *Epac2-camps expression and localization in human islets.* (A) Expression of the cAMP probe *Epac2-camps* is predominantly restricted to beta cells, as shown using immunohistochemistry with antibodies against insulin and glucagon (scale bar, $17.5 \mu m$).

Supplementary Figure 5. *Effects of ADCY5-silencing can be mimicked using selective inhibitors of ADCY5 activity.* (A) Co-infusion of NKY80 suppresses 11mM glucose (G11)-evoked cytosolic Ca²⁺ rises (left panel; mean traces from a single donor), reducing both AUC and amplitude (right panel) (G3, 3 mM glucose) (**P<0.01 versus Control (Con); Mann-Whitney U-test) (n = 6 recordings). (B) *ADCY5-silencing does not significantly alter the suppressive effects of NKY80 on AUC and amplitude of Ca²⁺ influx (NS, non-significant; Mann-Whitney U-test) (n = 4 recordings). Values represent mean ± SEM.*

Supplementary Figure 6. ADCY5 does not alter Ca^{2+} responses to depolarisation. (A) KCl (30 mM) elicits similar responses in control (Con) and shRNA-treated islets (left panel, representative traces) (gray/black, raw; red, smoothed) (G3, 3 mM glucose) (NS, non-significant; Mann-Whitney U-test) (n = 4 recordings). (B) As for (A) but in the continued presence of diazoxide (Dz) 500 μ M to limit complications arising from changes in plasma membrane potential (n = 10 recordings). Values represent mean \pm SEM.

Supplementary Table 1. shRNA sequences against ADCY5.

Clone ID	Sequence
TRCN0000078338	CCGGCGCCATAGACTTCTTCAACAACTCGAGTTGTTGAAGAAGTCTATGGCGTTTTTG
TRCN0000078339	CCGGGCCGCAGAGAATCACTGTTTACTCGAGTAAACAGTGATTCTCTGCGGCTTTTTG
TRCN0000078340	CCGGGCTACACTCAACTACCTGAATCTCGAGATTCAGGTAGTTGAGTGTAGCTTTTTG
TRCN0000078341	CCGGTCTGTGATCTACTCCTGCGTACTCGAGTACGCAGGAGTAGATCACAGATTTTTG
TRCN0000078342	CCGGCAACGCCATAGACTTCTTCAACTCGAGTTGAAGAAGTCTATGGCGTTGTTTTTG

Supplementary Table 2. qRT-PCR primer sequences used for SYBR Green assays.

Gene	Forward Primer	Reverse Primer	
	5' ACATCAAATGCAGACTTGCCA		
GLP1R	3'	5' CCCAGCTCTTCCGAAATTCC 3'	
	5'	5'	
	CAGAAGCGGAAAGAAGAAGAAGA	CCAGAAACTCATCCACTTCATCC	
ADCY5_human	3'	3'	
ADCY5_mouse	5' GCCAATGCCATAGACTTCAG 3'	5' ATCTCCTCCTTCTTCTGTG 3'	
	5' GGAAACTACAGGCAACAGGG	5' GAGGCAAACATAACAGCCAC	
ADCY6_human	3'	3'	
		5'	
	5' TAAATGCCAGCACCTATGACC	TGTTCAACCCGATCTTCATCTG	
ADCY6_mouse	3'	3'	
		5' GTGAAGACAAAGTACTCTGGG	
ADCY8_human	5' CCAATGACCATCCAGTTCTC 3'	3'	
Cyclophilin(ppia)	5' AAGACTGAGTGGTTGGATGG 3'	5' ATGGTGATCTTCTTGCTGGT 3'	

Supplementary Table 3. qRT-PCR primers for eQTL.

Gene symbol	Gene name	Taqman accession	Location (exon boundary)
ADCY5	Adenylate Cyclase 5	Hs00766287_m1	exon 16-17
TBP	TATA-binding protein	Hs00427620_m1	exon 2-3

Gender	Age (years)	BMI (kg/m ²)	Genotype rs11708067	$\frac{ADCY5/TBP}{\text{Expression} (2^{-1})}$
М	47	23.50	AA	1.27
М	39	32.60	AA	1.03
М	67	24.20	AA	1.27
М	58	27.80	AA	0.98
М	59	26.73	AA	0.41
М	53	27.77	AA	2.18
М	61	24.80	AA	1.18
М	22	19.60	AG	1.22
М	56	24.70	AG	1.02
М	33	21.80	AG	2.43
М	66	27.77	AG	3.14
М	51	26.23	AG	1.39
М	52	29.98	AG	2.17
М	59	27.68	AG	3.33

Supplementary Table 4. Characteristics of donors used for eQTL analysis.