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Supplementary material to “Recommendations for the Definition of the Clinical Responder to 
Support Efficacy Claims in Insulin Preservation Studies Submitted To US or European 
Regulatory Agencies” 
Beam, Gitelman, Palmer 
 
In this supplemental material, we introduce the statistical model underpinning our approach, detail how 
characteristics of a responder definition are thus defined, and describe how we implemented the model 
in practice.  
 

1. Statistical Model 
Broadly speaking, the model is a multivariate normal “errors in variables” model in which some of the 
variables are unobservable and the measurement error variance is assumed known. The errors in 
variables model  has been proposed for responder analysis in the past, but only from a univariate1 or 
bivariate2,3 standpoint. We extend these past approaches via a multivariate model having unobservable 
variables.   The assumption of known error variance has been utilized in the literature concerning 
misclassification arising from measurement error in which an independent study is conducted to 
estimate this variance (Byonaccorsi, JASA 1990). 
For subject i measured at time t=1,2 we observe the apparent value y which arises from measurement 
error of the actual value x: 

 
We assume that the vector   is multivariate normal having parameters 
Equation 1 

 

 
 
 
Result 1 
Let   .  Assuming that  are independent of   , the vector  is 
multivariate normal having parameters 

 

 
Proof: This result follows immediately from the assumptions:  
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Result 2 
By the preceding, if  >0 then the conditional distribution of the unobservable  given the 

observable  is multivariate normal having parameters 

 
 

This results follows from Result 1 and multivariate normal theory ( see Result 4.6 on page 135 of 
Johnson4). 
However, in practical applications, since x is unobservable, parameters of the joint distribution or 
conditional distribution cannot be directly estimated. Nonetheless, we can re-express the previous results 
in terms of the variance-covariance matrix of the observable y vector: 
Equation 2 

 
 
Where, 
Equation 3 

 
 
So that,  
Equation 4 

 

 
 

2. Evaluating Characteristics of Responder Definitions 
Most published responder definitions represent conditions placed on the difference or ratio of two 
measurements separated in time. Such conditions can be expressed generally as a linear inequality in 
hyperspace, e.g. . A responder definition based on the difference of  
would set b=1 and a definition based on their ratio would set a=0. 
Therefore, actual and apparent responder proportions can be evaluated by integrating the multivariate 
density function over the appropriate region in . Let  denote the multivariate density function having 
parameters given by equations 1 and 2, then the characteristics of interest are defined by the following 
integrals: 
 
Actual responder proportion= 

Equation 5 
 
 
 
 

Apparent responder proportion= 
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Equation 6 

 
 
Misclassification error rates can be evaluated by integrating the conditional distribution defined in 
Equation 3: Let denote the density function of X given Y and let  denote the marginal density of 

Y. is bivariate normal with parameters given by Equation 4.  is also bivariate normal with 

parameters  and  as defined in Equation 3. Recalling that  is a function of y, 

we can then define the following quantities; 
 
False responder proportion= 
 
Equation 7 

 
 
False non-responder proportion= 
 
Equation 8 

 
 

3.  Practical Implementation 
Although the computation of multivariate normal integrals can be done with functions such as “sadmvn” 
in the R package “mnormt”, these functions require limits of integration that can be expressed as fixed 
intervals. In our situation, in which the lower limit of integration is a function of one of the integrated 
variables (e.g.  when computing the actual responder proportion), the lower limit of 
integration is constantly changing. To address this problem, we randomly sampled 10,000 multivariate 
observations from the appropriate distribution and used the proportion falling into the region of interest 
as the value of the responder proportion. Random sampling of multivariate observations was 
accomplished with the R function “mvrnorm”. We chose 10,000 observations in order to give adequate 
precision in estimation (standard error ≤ 0.005) while reducing computational time to an acceptable 
level. 
Computation of the conditional probabilities defining misclassification is made additionally difficult by 
the need to conduct nested integration with varying limits of integration. We used the previous method 
of estimating proportions via sampling from multivariate normal populations to achieve a solution to this 
problem as well. 
Define the following unconditional probabilities: 
False Positive Proportion≡ 
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and, False Negative Proportion ≡ 

 
 
Then, by the definition of conditional probabilities, it follows that the probabilities of interest can be 
computed by the following ratios: 
False Responder Proportion=False Positive Proportion/Apparent Responder Proportion, 
and, 
False Non-responder Proportion=False Negative Proportion/(1-Apparent Responder Proportion). 
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