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ABSTRACT

Motivation: Modern transcriptomics and proteomics enable us to
survey the expression of RNAs and proteins at large scales. While
these data are usually generated and analysed separately, there is
an increasing interest in comparing and co-analysing transcriptome
and proteome expression data. A major open question is whether
transcriptome and proteome expression is linked and how it is
coordinated.

Results: Here we have developed a probabilistic clustering model
that permits analysis of the links between transcriptomic and
proteomic profiles in a sensible and flexible manner. Our coupled
mixture model defines a prior probability distribution over the
component to which a protein profile should be assigned conditioned
on which component the associated mRNA profile belongs to. By
providing probabilistic assignments this approach sits between the
two extremes of concatenating the data on the assumption that
mRNA and protein clusters would have a one-to-one relationship,
and independent clustering where the mRNA profile provides no
information on the protein profile and vice-versa. We apply this
approach to a large dataset of quantitative transcriptomic and
proteomic expression data obtained from a human breast epithelial
cell line (HMEC) stimulated by epidermal growth factor (EGF) over
a series of timepoints corresponding to one cell cycle. The results
reveal a complex relationship between transcriptome and proteome
with most mRNA clusters linked to at least two protein clusters,
and vice versa. A more detailed analysis incorporating information
on gene function from the gene ontology database shows that a
high correlation of mRNA and protein expression is limited to the
components of some molecular machines, such as the ribosome, cell
adhesion complexes and the TCP-1 chaperonin involved in protein
folding.

*to whom correspondence should be addressed

Conclusions: The dynamic regulation of the transcriptome and
proteome in mammalian cells in response to an acute mitogenic
stimulus appears largely independent with very little correspondence
between mRNA and protein expression. The exceptions involve a
few selected multi-protein complexes that require the stoichiometric
expression of components for correct function. This finding has
wide ramifications regarding the understanding of gene and protein
expression including its control and evolution. It also shows that
transcriptomic and proteomic expression analysis are complementary
and non-redundant.

1 ADDITIONAL MODEL DETAILS, PARAMETER
INFERENCE AND IMPLEMENTATION DETAILS

1.1 Covariancefunction parameterisation

We do not work with full covariance matrices. Rather we assum
diagonal covariance matrices with a single variance patemn® =
o2T). We are thus assuming that there is no time-correlatioritzatd
the level of noise remains unchanged throughout the timesser
Incorporating correlation over time is clearly an inteirggtarea for
future development. However, fitting full covariance mads with
the quantity of data available was not feasible and so iyegitg
alternative approaches is necessary (for example, one afi¢thods
discussed above). The assumption that the level of noismistant
through time seems rather less limiting. It might be argueat t
we should expect noise to increase during the experimen¢liss ¢
lose their synchronisation - however, we found that paransig
the covariance matrix with a separate variance parameteraich
time point or weighting the variance such that it increases tme
(2 = diag(oi,...,0%) or © = diag(c? a10?,... ,ar—10?)
with ar—1 > ar—2 > --- > a1) made no qualitative difference
to the results obtained.

(© Oxford University Press 2005.
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1.2 Parameter inference

The expectation-maximisation (EM) algorithm Dempsttral.

(1977) can be used to find model parameters and cluster assigs
corresponding to a local maximum of the model likelihoode Tdy
likelihood is given by
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where we have omitted the: and p superscripts from the model

parameters -, and o; will always refer to parameters from

To summarise, the EM algorithm for the coupled mixture model
is
1. Initialise the model parameters (more details providethe
next section)
2. Perform the E-step described by equations 4 and 5

3. Perform the M-step described by equations 6 to 11

4. Compute the change in the value of the lower bound on the
log likelihood given in 3. If this is less than a predeterngine
threshold, stop, otherwise return to 2.

Initialisation and re-starting

the mRNA mixture and vice-versa. To derive the necessary EMpe gy algorithm finds a local maximum of the likelihood

update equations, we first introduce the variational distion Q) 4

such that}>, Qg = 1 that can be interpreted as the mRNA
cluster membership probabilities for thth gene. Introducing these

distributions and applying Jensen’s inequality produdeslower
bound on the log likelihood given in equation 2.

Because of the summation within the log in the final term

function and as such is sensitive to initial conditions. Vercome
this problem, we ran the algorithm with 100 different random
initialisations and kept the one that gave the highest vafuthe
lower bound on the log likelihood.

of equation 2, we must introduce a second set of variationaRR€producibility
distributions;y; 4 such thad ", v;.» = 1 that can be interpreted as Testing the reproducibility of the results is not easy duethte

the probability that the protein profile for gepés in cluster; given
that its mMRNA profile is in clustek. Our final bound is given in
equation 3. . Taking partial derivatives of this bound wikpect to
the variational parameters produces the following two tgsithat
make up the E-step of our algorithm
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Itis important to note that in deriving 5, we have used 4 angl;sg
should always be updated befafg,, in the E-step. The M-step
consists of the following updates, derived by taking phdéivates
of the bound with respect to the model parameters
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where the subscript denotes theth element of a vector and is
the total number of timepoints (i.e. the lengthsgf

symmetry of the likelihood to permutations of the comporiebels

(j and k). To ensure that the results generated by the model were
reproducible, we tested the consistency of the GO termsvibet
found to be enriched. Using 100 random initialisations, xteeeted

GO terms that were significantlyp (<= 0.1) enriched in either
mMRNA clusters, protein clusters or both and then computed th
frequency of occurrence of each term. Approximately 50 sermare
enriched for each initialisation which, when combined,ufessin

473 unique terms. Assuming independence across terms we can
model the number of times we might expect a term to appear
with the binomial distribution with success probabilig/473. In
figure 1 we show the observed frequency of occurence alorty wit
a curve produced from the binomial cdf. We can clearly seeaha
vast number of terms~( 100) are observed more frequently than
one would expect at random. Under the binomial assumptlaa, t
probability of a particular term appearing in all 100 inligations

(we observe 8 such terms) is approximately 10~%.

2 THE DATA
2.1 Cdls

The human mammary epithelial cell line HMEC, strain 184A1,
Stampfer and Yaswen (1993) was used in this study. This cell
line is non-tumorigenic and resembles normal breast ditleells
Stampfer and Yaswen (1993). Cells were routinely cultuned i
DHFB-I medium supplemented with 12.5 ng/ml EGF as described
Band and Sager (1989). All other reagents were of cell oailtur
grade or higher quality For experiments the cells were plaoe
culture medium without serum and growth factors for 48 haars
order to induce growth arrest and synchronise the populatiothe
quiescent state GO. Proliferation and mitogenesis wascetliy
treatment with 10ng/ml EGF. This results in cells progmegsnto
S-phase (doubling of DNA content) and mitosis, 12 and 18 $our
respectively, after EGF stimulation. Samples were takethatO,
0.25, 1, 4, 8, 13, 18 and 24 hrs and profiled for RNA and protein
expression as described below.
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2.3 ProteomicsAnalysis

Protein expression was profiled using the accurate mass and
time (AMT) tag approach Smitlet al. (2002). Capillary liquid
chromatography (LC) was used to separate peptides andeFouri
transform ion cyclotron resonance-mass spectrometry GRTI
MS) was used for high mass accuracy measurements for
peptide identification and quantification. An existing AMagt
database encompassing the monoisotopic masses and zeanali
chromatographic elution times of peptides identified fra@vpus
LC-MS/MS analyses of HMEC proteins under a range of
experimental conditions Chenal. (2003); Jacobst al. (2004); Liu

et al. (2005, 2004) was used as a base reference database for the LC-

0 50 100
GO term

150

200 FTICR measurements in this study. The existing HMEC dabas
was further enriched by conducting additional two dimenaid.C-
MS/MS analysis as described previouslylét al. (2004); Qian

Fig. 1. Evaluating significance of GO enrichment. The solid curvewsh et al. (2005), using375.g of HMEC protein pooled from each of

the number of terms found in a particular proportion of restal he dashed
curve depicts the null distribution assuming a binomiatriistion (enriched

v non-enriched).

2.2 Transcriptome Analysis

time point samples in this study. Proteins from each of tigtei
lysates were digested separately and differentially &belsing
post-digestion trypsin-catalyzed 160-t0-180 exchange dtial.
(2004). The control sample (0 hr) was labeled with 160 anthall
other samples were labeled with 180. Samples were analyzeg u
an Apex lll 9.4-T FTICR mass spectrometer (Bruker Doltonics
Billerica, MA) and the LC-FTICR data analysis was conducted
as previously described Qiagt al. (2005). Briefly, the initial
analysis of raw LC-FTICR data involved a mass transfornmatio

Cells were lysed and total RNA harvested using RNeasy (Qiage deisotoping step using in house software (ICR2LS). The ICR2
Valencia, CA). RNA expression profiles were generated usinganalysis generates a text file report for each LC-FTICR data s
Nimblegen whole genome 60-mer oligonucleotide arrays iides which includes the monoisotopic masses and the correspgpndi
Version 200310.27) which contains 38,108 features (Nimblegen, intensities for all detected species for each spectrumholrse
Madison, WI), with hybridizations carried out in tripliest (3  software (VIPER) was used to detect LC-MS features (i.e., a
technical replicates). Raw intensity data were procesgepiantile  peak with uniqgue mass and elution times) and assign them to
normalisation Bolstadt al. (2003), pairwise analysis of variance peptides in the AMT database. Data processing steps irgtlude
using a significance level of < 0.01 Kerr et al. (2004) and filtering data based on isotopic fitting, finding features gadts
calculation of false discovery rate Benjamini and Hochl{@&g95). of features, computing abundance ratios for pairs of featur
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(160:180), normalizing LC elution times, and matching the probabilities. A plot of the BIC versu&™ (and.J in the protein case)
accurate measured masses (+ 5 ppm) and NET (+ 2%) valuedof eacan be seen in figure 2. For each number of components, tantsest
feature to the corresponding mass and time tag in the daabas were used with different random initial conditions. We areling
identify peptide sequences. All identified peptides wesbggmed an  for the model with lowest BIC and whilst we can see that there i
identical probability of 1.0 and entered into ProteinPrefdoftware  no clear number of components in either case, it seems taed th
Nesvizhskiiet al. (2003) to remove redundant proteins. Protein are slightly more components in the protein model than mRN& a
abundance ratios were calculated as an average of the @eptidhat the numbers look to be somewhere in the regioli 6f 15 and
isotopic ratios after removing outliers using Grubb’s test J = 20. These are the values that we will use in our analysis.
In addition to using BIC, we experimented with Dirichlet
Process (DP) priors for the individual cluster models. Tosterior
3 EXPERIMENTAL DETAILS distribution over the number of components when using a Dé pr
; S is highly sensitive to the base measure and concentrati@myeer
3.1 Datapreparation and normalisation (Medvedovic and Sivaganesan, 2002, for example). We used th
mRNA and protein profiles were aligned by merging the REFSEQgtandard Normal-Inverse-Wishart prior as our base measiits
MRNA accession with the protein PPI ID and REFSEQ accessior&onjugacy to the Gaussian means we were able to marginalise o
using MATCHMINER Busseyet al. (2003). Positive matches were  the model parametersu(, $;) to improve convergence. Under
found for 1458 out of the 1687 proteins measured by LC-FTICR.3 wide range of hyper-parameter and concentration paramete
These 1458 proteins correspond to 1595 mRNAs. Proteins WlﬂéettingS’ we found that the mode of the posterior over nurober
missing values were discarded, leaving 542 mRNA-proteinspa components was always betwegh = 14 and K = 20 for the
One benefit of probabilistic clustering is the ability to b 1 \RNA data and a similar range for the proteomic data with
missing values, however for this analysis, we decided t@rices  generally slightly higher thar. This is in broad agreement with

ourselves to the complete data. The values &t 0 were omitted  the values chosen via BIC. One particular posterior distidn can
from both datasets and, following Watestsal. (2008), thet = 15 e seen in figure 3.

minutes data was removed for the mRNA data as they were eutsid
acceptable normalisation standards. Both datasets wemgatised

so that for each gene, the mean mRNA and protein levels weoe ze

with standard deviation 1. 1

[ ImRNA (K)
Il Protein (J)

3.2 Calculating GO enrichments

Each gene was labeled with Gene Ontology (GO) annotatiang us
the REFSEQ mRNA accession and gene names using GeneToc
Beisvaget al. (2006). Enrichment significance was calculated using
the one-sided mid p-value (see Rivelsl. (2007), p.403). Each test
was corrected for multiple testing by multiplying by the roen of
tests performed. A p-value cutoff of 0.1 was used throughout
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3.3 Determining the number of clusters

Determining a good value for the number of components in a
mixture model is non-trivial. The model likelihood will inease
indefinitely as the number of components increases. Outropka
likelihood (from, for example, cross validation) will natdrease
indefinitely but leaving data out when we have a limited qifgant
and some of the clusters may be quite small is likely to givergd
variance in the resulting value. An alternative is to useBhagesian
information criteria, (BIC) defined as

0.2

G " [ L

16 17 18 19 20
Number of components

21

Fig. 3. Posterior distribution over number of components for il
Gaussian mixtures over the mRNA and proteomic data with &ciidat

BIC = —2log L + Plog(G)

where log L is the log-likelihood of the fitted model (given by
equation 1),G is the sample size (number of genes) dnds the

Process prior for one particular setting of the base measyreer-
parameters. The distributions over a wide range of hypearpeter and
concentration parameter values are roughly consistertt wie results
obtained using the BIC.

total number of parameters being estimated. Note that shika
value of the model likelihood and not the bound. Searchingr ov
the K x J space for the coupled model is somewhat unwieldy.
Therefore, we will evaluate the number of components of unext
models - this is an approximation but, as the BIC score is gaiyg

to give an approximate number of components anyway it simduld
be too limiting. The number of parameters is theref&f& + 2K
where the first term corresponds to the component mean getar
the second term to the component variances and the priorauenp

3.4 Comparing clusterings

To compare the clusterings obtained by individually cltstp
the data types separately, we used the modified Rand index (fo
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Fig. 2. Bayesian Information Criterion as a function of the numb@oonponents for a Gaussian mixture model trained on the mB#A (left) and proteomic

data (right). The results suggest values of approximatély 15 and.J = 20.

example, Meila (2007)). The standard Rand index is given as

a+b

)

T =

the mRNA data K = 15 clusters - the number of clusters present
was determined using the Bayesian Information Criterid€jBsee
methods section for details) and one on the proteomics dataZ0
clusters). Uncertainties are obtained by running the BEegbien
Maximisation (EM) algorithm for Gaussian mixtures with g
different random initialisations. Next to this, labelparmuted is

wherea is the number of pairs of genes that are assigned to théhe modified Rand index if we randomise the order of the gemes i

same cluster in both the mRNA and protein clusteringstaisdhe
number of pairs of genes that are assigned to differenterisish
both the mRNA and protein clusterings. The modified Randxnde
is a slightly modified version of this statistic that tramsfis the
statistic to have an expected value of zero. A more compsien
discussion can be found in Meila (2007).

4 ADDITIONAL RESULTS

4.1 Preliminary experiments- basic analysis

Before looking at results from the coupled model, we begithwi
some illustrative examples that demonstrate the probleritis w

simply concatenating the data together and motivate a awedbi
analysis such as that seen in this paper.

411 Cluster similarity Firstly, it is illuminating to cluster the
genes by their mRNA profiles and their protein profiles seteéra
to see how similar the resulting partitions are. To meashee t
similarity between two clusterings we use the modified Rauigx
(see for example Meila (2007), details given in methodsisekt
The higher the value, the more similar are the partitionateat by
the clustering, with a maximum of 1 if the two are identical. |
figure 4 (left panel, labeletiue) we show the values of the modified
Rand index for comparisons between a Gaussian mixture noodel

the protein clustering. Hence, this lower box provides asuea

of similarity if the partitioning is randomised whilst réténg the
same cluster sizes. We can see that the true clusteringsae m
similar than the true mRNA one is with the randomised proteies,
suggesting the presence of some structure. To put thesesvafu
the Rand index into perspective, the right panel of figure @lwsh
the value when the mRNA clustering is compared against itgti

an increasing number of gene swaps (i.e. switching the ms&igts

of two randomly selected genes where genes can be selected mo
than once). As more swaps are made, we would expect the gtynila
to decrease. With 0 swaps, the modified Rand index is 1 as the
mRNA clustering is clearly identical to itself. Around 80@/aps

are required to achieve a value similar to that observed dziw
partitions created by mRNA and protein clusterings, subhugs
high diversity between expression at the mRNA and proteialse
Therefore, there is only a small similarity between a clisteof
genes obtained from their mRNA profiles and one obtained from
their protein profiles. These results suggest that conattenthe
data would be rather foolish. If the clusterings were vermyilsir,

we could hypothesize that when concatenated, there would be
approximately the same number of clusters as in the origiualel

(i.e. approximately 20). However, the large dissimilatigtween
the partitions produced by the two data types suggests tlaage
number of the mRNA cluster, protein cluster combinationsiide
present. Feasibly, the number of clusters could be as larfesa.
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Given the number of geneé& ~ 500, this is impractical. Despite
the computational problems that this would represent, leshvbw
in the next section that a lot of the individual clusters havene
biological relevance (as measured by enrichment of gersagyt
(GO) terms) that would be lost if we subdivided them to sucirgd
extent.
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Fig. 4. Comparison of clusterings achieved with mRNA data and prote
data with a null distribution obtained by re-ordering genesprotein
clustering (left panel). Comparison of MRNA clustering hwitself after a
number of random gene swaps. The true values seen in thetedt pequire
of the order of 800 swaps.

412 Gene ontology enrichment Computing the number of
enriched GO terms in the individual and a concatenatedesinst
allows us to see if anything is lost through concatenatipn.
values for enrichment of GO terms are calculated as destiibe

methods section, we described how the coupled mixture model
could be thought to exist on the spectrum between two exgeme
corresponding to concatenating the data (MRNA and probesters
would have a one-to-one relationship) and independentecing
(mRNA profile provides no information about protein profileda
vice-versa). We can see from these results that we are far fro
the concatenated scenario - i.e. knowledge of the mRNA profil
of a gene (i.e. which cluster it belongs to) does not tell usctvh
cluster its protein profile it belongs to. Rather, our apphogeveals
a complex network of associations that seems to be chaiseddyy
multiple and probabalistic relationships. While as we shmmlow
there is a recognizable structure behind many of thesearsitips,
there is no universal principle that links transcriptiortrenslation.
This has implications in a large volume of biological reskar
where the mRNA profile is often taken to be a suitable proxy for
the activity of its respective protein. For the genes suldiere,
the relationship between mRNA and protein profile appeaghlyi
complex, and in the most part not directly correlated. Important
to bear in mind that despite its volume exceeding that of istoslies
this data spans only a small subset of the genome and protdame
such due care should be taken when extrapolating any obiesza
Another way in which we can see the complexity of the
relationship between the mRNA and protein profiles is by
computing the entropy of the coupling distributiop(j|k)
and that of the reversed coupling distribution(k|j)
p(ilk)p(k)/ (>, p(jlk )p(K')), computed from Bayes theory. We
average the entropy for eaplj|k) overk to give

B_ _% Zzp(ﬂk) log, p(j|k)

Particularly, we can compare the entropy for the inferretlies
with that for a coupled model trained with the order of genes i
the protein data permuted. If there are strong relatiossh@iween
mRNA and protein components, we would expect a low entropy
(F 0 corresponds to the concatenated model, the maximum
value of E for p(j|k) is 4.32 and forp(k|j) is 3.91). Performing
this comparison over 100 random restarts of the algorithach(e

of which had a different protein order) we can see the derdity

the methods section. Figure 5(a) shows the number of emticheentropy values fop(j|k) andp(k|5) in figure 7. In both cases, we

terms for individual clusterings and a concatenated dlumge
These results are interesting in themselves. For exameig,few
cellular location GO terms are enriched in the mRNA clusigri
compared to the protein clustering. It also looks as though t
concatenated method performs favorably compared with wlee t
individual methods. However, the terms found in the twovrdiial

see that the true entropy is slightly higher than that forpéenuted
data although the difference is not as high as one might €xphkis
can partly be explained by the low number of clusters in the tw
data sets taken individually - if we reorder the proteins,wilebe
swapping quite a few for others with similar profiles. Therepy
significantly deviates from the least informative end of Huale

clusterings are not the same. In figure 5(b), we show the numbegp = 4.32 and E = 3.91 respectively) although the models are
of unique terms found when combining the terms from the twosomewhat closer to this than to complete order 0).

individual models. This is far higher than the number fouodthe
concatenated model. Hence, clustering the two data typesately
produces different biologically meaningful clusters, soafi which
are lost if the data are concatenated.

4.2 The coupled mixture model - high level
observations

It is important to point out that the small decrease in entrop
between the true model and a permuted model in each case does
not mean that no structure is present. It is more indicativkefact
that genes are organised into large clusters at the mRNArabeip
levels but much smaller clusters (typically 10 genes anéfewhen
the data is considered together.

Figure 6 shows the mRNA and protein clusters produced by the

joint model and links between them for whigi(j|k) > 0.1.

The complexity is immediately apparent - most mRNA clustersBand, V. and Sager, R. (1989).

are very strongly linked to at least two protein clusters.the
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