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ABSTRACT
Motivation: Modern transcriptomics and proteomics enable us to
survey the expression of RNAs and proteins at large scales. While
these data are usually generated and analysed separately, there is
an increasing interest in comparing and co-analysing transcriptome
and proteome expression data. A major open question is whether
transcriptome and proteome expression is linked and how it is
coordinated.
Results: Here we have developed a probabilistic clustering model
that permits analysis of the links between transcriptomic and
proteomic profiles in a sensible and flexible manner. Our coupled
mixture model defines a prior probability distribution over the
component to which a protein profile should be assigned conditioned
on which component the associated mRNA profile belongs to. By
providing probabilistic assignments this approach sits between the
two extremes of concatenating the data on the assumption that
mRNA and protein clusters would have a one-to-one relationship,
and independent clustering where the mRNA profile provides no
information on the protein profile and vice-versa. We apply this
approach to a large dataset of quantitative transcriptomic and
proteomic expression data obtained from a human breast epithelial
cell line (HMEC) stimulated by epidermal growth factor (EGF) over
a series of timepoints corresponding to one cell cycle. The results
reveal a complex relationship between transcriptome and proteome
with most mRNA clusters linked to at least two protein clusters,
and vice versa. A more detailed analysis incorporating information
on gene function from the gene ontology database shows that a
high correlation of mRNA and protein expression is limited to the
components of some molecular machines, such as the ribosome, cell
adhesion complexes and the TCP-1 chaperonin involved in protein
folding.

∗to whom correspondence should be addressed

Conclusions: The dynamic regulation of the transcriptome and
proteome in mammalian cells in response to an acute mitogenic
stimulus appears largely independent with very little correspondence
between mRNA and protein expression. The exceptions involve a
few selected multi-protein complexes that require the stoichiometric
expression of components for correct function. This finding has
wide ramifications regarding the understanding of gene and protein
expression including its control and evolution. It also shows that
transcriptomic and proteomic expression analysis are complementary
and non-redundant.

1 ADDITIONAL MODEL DETAILS, PARAMETER
INFERENCE AND IMPLEMENTATION DETAILS

1.1 Covariance function parameterisation
We do not work with full covariance matrices. Rather we assume
diagonal covariance matrices with a single variance parameter (Σ =
σ2

I). We are thus assuming that there is no time-correlation andthat
the level of noise remains unchanged throughout the time series.
Incorporating correlation over time is clearly an interesting area for
future development. However, fitting full covariance matrices with
the quantity of data available was not feasible and so investigating
alternative approaches is necessary (for example, one of the methods
discussed above). The assumption that the level of noise is constant
through time seems rather less limiting. It might be argued that
we should expect noise to increase during the experiment as cells
lose their synchronisation - however, we found that parameterising
the covariance matrix with a separate variance parameter for each
time point or weighting the variance such that it increases over time
(Σ = diag(σ2

1 , . . . , σ2

T ) or Σ = diag(σ2, a1σ
2, . . . , aT−1σ

2)
with aT−1 ≥ aT−2 ≥ · · · ≥ a1) made no qualitative difference
to the results obtained.
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1.2 Parameter inference
The expectation-maximisation (EM) algorithm Dempsteret al.
(1977) can be used to find model parameters and cluster assignments
corresponding to a local maximum of the model likelihood. The log
likelihood is given by
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where we have omitted them andp superscripts from the model
parameters -µk and σ2

k will always refer to parameters from
the mRNA mixture and vice-versa. To derive the necessary EM
update equations, we first introduce the variational distributionQgk

such that
P

k
Qgk = 1 that can be interpreted as the mRNA

cluster membership probabilities for thegth gene. Introducing these
distributions and applying Jensen’s inequality produces the lower
bound on the log likelihood given in equation 2.
Because of the summation within the log in the final term
of equation 2, we must introduce a second set of variational
distributions,γjkg such that

P

j
γjkn = 1 that can be interpreted as

the probability that the protein profile for geneg is in clusterj given
that its mRNA profile is in clusterk. Our final bound is given in
equation 3. . Taking partial derivatives of this bound with respect to
the variational parameters produces the following two updates that
make up the E-step of our algorithm
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It is important to note that in deriving 5, we have used 4 and soγjkg

should always be updated beforeQgk in the E-step. The M-step
consists of the following updates, derived by taking partial derivates
of the bound with respect to the model parameters
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where the subscriptt denotes thetth element of a vector andT is
the total number of timepoints (i.e. the length ofx).

To summarise, the EM algorithm for the coupled mixture model
is

1. Initialise the model parameters (more details provided in the
next section)

2. Perform the E-step described by equations 4 and 5

3. Perform the M-step described by equations 6 to 11

4. Compute the change in the value of the lower bound on the
log likelihood given in 3. If this is less than a predetermined
threshold, stop, otherwise return to 2.

Initialisation and re-starting
The EM algorithm finds a local maximum of the likelihood
function and as such is sensitive to initial conditions. To overcome
this problem, we ran the algorithm with 100 different random
initialisations and kept the one that gave the highest valueof the
lower bound on the log likelihood.

Reproducibility
Testing the reproducibility of the results is not easy due tothe
symmetry of the likelihood to permutations of the componentlabels
(j andk). To ensure that the results generated by the model were
reproducible, we tested the consistency of the GO terms thatwere
found to be enriched. Using 100 random initialisations, we extracted
GO terms that were significantly (p <= 0.1) enriched in either
mRNA clusters, protein clusters or both and then computed the
frequency of occurrence of each term. Approximately 50 terms were
enriched for each initialisation which, when combined, results in
473 unique terms. Assuming independence across terms we can
model the number of times we might expect a term to appear
with the binomial distribution with success probability50/473. In
figure 1 we show the observed frequency of occurence along with
a curve produced from the binomial cdf. We can clearly see that a
vast number of terms (∼ 100) are observed more frequently than
one would expect at random. Under the binomial assumption, the
probability of a particular term appearing in all 100 initialisations
(we observe 8 such terms) is approximately3 × 10−98.

2 THE DATA

2.1 Cells
The human mammary epithelial cell line HMEC, strain 184A1,
Stampfer and Yaswen (1993) was used in this study. This cell
line is non-tumorigenic and resembles normal breast epithelial cells
Stampfer and Yaswen (1993). Cells were routinely cultured in
DHFB-I medium supplemented with 12.5 ng/ml EGF as described
Band and Sager (1989). All other reagents were of cell culture
grade or higher quality For experiments the cells were placed in
culture medium without serum and growth factors for 48 hoursin
order to induce growth arrest and synchronise the population in the
quiescent state G0. Proliferation and mitogenesis was induced by
treatment with 10ng/ml EGF. This results in cells progressing into
S-phase (doubling of DNA content) and mitosis, 12 and 18 hours,
respectively, after EGF stimulation. Samples were taken atthe 0,
0.25, 1, 4, 8, 13, 18 and 24 hrs and profiled for RNA and protein
expression as described below.
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Fig. 1. Evaluating significance of GO enrichment. The solid curve shows
the number of terms found in a particular proportion of restarts. The dashed
curve depicts the null distribution assuming a binomial distribution (enriched
v non-enriched).

2.2 Transcriptome Analysis
Cells were lysed and total RNA harvested using RNeasy (Qiagen,
Valencia, CA). RNA expression profiles were generated using
Nimblegen whole genome 60-mer oligonucleotide arrays (Design
Version 200310 27) which contains 38,108 features (Nimblegen,
Madison, WI), with hybridizations carried out in triplicates (3
technical replicates). Raw intensity data were processed by quantile
normalisation Bolstadet al. (2003), pairwise analysis of variance
using a significance level ofp < 0.01 Kerr et al. (2004) and
calculation of false discovery rate Benjamini and Hochberg(1995).

2.3 Proteomics Analysis
Protein expression was profiled using the accurate mass and
time (AMT) tag approach Smithet al. (2002). Capillary liquid
chromatography (LC) was used to separate peptides and Fourier-
transform ion cyclotron resonance-mass spectrometry (FTICR-
MS) was used for high mass accuracy measurements for
peptide identification and quantification. An existing AMT tag
database encompassing the monoisotopic masses and normalized
chromatographic elution times of peptides identified from previous
LC-MS/MS analyses of HMEC proteins under a range of
experimental conditions Chenet al. (2003); Jacobset al. (2004); Liu
et al. (2005, 2004) was used as a base reference database for the LC-
FTICR measurements in this study. The existing HMEC database
was further enriched by conducting additional two dimensional LC-
MS/MS analysis as described previouslyLiuet al. (2004); Qian
et al. (2005), using375µg of HMEC protein pooled from each of
time point samples in this study. Proteins from each of the eight
lysates were digested separately and differentially labeled using
post-digestion trypsin-catalyzed 16O-to-18O exchange Liu et al.
(2004). The control sample (0 hr) was labeled with 16O and allthe
other samples were labeled with 18O. Samples were analyzed using
an Apex III 9.4-T FTICR mass spectrometer (Bruker Doltonics,
Billerica, MA) and the LC-FTICR data analysis was conducted
as previously described Qianet al. (2005). Briefly, the initial
analysis of raw LC-FTICR data involved a mass transformation or
deisotoping step using in house software (ICR2LS). The ICR2LS
analysis generates a text file report for each LC-FTICR data set
which includes the monoisotopic masses and the corresponding
intensities for all detected species for each spectrum. In-house
software (VIPER) was used to detect LC-MS features (i.e., a
peak with unique mass and elution times) and assign them to
peptides in the AMT database. Data processing steps included
filtering data based on isotopic fitting, finding features andpairs
of features, computing abundance ratios for pairs of features
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(16O:18O), normalizing LC elution times, and matching the
accurate measured masses (+ 5 ppm) and NET (+ 2%) values of each
feature to the corresponding mass and time tag in the database to
identify peptide sequences. All identified peptides were assigned an
identical probability of 1.0 and entered into ProteinProphet software
Nesvizhskii et al. (2003) to remove redundant proteins. Protein
abundance ratios were calculated as an average of the peptide
isotopic ratios after removing outliers using Grubb’s test.

3 EXPERIMENTAL DETAILS

3.1 Data preparation and normalisation
mRNA and protein profiles were aligned by merging the REFSEQ
mRNA accession with the protein PPI ID and REFSEQ accession
using MATCHMINER Busseyet al. (2003). Positive matches were
found for 1458 out of the 1687 proteins measured by LC-FTICR.
These 1458 proteins correspond to 1595 mRNAs. Proteins with
missing values were discarded, leaving 542 mRNA-protein pairs.
One benefit of probabilistic clustering is the ability to handle
missing values, however for this analysis, we decided to restrict
ourselves to the complete data. The values att = 0 were omitted
from both datasets and, following Waterset al. (2008), thet = 15
minutes data was removed for the mRNA data as they were outside
acceptable normalisation standards. Both datasets were normalised
so that for each gene, the mean mRNA and protein levels were zero
with standard deviation 1.

3.2 Calculating GO enrichments
Each gene was labeled with Gene Ontology (GO) annotations using
the REFSEQ mRNA accession and gene names using GeneTools
Beisvaget al. (2006). Enrichment significance was calculated using
the one-sided mid p-value (see Rivalset al. (2007), p.403). Each test
was corrected for multiple testing by multiplying by the number of
tests performed. A p-value cutoff of 0.1 was used throughout.

3.3 Determining the number of clusters
Determining a good value for the number of components in a
mixture model is non-trivial. The model likelihood will increase
indefinitely as the number of components increases. Out of sample
likelihood (from, for example, cross validation) will not increase
indefinitely but leaving data out when we have a limited quantity
and some of the clusters may be quite small is likely to give a large
variance in the resulting value. An alternative is to use theBayesian
information criteria, (BIC) defined as

BIC = −2 log L + P log(G)

where log L is the log-likelihood of the fitted model (given by
equation 1),G is the sample size (number of genes) andP is the
total number of parameters being estimated. Note that this is the
value of the model likelihood and not the bound. Searching over
the K × J space for the coupled model is somewhat unwieldy.
Therefore, we will evaluate the number of components of mixture
models - this is an approximation but, as the BIC score is onlygoing
to give an approximate number of components anyway it shouldn’t
be too limiting. The number of parameters is thereforeKT + 2K
where the first term corresponds to the component mean vectors and
the second term to the component variances and the prior component

probabilities. A plot of the BIC versusK (andJ in the protein case)
can be seen in figure 2. For each number of components, ten restarts
were used with different random initial conditions. We are looking
for the model with lowest BIC and whilst we can see that there is
no clear number of components in either case, it seems that there
are slightly more components in the protein model than mRNA and
that the numbers look to be somewhere in the region ofK = 15 and
J = 20. These are the values that we will use in our analysis.

In addition to using BIC, we experimented with Dirichlet
Process (DP) priors for the individual cluster models. The posterior
distribution over the number of components when using a DP prior
is highly sensitive to the base measure and concentration parameter
(Medvedovic and Sivaganesan, 2002, for example). We used the
standard Normal-Inverse-Wishart prior as our base measureas its
conjugacy to the Gaussian means we were able to marginalise out
the model parameters (µk,Σk) to improve convergence. Under
a wide range of hyper-parameter and concentration parameter
settings, we found that the mode of the posterior over numberof
components was always betweenK = 14 and K = 20 for the
mRNA data and a similar range for the proteomic data withJ
generally slightly higher thanK. This is in broad agreement with
the values chosen via BIC. One particular posterior distribution can
be seen in figure 3.
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Fig. 3. Posterior distribution over number of components for individual
Gaussian mixtures over the mRNA and proteomic data with a Dirichlet
Process prior for one particular setting of the base measurehyper-
parameters. The distributions over a wide range of hyper-parameter and
concentration parameter values are roughly consistent with the results
obtained using the BIC.

3.4 Comparing clusterings
To compare the clusterings obtained by individually clustering
the data types separately, we used the modified Rand index (for
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example, Meila (2007)). The standard Rand index is given as

r =
a + b
 

G

2

!

wherea is the number of pairs of genes that are assigned to the
same cluster in both the mRNA and protein clusterings andb is the
number of pairs of genes that are assigned to different clusters in
both the mRNA and protein clusterings. The modified Rand index
is a slightly modified version of this statistic that transforms the
statistic to have an expected value of zero. A more comprehensive
discussion can be found in Meila (2007).

4 ADDITIONAL RESULTS

4.1 Preliminary experiments - basic analysis
Before looking at results from the coupled model, we begin with
some illustrative examples that demonstrate the problems with
simply concatenating the data together and motivate a combined
analysis such as that seen in this paper.

4.1.1 Cluster similarity Firstly, it is illuminating to cluster the
genes by their mRNA profiles and their protein profiles separately
to see how similar the resulting partitions are. To measure the
similarity between two clusterings we use the modified Rand index
(see for example Meila (2007), details given in methods section).
The higher the value, the more similar are the partitions created by
the clustering, with a maximum of 1 if the two are identical. In
figure 4 (left panel, labeledtrue) we show the values of the modified
Rand index for comparisons between a Gaussian mixture modelon

the mRNA data (K = 15 clusters - the number of clusters present
was determined using the Bayesian Information Criterion (BIC), see
methods section for details) and one on the proteomics data (J = 20
clusters). Uncertainties are obtained by running the Expectation
Maximisation (EM) algorithm for Gaussian mixtures with twenty
different random initialisations. Next to this, labeledpermuted is
the modified Rand index if we randomise the order of the genes in
the protein clustering. Hence, this lower box provides a measure
of similarity if the partitioning is randomised whilst retaining the
same cluster sizes. We can see that the true clusterings are more
similar than the true mRNA one is with the randomised proteinones,
suggesting the presence of some structure. To put these values of
the Rand index into perspective, the right panel of figure 4 shows
the value when the mRNA clustering is compared against itself with
an increasing number of gene swaps (i.e. switching the assignments
of two randomly selected genes where genes can be selected more
than once). As more swaps are made, we would expect the similarity
to decrease. With 0 swaps, the modified Rand index is 1 as the
mRNA clustering is clearly identical to itself. Around 800 swaps
are required to achieve a value similar to that observed between
partitions created by mRNA and protein clusterings, suggesting a
high diversity between expression at the mRNA and protein levels.
Therefore, there is only a small similarity between a clustering of
genes obtained from their mRNA profiles and one obtained from
their protein profiles. These results suggest that concatenating the
data would be rather foolish. If the clusterings were very similar,
we could hypothesize that when concatenated, there would be
approximately the same number of clusters as in the originalmodel
(i.e. approximately 20). However, the large dissimilaritybetween
the partitions produced by the two data types suggests that alarge
number of the mRNA cluster, protein cluster combinations would be
present. Feasibly, the number of clusters could be as large asK×J .
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Given the number of genes,G ≈ 500, this is impractical. Despite
the computational problems that this would represent, we will show
in the next section that a lot of the individual clusters havesome
biological relevance (as measured by enrichment of gene ontology
(GO) terms) that would be lost if we subdivided them to such a large
extent.
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Fig. 4. Comparison of clusterings achieved with mRNA data and proteomic
data with a null distribution obtained by re-ordering genesin protein
clustering (left panel). Comparison of mRNA clustering with itself after a
number of random gene swaps. The true values seen in the left panel require
of the order of 800 swaps.

4.1.2 Gene ontology enrichment Computing the number of
enriched GO terms in the individual and a concatenated clustering
allows us to see if anything is lost through concatenation.p-
values for enrichment of GO terms are calculated as described in
the methods section. Figure 5(a) shows the number of enriched
terms for individual clusterings and a concatenated clustering.
These results are interesting in themselves. For example, very few
cellular location GO terms are enriched in the mRNA clustering
compared to the protein clustering. It also looks as though the
concatenated method performs favorably compared with the two
individual methods. However, the terms found in the two individual
clusterings are not the same. In figure 5(b), we show the number
of unique terms found when combining the terms from the two
individual models. This is far higher than the number found for the
concatenated model. Hence, clustering the two data types separately
produces different biologically meaningful clusters, some of which
are lost if the data are concatenated.

4.2 The coupled mixture model - high level
observations

Figure 6 shows the mRNA and protein clusters produced by the
joint model and links between them for whichp(j|k) > 0.1.
The complexity is immediately apparent - most mRNA clusters
are very strongly linked to at least two protein clusters. Inthe

methods section, we described how the coupled mixture model
could be thought to exist on the spectrum between two extremes
corresponding to concatenating the data (mRNA and protein clusters
would have a one-to-one relationship) and independent clustering
(mRNA profile provides no information about protein profile and
vice-versa). We can see from these results that we are far from
the concatenated scenario - i.e. knowledge of the mRNA profile
of a gene (i.e. which cluster it belongs to) does not tell us which
cluster its protein profile it belongs to. Rather, our approach reveals
a complex network of associations that seems to be characterised by
multiple and probabalistic relationships. While as we showbelow
there is a recognizable structure behind many of these relationships,
there is no universal principle that links transcription totranslation.
This has implications in a large volume of biological research
where the mRNA profile is often taken to be a suitable proxy for
the activity of its respective protein. For the genes studied here,
the relationship between mRNA and protein profile appears highly
complex, and in the most part not directly correlated. It is important
to bear in mind that despite its volume exceeding that of moststudies
this data spans only a small subset of the genome and proteome. As
such due care should be taken when extrapolating any observations.

Another way in which we can see the complexity of the
relationship between the mRNA and protein profiles is by
computing the entropy of the coupling distributionp(j|k)
and that of the reversed coupling distributionp(k|j) =
p(j|k)p(k)/(

P

k′ p(j|k′)p(k′)), computed from Bayes theory. We
average the entropy for eachp(j|k) overk to give

E = −
1

K

X

k

X

j

p(j|k) log
2
p(j|k)

Particularly, we can compare the entropy for the inferred values
with that for a coupled model trained with the order of genes in
the protein data permuted. If there are strong relationships between
mRNA and protein components, we would expect a low entropy
(E = 0 corresponds to the concatenated model, the maximum
value ofE for p(j|k) is 4.32 and forp(k|j) is 3.91). Performing
this comparison over 100 random restarts of the algorithm (each
of which had a different protein order) we can see the densityof
entropy values forp(j|k) andp(k|j) in figure 7. In both cases, we
see that the true entropy is slightly higher than that for thepermuted
data although the difference is not as high as one might expect. This
can partly be explained by the low number of clusters in the two
data sets taken individually - if we reorder the proteins, wewill be
swapping quite a few for others with similar profiles. The entropy
significantly deviates from the least informative end of thescale
(E = 4.32 andE = 3.91 respectively) although the models are
somewhat closer to this than to complete order (E = 0).

It is important to point out that the small decrease in entropy
between the true model and a permuted model in each case does
not mean that no structure is present. It is more indicative of the fact
that genes are organised into large clusters at the mRNA and protein
levels but much smaller clusters (typically 10 genes and fewer) when
the data is considered together.
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Fig. 5. (a) Number of enriched GO terms for individual mRNA clustering (M), individual proteomic clustering (P) and concatenated clusterings (C). (b)
Number of unique terms when we combine terms from individualclusterings (M+P) versus those for concatenated clustering C.
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Fig. 6. mRNA (left/top) and protein clusters (right/bottom) with links shown wherep(j|k) > 0.1.
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Fig. 7. Distribution of mean entropy values ofp(j|k) (a) andp(k|j) (b). In both cases the shaded (left hand) curve corresponds to the true value and
the value from permutations. A value of 0 would correspond toconcatenated clustering and maximum values, corresponding to p(j|k) = 1/J ∀J and
p(k|j) = 1/K ∀K are 4.32 and 3.91 respectively.
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