
Supplemental Materials 1 

Section 1: Refractive Broadening 2 

This section of the supplement describes the 3 

background and methodology of extracting the dipolar-4 

broadened linewidth of a resonance at high concentrations, 5 

where the measured lineshapes are affected by refractive 6 

broadening. This accounts for the same effect known as 7 

“propagation effect,” which the authors found treated similarly 8 

in literature following submission.
1
  Refractive broadening 9 

emerges in samples where the high concentration, large 10 

polarization and narrow linewidth cooperate to cause an 11 

extremely large change in sample susceptibility on resonance. 12 

This dramatic change in susceptibility alters the dielectric 13 

properties of the sample appreciably. When this occurs, the 14 

reflections from the sample are no longer simply proportional 15 

to the field-dependent susceptibility response as is the case at 16 

lower concentrations. As the 240 GHz EPR spectrometer 17 

measures the reflection from the sample (backed by a mirror), 18 

this means that when this occurs our measured signal is no 19 

longer identical to the field-dependent susceptibility response 20 

that we wish to measure. Therefore, we examine a method of 21 

determining the susceptibility response by explicitly 22 

calculating the reflection with the Fresnel equations. This 23 

allows us to approximate the shape of the susceptibility 24 

response that generated the measured reflection and use that to 25 

estimate the true dipolar-broadened linewidth. 26 

 27 
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 38 

1A) Calculation of Reflection from a Paramagnetic Sample 39 
We begin by examining the physical arrangement of our sample as shown in Fig. S1. We 40 

approximate a flat sample of thickness d on top of a mirror. This ignores the sample holder, 41 

which is made from Teflon, and thus should not have any response to the modulated field. This 42 

also ignores any asymmetry in sample geometry or meniscus formed in the sample. We expect 43 

that, while both effects may be present, this is still a sufficient approximation to develop an 44 

understanding of our spectra.  45 

 
Figure S1: Sample 

Geometry. Shows the 

simplified geometry used for 

the calculation for a sample 

of thickness d. This three 

media setup shows 

wavevectors KI and KR of the 

incident and reflected fields 

in the waveguide (with index  

ñ=1). K+ and K- are the 

wavevectors of forward and 

backward moving waves 

within the sample, which has 

a complex, frequency (/field) 

dependent index of refraction 

(  ). Finally, KT is the 

transmitted wave, which is 

assumed have zero amplitude 

as the sample is backed with 

a metallic mirror. Note the 

interfaces of the sample 

holder are ignored. 
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The problem is then reduced to a two interface problem where we must satisfy two 1 

boundary conditions. The first interface is between air and the sample for the incident and 2 

reflected waves (given by wavevectors KI and KR) and the two waves propagating within the 3 

sample (wavevectors K+ and K-). Additionally, the interface between the sample and mirror 4 

requires the transmitted wave (with wave vector KT) be zero.  It is then a straightforward 5 

calculation to express the reflection from this sample setup as a function of the sample’s 6 

permeability and permittivity. 7 
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 10 

is the reflected signal calculated from the Fresnel Equations
2
 and is a complex number 11 

containing the in- and out-of-phase response of the spins as X and Y respectively. ER and EI are 12 

the electric field strengths of the reflected and incident radiation respectively, ϕ is the phase 13 

acquired by millimeter-wave radiation when passing through the sample,     and    are the 14 

permittivity of and air and the sample respectively, and       and    are the permeability of air 15 

and the sample respectively. We can express the phase acquired in terms of the known 16 

parameters by    
  

 √    , where d is the sample thickness, and c is the speed of light. We 17 

make the (accurate) approximation that            . To determine the reflections we write 18 

          where           is the complex susceptibility, and we take          from the 19 

permittivity of frozen ice
3
. We approximate the susceptibility response as a simple Lorentzian for 20 

simplicity and so can write
4 21 
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where χ0 is the DC susceptibility of the spins, ωL is the electron Larmor frequency, ω is 24 

the irradiation frequency, and T2 is the width of the resonance. We emphasize here that T2 is only 25 

a manner of characterizing the resonance width of the susceptibility in our approximation of a 26 

homogeneous, Lorentzian lineshape and does not reflect the phase memory time in our samples. 27 

By calculating the expected susceptibility response as a function of    (which is given by the 28 

swept magnetic field) this yields   and       (also as a function of   ). Then the expected signal 29 

(real and imaginary parts) can be calculated as a function of   through Eq. S1, giving us a 30 

calculated spectrum to compare to those measured in experiment.  31 

Our input parameters for these calculations are            and d. It is clear that   is 32 

fixed by our irradiation frequency (2π•240 GHz) and    is fixed by the external magnetic field, 33 

which is swept around 8.6 T.   is fixed by the spin species (S=7/2 for Gd
3+

), concentration, 34 

temperature and magnetic field as follows
4
 35 
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where  N/V is the spin concentration, J is the spin quantum number, gj is the effective g-value of 5 

the spins (gj=1.992 for Gd
3+

),    is the Bohr Magneton,    is the  vacuum permeability,   
 

  
  6 

is the Boltzmann factor, and B is the external magnetic field.  7 

  8 

 9 

1B) Evaluating Calculated Spectra for r̄=1.78 nm Samples 10 
Estimation of parameters based on calculations are only carried out for the r̄=1.8 nm (50 11 

mM) samples, as mentioned in the manuscript. Although we find sample geometry affects the 12 

lineshape of the r̄=2.4 nm (20 mM) and the r̄=3.0 nm (10 mM) samples, it proved difficult to 13 

decisively determine estimates of the exact broadening parameter through comparison with 14 

calculation. Spectra that demonstrate notable deviations from a typical derivative lineshape are 15 

much easier to characterize. At lower concentrations the distinction between refractive 16 

broadening and “true” linewidth broadening becomes subtle. Thus, we recognize that refractive 17 

broadening is slightly broadening some spectra at r̄=2.41 nm (20 mM) and r̄=3.05 nm (10 mM), 18 

where some variability of lineshapes is still observed, but make no attempt to quantify the correct 19 

linewidth in these samples.  20 

Nominally, we have only 2 variable parameters, the sample thickness (d) and the 21 

resonance width (T2). However, the measurement of the magnetic field is done through 22 

calibration of the current in a superconducting sweep coil. Thus, the field calibration is not 23 

precise enough to be used without modification, and so we must introduce a shifting parameter to 24 

maximize overlap of the simulated to experimental spectrum. Finally, although the detection is 25 

done in quadrature, the absolute phase is not precisely defined and depends on sample 26 

temperature, room temperature and other parameters. Therefore, a 4
th

 parameter is necessary to 27 

match the phase shift of the collected data. In practice, the experimental spectra are first shifted 28 

by hand in post-processing to roughly display a pure absorption and dispersion lineshape by 29 

optimizing the symmetry of the spectra. Later, when calculated spectra are generated, their phase 30 

and field offsets are varied to achieve maximum overlap with the experimental spectra (as 31 

determined by the minimizing the difference between calculated and experimental spectra with 32 

the Error discussed below).  33 

 As the phase and field shift are not meaningful parameters for this work, we seek only to 34 

optimize them at each value of (     ), giving us a 2D parameter space to investigate. We adopt 35 

the brute force method of generating a series of spectra spanning the reasonable values of these 36 

two parameters and determining the error from the magnitude of the difference in real and 37 

imaginary parts, i.e. Error = 
∑ √(          )

 
 (          )

 
 

    
 38 

 39 

where X and Y represent the in phase and out of phase components, the subscripts Exp and Calc 40 

referring to experimentally taken spectrum, and spectrum generated from the calculation outlined 41 
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above. The summation symbol indicates summation over all the points in the spectrum and NPts 1 

is the number of data points. As the wings of the experimental lineshapes are not well described 2 

by Lorentzians, the error was only calculated for the center of the spectra, defined by edges just 3 

outside the extrema of the spectra. All the spectra (real and imaginary) are normalized by 4 

intensity before they are compared. 5 

We generated error landscapes for a range of parameters which reasonably covered the 6 

experimentally possibly configurations. Specifically, sample thicknesses out to ~3 mm were 7 

generally considered. However, no reasonable points were found beyond ~1.5 mm, which is 8 

consistent with our expectations from sample volumes and holders. The sample thickness, 9 

calculated based on the volumes assuming perfect, cylindrical packing were between 250 μm to 10 

1.25 mm in the larger sample holder (~4 mm inner diameter) and was ~2.5 mm for the small 11 

holder (~2 mm inner diameter). For the small sample holder (sample 4), the calculated sample 12 

thickness was ~10x smaller than 2.5 mm, suggesting this estimation is inaccurate for this sample 13 

setup. However, for the other samples (all measured in the larger sample holder), we find in 14 

general that larger volumes lead to larger calculated thicknesses. However, the trend is neither 15 

perfect, nor do the absolute thicknesses match, which can likely be explained by the fact that the 16 

approximation of a flat sample is poorly realized given the high sample viscosity encountered 17 

before freezing (resulting in a significant meniscus). While signal intensity does generally 18 

increase with increasing volume, effects due to sample geometry and the short wavelength 19 

compared to sample thickness (particularly for larger volumes) results in a nonlinear relationship 20 

between signal strength and volume, and some variability is encountered based on the quality of 21 

the loading. 22 

 23 

As a general principle, we wished to investigate the local minima with values near to that 24 

of the global minimum to determine if local minima provided better parameters estimates than 25 

the global minimum, and to gauge the degree of confidence in our parameter estimates. We 26 

restricted our investigation of minima to error values within 250% of the global minimum, to 27 

screen only local minima which provide good agreement with the experimental lines. Thus, 28 

much of the parameter space shown in forthcoming figures is “yellow” indicating a 29 

comparatively high error value. In all cases, excepting one, the global minimum was retained 30 

after reviewing the qualifying local minima. The evaluations of all five experiments are 31 

presented below with a brief discussion in each case evaluating the reasonableness of the 32 

parameters. In all cases, the parameters cited in the manuscript are those for the minima which 33 

are boxed and have a blue arrow. These parameters are then used to determine the linewidth of 34 

the susceptibility response, which is then the linewidth cited in the manuscript.  35 

 36 

Sample 1 37 

 The first sample (shown in Fig. S2A) has a spectrum showing substantial deviation from 38 

a single line, which generated an error landscape with a clear minimum value as shown in Fig. 39 

S2B. Although another local minimum exists (located at d~1.3 mm, T2~3.5 ns), the error value 40 

was more than 50% higher than the chosen global minimum, and only the global minimum 41 

reproduced the oscillations in the experimental lineshape well. Calculations with parameters near 42 

this local minimum resulted in spectra with broader features, which smoothed out the oscillations 43 

substantially. Thus, the robust global minimum located at d=928 μm and T2=4.8 ns was used, 44 

and the resulting calculated spectrum is shown in Fig. S2A.   45 

 46 
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Sample 2 1 

 The experimental spectrum for sample 2 is shown in Fig. S3A and does not display 2 

substantial deviations from a single line as was the case for sample 1, but rather is broadened by 3 

the effects from refractive broadening. Fig. S3B shows an error landscape with both a global and 4 

local minimum. Again, as expected from the error plots, we found that the local minimum 5 

offered a less reliable fit, especially in the wings of the spectrum, where it was substantially 6 

broader. Thus, the global minimum located at d=928 μm and T2=4.8 ns was used, and the 7 

resulting calculated spectrum is shown in Fig. S3A. However, the differences in lineshape 8 

between the local and global minimum are not as drastic as in the previous case, where obvious 9 

features were missing/obscured. 10 

 11 

Sample 3 12 

 The spectrum of the third sample is presented in Fig. S4A and leads to a complicated 13 

error landscape. Fig. S4B shows the error landscape with two different local minima in addition 14 

to the global minimum. Although the local minimum at d=524 μm and T2=3.9 ns produces a 15 

lineshape with a higher error in the central part of the spectrum (compared to the global 16 

minimum), it agrees slightly better in the wings. However, the two local minima and the global 17 

minimum generate spectra which look largely similar; there are no distinguishing features (such 18 

as oscillations) to help in discriminating between them. This helps demonstrate the subtlety of 19 

the problem in the case of ‘moderate’ effects from refractive broadening, where the effect causes 20 

some broadening of the line, but no dramatic change in the features. Essentially, the broadness of 21 

the line can then result either from refractive broadening (which depend strongly on sample 22 

thickness), or from dipolar broadening (which affects T2). Given that our experimental lines are 23 

already non-Lorentzian, we cannot distinguish well the best possible parameters easily. 24 

However, we note that the volume for this sample was roughly ½ of that employed in sample 1 25 

 
Figure S2: Sample 1. A: The real and imaginary parts of the experimental spectrum (Real 

Exp. and Imag. Exp. respectively) are plotted for sample 1 ( r̄=1.8 nm (50 mM)) along with 

the spectrum calculated from the best fit parameters shown in B (Real Calc. and Imag. Calc. 

respectively). B: The error landscape for the experimental spectrum shown in A is plotted. 

The unusual lineshapes provide a simple landscape with one clear, robust global minimum, 

which described the spectral features better than the visible local minimum. The values of the 

minimum are shown in the boxed inset text with blue arrow, which provides the parameters 

for the calculated spectrum shown in A.  
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(Fig. S2), using the same sample holder, making d~500 μm a more reasonable physical estimate 1 

of the thickness. Thus, facing the inability to clearly distinguish the quality of parameters purely 2 

from the spectral comparison we reason that that the local minimum at d=524 μm and T2=3.9 ns 3 

gives a result which is consistent in terms of thickness and has comparable T2 values with 4 

previous results. Therefore is used as the most reasonable parameter values as shown Fig. S4A. 5 

 6 

 7 

Sample 4 8 

The spectrum of the 4
th

 sample is shown in Fig. S5A. Although there are no dramatic 9 

deviations from a single line, the  error landscape in Fig. S5B offers a clear global minimum that 10 

describes the lineshape well. The nearby local minima offer the correct qualitative lineshape, but 11 

produce error values more than 50% great than the global minimum. In the absence of clear 12 

distinguishing features of the experimental spectrum (such as oscillations), it is difficult to 13 

determine the best spectrum by eye, and so we selected the global minimum at d=163 μm and 14 

T2=3.8 ns. Further, these local minima do not have substantially different T2 values than the 15 

global minimum, and so would not dramatically alter the estimated linewidth. 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 
Figure S3: Sample 2. A: The real and imaginary parts of the experimental spectrum (Real 

Exp. and Imag. Exp. respectively) are plotted for sample 2 ( r̄=1.8 nm (50 mM)) along with 

the spectrum calculated from the best fit parameters shown in B (Real Calc. and Imag. Calc. 

respectively). B: The error landscape for the experimental spectrum shown in A is plotted. 

with a nearby local minimum with a value within 50% of the global minimum (in the lower 

left of the error landscape). However, as described further in the text, the global minimum 

better described the spectrum and so was used. The values of the minimum are shown in the 

boxed inset text with blue arrow, and provide the parameters for the calculated spectrum 

shown in A.  
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 1 

Sample 5 2 

 The 5
th

 spectrum shows substantial deviations from a simple line as shown in Fig. S6A. 3 

However, the error landscape, shown in Fig. S6B shows a deep global minimum, and two local 4 

minima which also offer reasonable error values (at ~0.1 mm  and 1.3 mm). However, local 5 

minimum at d~0.1 mm does not produce any of the oscillations observed in the experimental 6 

spectra. Alternately, the local minimum at d~1.3 mm does present some oscilations, but they do 7 

not agree well with those observed in experiments. Thus, the global minimum at d=942 μm and 8 

T2=5.5 ns was used to determine the true linewidth in the presence of refractive broadening, as it 9 

describes the experimental spectrum well. 10 

 11 

 
Figure S4: Sample 3. A: The real and imaginary parts of the experimental spectrum (Real 

Exp. and Imag. Exp. respectively) are plotted for sample 3 ( r̄=1.8 nm (50 mM)) along with 

the spectrum calculated from the best fit parameters shown in B (Real Calc. and Imag. Calc. 

respectively). B: The error landscape for the experimental spectrum shown in A is plotted. 

The error landscape is more complicated than the previous two, with a two local minima 

which generate spectra similar to that of the global minimum.  Although unequivocally 

justifying one set of parameters was not possible, the local minimum at  d=524 μm and 

T2=3.9 ns is reasoned in the text to be most consistent with previous results and so was 

chosen. The values of this minimum are shown in the boxed inset text with blue arrow, and 

provide the parameters for the calculated spectrum shown in A.  
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 1 

 2 

 3 

 4 

 5 

 
Figure S5: Sample 4. A: The real and imaginary parts of the experimental spectrum (Real 

Exp. and Imag. Exp. respectively) are plotted for sample 4 ( r̄=1.8 nm (50 mM)) along with 

the spectrum calculated from the best fit parameters shown in B (Real Calc. and Imag. Calc. 

respectively). B: The error landscape for the experimental spectrum shown in A is plotted. 

This error landscape offers a clear global minimum which describes the lineshape well, while 

the local minima present errors more than 50% above that of the global minimum. The values 

of the minimum are shown in the boxed inset text with blue arrow, and provide the 

parameters for the calculated spectrum shown in A. 

 
Figure S6: Sample 5. A: The real and imaginary parts of the experimental spectrum (Real 

Exp. and Imag. Exp. respectively) are plotted for sample 5 ( r̄=1.8 nm (50 mM)) along with 

the spectrum calculated from the best fit parameters shown in B (Real Calc. and Imag. Calc. 

respectively). B: The error landscape for the experimental spectrum shown in A is plotted.  

This error landscape offers a distinct global minimum and two local minima. Although the 

local minima both provide reasonable error values, neither describes the lineshape features 

properly, and so the global minimum is used. The values of the minimum are shown in the 

boxed inset text with blue arrow, and provide the parameters for the calculated spectrum 

shown in A. 
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Section 2: Temperature Dependent Pake Patterns 1 

 As discussed in the manuscript, the calculated broadening patterns are generated from 2 

high-spin Pake patterns, which are then averaged over a distance distribution. The breadth of the 3 

broadening is found to fall off with increasing temperature due to the changing of populations of 4 

Zeeman states. This is shown in Fig. S7. The symmetric Pake pattern achieved at 260 K (where 5 

the spin states are all similarly occupied) actually results in a narrower spectrum. This results 6 

from the extremely high polarization of the |-5/2> and |-7/2> spin states at 10 K. These two states 7 

have two of the broadest profiles, and so when polarized substantially, they produce very broad 8 

effects. It is also interesting to note that at low temperatures the broadening is clearly shifted and 9 

this should lead to a shift in the resonance going from 10 K to 260 K. This was not investigated 10 

in this study, as a field standard would be necessary. 11 

Section 3: Estimation of Translational 12 

Correlation Time and Motional Averaging 13 

of the Dipolar Interaction 14 

We can estimate the translational correlation times 15 

from literature where         where a is the 16 

distance of closest approach for two Gadolinium 17 

and    is the diffusion constant of one complex 18 

relative to the other. Based on values in the 19 

literature
5
,           ps at 298 K in water, 20 

which can be scaled by the approximate viscosity 21 

difference (140) to          ns. Previous work 22 

has shown that dipolar interactions in S=1/2 23 

systems are sufficiently averaged when   24 

(

  
  (         )

   
)

  

, where    is the magnetic 25 

constant,    is the Bohr magneton, h is Planck’s 26 

constant, and r is the interspin distance. This 27 

corresponds to when motion is slow enough that 28 

the strongest dipolar anisotropies are not averaged
6, 

29 
7
. As in estimating the distance limits, we 30 

approximate the broadening of the S=7/2 to be ~3.5 31 

times larger than for S=1/2, thus scaling the cutoff 32 

distance time by (   )   , and suggesting that the 33 

dipolar interaction is static for distances shorter 34 

than at least 4.1 nm (and up to 5.2 nm if the longer correlation time of ~100 ns is used).  35 

 36 

 37 

 38 

 39 

 

Figure S7: Temperature Dependence 

of Pake Patterns. The Pake patterns 

describing the interaction of an S=7/2 

ion interacting with an S=1/2 spin (as a 

model for observing only the central 

transition of the Gd
3+

 spectrum) at 10 K 

and 260 K. The far more symmetric 

pattern at 260 K actually leads to a 

narrower profile, which explains the 

reduction in broadening at 260 K. 
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