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Characterization of Protein Flexibility Using Small-Angle X-Ray Scattering
and Amplified Collective Motion Simulations
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ABSTRACT Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite
its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with
the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a
tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to
elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins,
bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample
the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore,
conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.
INTRODUCTION
Flexibility within a protein is often critical for its function.
For example, a multidomain protein consists of two or
more domains connected by flexible linkers (1,2) that
determine the extent of interdomain motions and, further,
lead to large-scale functionally relevant conformational
transitions. Structure determination of the multidomain
protein containing flexible linkers is experimentally diffi-
cult. It could be rather challenging to use x-ray crystallog-
raphy to solve a structure with multiple conformations,
since this methodology is more applicable to a well-folded
protein with a single dominant state. Although solution nu-
clear magnetic resonance (NMR) is limited to proteins of
moderate molecular weight, electron microscopy (EM)
usually works best for large-size biomolecular complexes.
Small-angle x-ray scattering (SAXS) has been identified
in recent years as a promising technique for structure eluci-
dation of proteins (3–6). Although SAXS resolution is
inherently low, since a complex 3D structure is reduced
to a 1D scattering profile that is orientationally averaged,
it can still provide valuable information regarding, for
example, the size and shape of the protein. In principle,
SAXS has no size limits, which has been successfully
demonstrated in various systems from individual proteins
to complexes.

SAXS is particularly useful in characterizing the flexi-
bility of a protein in solution. However, traditional analysis
methods, such as DAMMIN (7) or GASBOR (8), which
use SAXS data to build a single molecular envelope, cannot
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provide a picture of the highly dynamic protein. Therefore,
in recent years, several studies have explored the possibility
of combining experimental SAXS data with computational
simulations to interpret protein dynamics in solution
(9–16). Many of these methods share a similar strategy,
namely, using computer simulations to generate a large
pool of protein conformations and then selecting the
ensemble of structures that best reproduce the SAXS data.

Among the computational techniques, molecular dy-
namics (MD) simulation, which has been very successfully
used in the study of protein dynamics (17–19), is gaining in
popularity. However, the computational cost of MD is
generally expensive. For a multidomain protein, because
an MD simulation at a timescale of microseconds is time-
consuming, a timescale of nanoseconds is usually used.
On the other hand, under physiological conditions, the pro-
tein could be trapped in its locally stable states in the MD
simulation while conformational transitions between the
different states are rarely sampled due to the frustrating
nature of the protein energy landscape (20). Thus, the
inefficient sampling of protein conformations in the MD
simulation due to the aforementioned issues may fail to
interpret the experimental SAXS data properly. To over-
come this problem, various methods have been utilized,
such as rigid-body modeling (9–11,14), coarse-grained
(CG) simulations (13–15), and enhanced sampling tech-
niques (11,14,21).

We previously developed a sampling method called
amplified collective motions (ACM) that utilizes a few col-
lective modes obtained from an elastic network model
(ENM) to guide the atomic MD simulation (22). The
ENM (23,24) is a residue-based CG model that can effi-
ciently calculate collective modes that describe functionally
http://dx.doi.org/10.1016/j.bpj.2014.07.005
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relevant domain motions in proteins (25–28). In ACM, the
collective motions obtained from the ENM are accelerated
by coupling them to a high-temperature bath. With this strat-
egy, the protein would be able to escape from the traps and
explore different conformational states on the energy land-
scape in a relatively short simulation time. Applications to
different proteins support the ability of ACM simulations
to sample the conformational space much more extensively
than can standard MD simulations (22,29–31). In this
article, we combine the simulation results of ACM and
SAXS data to reveal various conformational states of multi-
domain proteins in solution. The results show that the ACM
sampling does a much better job than MD at reproducing the
SAXS data.

In the next section, we introduce computational details of
ACM and control MD simulations, SAXS data acquisitions,
and the SAXS-based ensemble optimization method
(EOM). In the Results and Discussion section, the protocol
is applied to two multidomain proteins, bacteriophage T4
lysozyme (T4L) and tandem WW domains of the formin-
binding protein 21 (FBP21-WWs). The ACM method is
then compared with some other simulation techniques in
combination with SAXS data. The final section is devoted
to concluding remarks.
THEORY AND METHODS

Conformational sampling using MD and ACM
simulations

T4L

T4L is a two-domain protein with 164 amino acid residues. The N-terminal

(residues 13–65) and C-terminal (residues 75–162) domains are connected

by an a-helix. The active site between the two domains is responsible for

oligosaccharide binding. The many available experimental structures of

T4L and its variants indicate the presence of a hinge-bending domain

motion that opens or closes the active site (32).

MD simulation. An open conformation of T4L with a resolution of 2.7 Å

was chosen from Protein Data Bank (PDB) entry 178L (32). The structure,

containing four mutations (C54T, C97A, D127C, and R154C), was

changed back to the wild-type form, and the simulation was then set up

using the GROMACS-4.5.5 package (33) and the CHARMM27 force field

(34). The protein was placed in a cubic box, with a minimum distance of

1.3 nm between the solute and the box boundary. The box was then filled

with TIP3P water molecules (35). The energy of the system (protein and

waters) was minimized by the steepest-descent method, until the

maximum force was <1000 kJ mol�1 nm�1. Eight Cl� ions were added

by replacing the same number of waters with the most favorable electro-

static potential to compensate the net positive charges on the protein. The

final system (protein, waters, and ions) was minimized again using the

steepest descent followed by the conjugate-gradient method, until the

maximum force was <100 kJ mol�1 nm�1. The simulation was conducted

by using the leap-frog algorithm (36) with a time step of 2 fs. The initial

atomic velocities were generated according to a Maxwell distribution at

300 K. An equilibration simulation with positional restraints (using a force

constant of 1000 kJ mol�1 nm�2) was carried out for 100 ps and followed

by a production run of 20 ns. The simulation was performed under the

constant NPT condition. Each of the three groups (protein, solvent, and

ions) was coupled to a thermostat at 300 K using the velocity-rescaling
algorithm (37) with a relaxation time of 0.1 ps. The pressure was coupled

to 1 bar with a relaxation time of 0.5 ps and a compressibility of 4.5 �
10�5 bar�1. All the bonds in the protein were constrained using the P-

LINCS algorithm (38). Twin range cutoff distances for the van der Waals

interactions were set to be 0.9 and 1.4 nm, respectively, and the neighbor

list was updated every 20 fs. The long-range electrostatic interactions were

calculated by the PME algorithm (39), with an interpolation order of 4 and

a tolerance of 10�5.

ACM simulation. The ACM method was implemented in the GROMACS

4.5.5 package. Accelerated sampling of the structure was started after the

equilibration simulation. Many parameters were the same as for the stan-

dard MD simulation, except that collective motions described by the

ENM (23) were amplified by coupling them to a high-temperature bath.

From an all-atom structure of the protein in the simulation, an ENM was

built with CG sites located at the center of mass (COM) of residues. The

potential energy function of the ENM takes the harmonic form

V ¼
X
i;j>i

1

2
kijDr

2
ij; (1)

where Drij is the fluctuation of the bond connecting residues i and j, and kij
is the spring constant. For any two residues i and j, with their COM distance
rij, the spring constant between them was

kij ¼

8>><
>>:

1:0c rij%0:7 nm
10�2c 0:7<rij%1:1 nm
5 � 10�4c 1:1<rij%1:4 nm
0 rij>1:4 nm

; (2)

where c could be any nonzero value, and the four-range spring constants

described the interactions in the protein from strong to weak. The short cut-
off distance, 0.7 nm, defined the first coordination shell, and the long cutoff

distance, 1.4 nm, was chosen to avoid unrealistic large-amplitude fluctua-

tions in some residues along particular directions (23). A middle cutoff

value of 1.1 nm was set between the short and long cutoff distances. A Hes-

sian matrix of the second derivatives of the overall potential (Eq. 1) was

constructed and then diagonalized to yield a matrix of eigenvectors and cor-

responding eigenvalues. Each eigenvector with a nonzero eigenvalue is

called a normal mode, and the corresponding eigenvalue is proportional

to the squared frequency of the motion along the mode. Note that the value

of c is not important here, because it only affects the eigenvalues, not the

eigenvectors (collective modes). Usually only a few ENM modes with

the lowest frequencies are dominant in collective motions of the protein.

For T4L, we took the three slowest modes to define an essential subspace.

At each time step, the velocity of each atom was divided into two parts, the

part projected onto the essential subspace and the remainder. By modifying

the weak coupling method (40), the component of velocity in the essential

subspace was coupled to a high temperature of 800 K, whereas the remain-

ing velocity was coupled normally to 300 K, and thus the updated velocity

was the combination of these two components. During the ACM simula-

tion, collective modes were updated on the fly by doing ENM calculations

every 100 time steps according to the new generated protein conformation.

The simulation time was 20 ns in total.

FBP21-WWs

As a structural component of the mammalian spliceosomal A/B complex,

FBP21 plays an important role in pre-mRNA splicing (41). The protein con-

sists of a matrin-type zinc finger and two group-III WW domains. Huang

et al. have solved the NMR structure of the tandem WW domains (42),

which contains 75 amino acid residues. The two domains, denoted as

WW1 (residues 6–32) and WW2 (residues 47–73), respectively, are con-

nected by a highly flexible linker. The above structure information and
15N relaxation data both suggest a very mobile interdomain movement,

which may enable cooperative binding of these domains with different

ligands.
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MD simulation. Model 1 of the NMR ensemble (PDB entry 2JXW) was

selected as the initial structure. Besides the 75 residues, the protein sample

for SAXS measurement has a Met at the N-terminus and an eight-residue

His tag (LEHHHHHH) at the C terminus. We added these additional res-

idues to the NMR structure by MODELER (43), and the system with 84

residues in total was used to start an MD simulation. The set-up proce-

dures and parameters were the same as those in the MD simulation of

T4L except as follows. A rhombic dodecahedron water box was used,

and the minimum distance between the protein and the box boundary

was 1.4 nm. Ninety-nine Naþ and 91 Cl� ions were added, not only to

compensate for the net negative charges on the protein but also to mimic

the salt concentration (300 mM) of the SAXS sample. The energy of the

final system was minimized using the steepest descent and then the con-

jugate-gradient method, until the maximum force was <180 kJ mol�1

nm�1. Initial atomic velocities for the equilibration simulation were gener-

ated according to a Maxwell distribution at 310 K, and the subsequent pro-

duction run was 20 ns under the constant NPT condition. The four groups

(protein, solvent, Naþ ions, and Cl� ions) were coupled separately to a

reference temperature of 310 K.

ACM simulation. Parameters for the ACM simulation of FBP21-WWs

were largely the same as those for T4L, except as follows. The velocities

along the three slowest ENM modes were coupled to 500 K, whereas the

rest of the velocities were coupled to 310 K. Note that to accelerate the col-

lective motions of FBP21-WWs, we used a lower temperature than that

used for T4L, because FBP21-WWs is more mobile than T4L, with easier

transit between different conformational states. Those collective modes

were updated on the fly every 50 time steps. The ACM simulation was

20 ns long.
SAXS data

Simulated SAXS profile of T4L

From various experimental structures of wild-type T4L and its mutants, we

selected 38 structures that may represent possible conformations of the pro-

tein in solution (44). Each mutant was changed back to the wild-type form,

and its theoretical SAXS curve was computed by the CRYSOL program

(45). Thus, a multiconformational SAXS profile of T4L was obtained by

taking the average,

IðqÞ ¼ 1

N

XN
n¼ 1

InðqÞ: (3)

Here, N ¼ 38 is the number of experimental structures, In(q) is the theoret-
ical SAXS profile of a single structure, n, and q ¼ 4p sin q=l is the mo-

mentum transfer, where 2q is the scattering angle and l is the wavelength.

Experimental SAXS data of FBP21-WWs

The SAXS experiment of FBP21-WWs was performed at the beamline

12ID-B of the Advanced Photon Sources at Argonne National Laboratory,

with a wavelength of 1.033 Å. Data were acquired from three concentra-

tions (1.0, 3.0, and 5.0 mg/mL) and analyzed by the ATSAS package

(46,47). After subtracting buffer scattering, the data curves from different

concentrations were scaled and merged using PRIMUS (48). GNOM (49)

was employed for calculating the pair distance distribution function

(PDDF). The radius of gyration (Rg) of the protein was estimated by Guinier

plot.
FIGURE 1 The simulated SAXS profile of T4L (black line) that is the

average from the 38 experimental structures (Eq. 3). The theoretical

SAXS curves of an open conformation (red dashed line) and a closed

conformation (green dashed line) of the protein are shown for comparison.

To see this figure in color, go online.
SAXS fitting

The EOM (9) was selected to identify a small ensemble of representative

conformations from a large pool of protein structures, such as an MD or

ACM trajectory, to best fit the experimental SAXS data. The search proce-
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dure is achieved by minimizing the residual between the experimental and

calculated SAXS curves:

c ¼
(

1

K � 1

XK
m¼ 1

�
mIðqmÞ � IexpðqmÞ

sðqmÞ
�2)1=2

; (4)

where K is the number of data points in Iexp(q), and s(q) are standard devi-

ations of the experimental data. I(q) is the average of the SAXS profiles

(Eq. 3) of these conformations in the small ensemble, and m is a scaling fac-

tor. In EOM, c (Eq. 4) is minimized by using the genetic algorithm (50) to

pick the optimal ensemble of structures.
RESULTS AND DISCUSSION

T4L

The simulated SAXS profile of T4L is shown in Fig. 1
(black line) to be somewhat different from the SAXS curve
of either an open (Fig. 1, red dashed line) or a closed (Fig. 1,
green dashed line) structure. To reproduce the simulated
SAXS profile, one has to sample not only the open but
also the closed conformations of T4L in simulations.

Starting from the open structure, T4L remains in its open
state during the 20 ns MD simulation. Root mean-square
deviations (RMSDs) of the Ca atoms of residues 1–162
are mostly <2.0 Å (Fig. 2 a, black trace). The relatively
large RMSD values for the closed structure (Fig. 2 a, red
trace) also indicate that T4L does not access the closed
state in the MD simulation. Conversely, the protein transits
between the open and closed states frequently during the
20 ns ACM simulation (Fig. 2 b). RMSDs of the respective
N-terminal (residues 13–65) and C-terminal (residues 75–
162) domains were also calculated. In the MD simulation,
the RMSD of the N-terminal domain is ~0.6 5 0.1 Å, and
the values of the C-terminal domain are ~0.7 5 0.1 Å. In



FIGURE 2 RMSD in the MD simulation (a) and the ACM simulation (b)

of T4L. The values are calculated from Ca atoms of residues 1–162. In each

panel, the RMSD curve for the open structure is colored black, and that for

the closed structure red. To see this figure in color, go online.

FIGURE 3 Projections of the T4L structures onto the 2D essential sub-

space defined by the open-closed and twist modes. PCA was performed

on the ensemble of 38 experimental structures of the T4L, and the first

two eigenvectors with the largest eigenvalues defined the essential sub-

space. Each point on the plane represents a conformation. The 38 experi-

mental structures of T4L are colored blue. The projections of MD (black)

and ACM (red) indicate their sampling efficiency. To see this figure in color,

go online.
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the ACM simulation, the RMSD values of both domains
are ~0.7 Å. That is to say, each domain in the ACM simu-
lation is as stable as that in the MD simulation, which in-
dicates that ACM does not break the internal structures of
the domains. These RMSD results strongly affirm that the
ACM method not only allows for extensive sampling of
collective domain motions, but also preserves the local
structures of the protein. In the ACM simulation, only a
very few degrees of freedom (the first three slowest ENM
modes) are coupled to the high temperature, whereas
most of the degrees of freedom are coupled to room tem-
perature, which distinguishes ACM from a high-tempera-
ture MD simulation. In the latter, the internal structure of
each domain would be destroyed.

From experimental structures of T4L and its mutants in
the PDB, 38 structures were selected to constitute a protein
ensemble (32,44,51). Principal component analysis (PCA)
was performed on the ensemble (52) using the Ca atoms
of residues 1–162 to yield PCA modes describing collective
motions of T4L. The results indicate that there are two
PCA modes that contribute ~90% of the total fluctuation
in the protein. One mode describes an open-closed domain
motion, and the other represents a twist motion between
the domains. The 38 experimental structures were projected
onto the plane spanned by the above two PCA modes, which
clearly form two distinct clusters along the open-closed
mode (Fig. 3, blue). The cluster on the right contains closed
structures and that on the left consists of open structures.
The trajectories of the MD and ACM simulations were
also projected onto the plane to compare their efficiency
of sampling of the domain motions. The MD simulation
starting from the open structure of T4L only samples a
limited region on the left side of the plane (Fig. 3, black),
which partially covers the cluster of open structures but
not the cluster of closed structures. That is to say, the protein
is trapped in the open state and conformational transitions
do not occur during the 20 ns MD simulation. The ACM
simulation (Fig. 3, red), which can already cover the two
clusters of T4L structures, explores significantly larger areas
on the plane than does MD. We estimated potential energies
of the conformations in the respective MD and ACM trajec-
tories by replacing explicit water molecules with an implicit
generalized Born surface area solvent model (53). The en-
ergy differences between the MD and ACM simulations
are marginal (Fig. S1 in the Supporting Material), which
suggests that the protein conformations sampled by ACM
have fairly low energies compared to those from MD under
room temperature conditions. Thus, the ACM simulation is
unlike a standard MD simulation under high temperature in
that the latter would mainly sample the conformational
space with high energies.

A pool of 2000 protein conformations was constructed
from the respective MD and ACM trajectories of T4L.
The theoretical SAXS profiles of all the structures were
precomputed by CRYSOL (45) and were used to select a
Biophysical Journal 107(4) 956–964
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small number (up to 20) of conformations to fit the simu-
lated SAXS curve of T4L (Eq. 3) by EOM (9). Fifty inde-
pendent EOM calculations were run on the respective MD
and ACM pools. The c values (Eq. 4) plotted in Fig. 4 a
clearly indicate that the small ensembles selected from
ACM always have smaller c than those from MD. The
minimal c determined by EOM for the MD pool is
0.179, and the corresponding ensemble contains all open
conformations of T4L (Fig. 4 b). The EOM applied to
the ACM pool obtains a minimal c of 0.007, and the cor-
responding ensemble includes both open and closed con-
formations (Fig. 4 c). Since the simulated SAXS profile
of T4L is the average from 38 experimental structures
(Eq. 3) that consist of both open and closed conformations
(Fig. 3, blue), the ACM simulation, which samples diverse
conformations, is superior to the MD simulation at repro-
ducing the SAXS profile.
FBP21-WWs

Fig. 5 shows the experimental SAXS curve of FBP21-WWs
(Fig. 5 a), and the corresponding PDDF computed by
FIGURE 4 EOM analysis of T4L. (a) c values of 50 independent EOM

calculations for the respective MD (black) and ACM (red) trajectories.

(b and c) Structure ensemble with the minimal c ¼ 0.179 from MD (b)

and structure ensemble with the minimal c ¼ 0.007 from ACM (c). The

structures are superimposed by the C-terminal domain (residues 75–162).

All the structures, including those in the Supporting Material, were created

by VMD (59). To see this figure in color, go online.

FIGURE 5 SAXS data of FBP21-WWs. (a) Plots of experimental SAXS

curve, with data points up to q ¼ 0.5 Å�1. (b) PDDF calculated by GNOM

(49). To see this figure in color, go online.

Biophysical Journal 107(4) 956–964
GNOM (49). The shape of the PDDF (Fig. 5 b) suggests
that the protein may be able to take an extended structure
in solution, which is possible, since the linker between the
twoWW domains is very mobile (42). The Rg of the protein,
estimated from a Guinier plot, is ~19.0 Å.

From the respective MD and ACM trajectories of FBP21-
WWs, pools containing 2000 conformations were built.
After precomputing the theoretical SAXS profiles of all
the structures, 50 cycles of EOM were run to select from
the MD and ACM pools small ensembles that best repro-
duce the experimental SAXS data. As in the case of T4L,
the ensembles selected from the ACM pool of FBP21-
WWs give a much better fit to the SAXS data than those
from the MD pool, based on their c values (Eq. 4) (Fig. 6
a). The starting model of FBP21-WWs is compact, and
the two WW domains essentially stay close to each other
during the 20 ns MD simulation, although their relative ori-
entations change. Therefore, all the ensembles selected from
the MD pool consist of compact structures (Fig. 6 b), and the
minimal c is 0.592. In the 20 ns ACM simulation, although
the internal structure of each WW domain is well pre-
served, the distance between the two changes widely, as
do the domain orientations. The ensembles selected from
the ACM pool contain not only compact but also extended



FIGURE 6 EOM analysis of FBP21-WWs. (a) c values of 50 indepen-

dent EOM calculations of the MD (black) and ACM (red) trajectory. (b

and c) Structure ensemble with the minimal c ¼ 0.592 from MD (b)

and structure ensemble with the minimal c ¼ 0.186 from ACM (c). The

structures are superimposed by the WW1 domain (residues 6-32 (red)),

to show the relative orientation of the WW2 domain (residues 47-73

(yellow)). To see this figure in color, go online.
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structures (Fig. 6 c), and the minimal c is 0.186, signifi-
cantly smaller than that from the MD pool (Fig. 6 b). The
results indicate that FBP21-WWs may transit between
the compact and extended conformations in solution. The
average Rg of those conformations in the ensemble from
the ACM pool (Fig. 6 c) is around 19 Å, which is consistent
with the Guinier analysis.
Convergence of ACM in fitting the SAXS data

It is clear that the ACM method can significantly enhance
conformational sampling and does a better job of reproduc-
ing the SAXS data compared to normal MD. One may ask
whether or not different ACM simulations of the same
protein can offer similar results of SAXS fitting. We have
performed multiple ACM simulations of T4L and FBP21-
WWs that 1), start from different conformations; 2), accel-
erate different numbers of collective modes; 3), choose
different high temperatures for ACM coupling, and 4), end
with different simulation times. The results indicate a
reasonable convergence of the SAXS-fitting calculations,
that is, different ACM simulations can yield similar struc-
ture ensembles via the EOM. More details can be found in
the Supporting Material.
Comparison with other sampling methods in
combination with SAXS

To our knowledge, there are several methods that integrate
SAXS data with computational modeling to characterize dy-
namic multidomain proteins in solution (9,11,13,14). In the
EOM (9), if there is no outside trajectory of a multidomain
protein, the program Pre_bunch will produce a large pool of
conformations by rigid-body modeling. Individual domains
are treated as rigid bodies, which are connected by self-
avoiding linkers. We used Pre_bunch (54) to generate
10,000 conformations of FBP21-WWs and the EOM to
pick from these a small ensemble to fit the SAXS data.
Compared to the ensembles from the ACM trajectories
(Figs. 6 c and S7), the ensemble from the structure pool
generated by Pre_bunch consists of significantly more
diverse conformations (Fig. S8). In Pre_bunch, only a sim-
ple interaction is considered, to avoid steric clashes in the
generated models, so the two WW domains may take
various orientations. However, the ACM simulations of
FBP21-WWs are all-atom simulations with a refined molec-
ular force field, so the conformations should be physically
more reasonable than those from Pre_bunch, and clearly
some clusters of structures exist in the ensembles (Figs. 6
c and S7). Therefore, although the ensembles from ACM
and those from Pre_bunch have nearly the same c values
in fitting the SAXS data, the former are likely more realistic
than the latter. Since the SAXS data are inherently low-res-
olution, the SAXS fitting from a large structure pool is sus-
ceptible to over-fitting. The ACM simulations may avoid
this issue to some extent, because they can produce realistic
conformations of proteins.

In the minimal ensemble search (11), rigid-body MD sim-
ulations (called BILBOMD) are used to generate a wide
range of protein conformations for SAXS analysis. Addi-
tional strategies, such as reduced nonbonded interactions,
large time-step size, and high-temperature coupling to
domain linkers, are implemented to enhance sampling effi-
ciency. The basis-set-supported SAXS (BSS-SAXS) recon-
struction (13) developed by Yang et al. samples a large
number of conformations using MD simulations based on a
one-site-per-residue CG model. Hummer and co-workers
have developed a method called ensemble refinement of
SAXS (EROS) (14), in which the residue-level CG model
is also used and the domains are represented as rigid bodies
in replica-exchange Monte Carlo simulations. In the ACM
simulation, the internal structure of each domain would be
naturally preserved, since only the collective motions be-
tween domains are accelerated by high-temperature
coupling; this obviates the need for rigid-body approxima-
tion. This may be one of the advantages of ACM, because
it is not always intuitive to predetermine which parts should
Biophysical Journal 107(4) 956–964
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be treated as rigid bodies in some proteins. The applications
of ACM in this article are actually all-atom simulations
including explicit solvent, which may make it possible to
sample physically more reasonable conformations but with
more computational cost than the aforementioned methods.

In addition to ACM, there are other MD-based enhanced
sampling methods, such as replica-exchange MD (55) and
accelerated MD (aMD) (56), which also can be used for
SAXS fitting. However, REMD of a protein like FBP21-
WWs (with explicit solvent) would be computationally
quite expensive, since many replicas must be run under a se-
ries of temperatures. aMD improves the sampling by using a
boost potential to reduce energy barriers between different
states of the protein. A standard MD simulation must be
run first to determine a proper value of the boost potential.
Our ACM method has only a minor additional computa-
tional cost compared to MD. Instead of altering the potential
energy surface, ACM accelerates the collective motions and
lets the protein cross the energy barriers more easily than
does conventional MD. For conformational sampling of a
multidomain protein, ACM is expected to be more efficient
than aMD, since these collective modes, directly related to
the domain motions, are excited in ACM, whereas the sam-
pling in aMD would not focus along particular reaction
coordinates. In this sense, aMD may work better than
ACM for intrinsically disordered proteins, because there
may be no collective motions in such proteins.
CONCLUSION

SAXS is an efficient and important complement to other
techniques for structure elucidation, especially in the case
of highly dynamic multidomain proteins. High-resolution
techniques (x-ray crystallography and solution NMR) are
able to solve the structures of individual domains. However,
it would be difficult to crystallize a flexible multidomain
protein, such as FBP21-WWs. Also, it is generally not
easy to obtain NMR restraints between the domains con-
nected by flexible linkers. A protein like FBP21-WWs is
too small to be investigated by electron microscopy. Data
can be collected faster by SAXS than by other techniques,
and they provide useful information, such as the size and
domain orientations of the multidomain protein.

Due to the low-resolution nature of SAXS, it should be
combined with computational simulations to extract struc-
ture information about the multidomain protein. From a
starting structure, a large number of protein conformations
are generated by simulations, and an ensemble of structures
is then selected from the pool to best reproduce the experi-
mental SAXS data. In the case of simulations, a key issue
is to sample the conformational space of the protein
adequately, but this is a nontrivial problem. The study
described in this article contributes a useful tool that com-
bines the ACM sampling method and the SAXS data.
Results of the two multidomain proteins, T4L and FBP21-
Biophysical Journal 107(4) 956–964
WWs, support the idea that ACM simulations are signifi-
cantly better than control MD simulations at reproducing
the SAXS data and interpreting protein flexibility in solu-
tion. In the study of FBP21-WWs, it was found that the
compact and extended conformations can coexist in solu-
tion, although this was not detected by NMR studies (42).

It should be noted that the ACM sampling is a nonequilib-
rium simulation and does not generate a proper Boltzmann
ensemble. Therefore, the protein conformations produced
by ACM need to be reweighted to recover the canonical dis-
tribution. This issue has been addressed elsewhere in the
literature (57,58), where the idea of accelerating collective
motions is combined with other sampling methods that
can retain the correct ensemble. This strategy may help us
to tackle the reweighting problem in our ongoing improve-
ment of the ACM method. Alternatively, we can simply use
the current version of ACM to efficiently generate possible
conformations of the protein and then rely on appropriate
SAXS fitting to recover the correct relative population be-
tween different states. The key issue of how to prevent over-
fitting can be tackled by determining a small number of
clusters from the large structure pool. The weights of
these clusters, which usually represent possible conforma-
tional states of the protein, are then optimized by best fitting
the SAXS data using some advanced approaches, such as
the Bayesian-based Monte Carlo algorithm (13) and the
maximum-entropy method (14).

Generally, there is a trade-off between the sampling effi-
ciency and the accuracy of the generated conformations.
For a very large multidomain protein or complex, the all-
atom ACM simulation with explicit solvent would be rather
time-consuming. The protein may not be able to achieve an
adequate sampling within a simulation time of nanoseconds.
In this case, ACM can be combined with some simplified
models, such as implicit solvent (53) and CG protein models
(13–15), to achieve further acceleration of the conforma-
tional sampling. This would be one focus for future research.
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SUPPLEMENTARY RESULTS AND DISCUSSION 

Convergence of ACM in fitting the SAXS data 

T4L 
We have investigated the issue of convergence by running multiple ACM simulations as 

follows. 

Different starting structures. We have carried out an ACM simulation starting from a 
closed structure of T4L. The protein can transit between the closed and the open states back 
and forth within the 20 ns simulation time (Fig. S2a), like in the ACM simulation starting 
from the open structure (Fig. 3). EOM yields a structure ensemble containing both closed and 
open conformations of T4L, with the minimal χ of 0.008 (Fig. S2b). 

Number of collective modes to be accelerated. This should be determined based on how 
many ENM modes are needed to describe the hinge-bending domain motions of T4L. We 
computed the overlap between the low-frequency ENM modes and the open-close/twist mode, 
respectively. The first three ENM modes have already shown a good convergence to 
significantly cover the collective domain motions of T4L (Fig. S3), with an overlap 
coefficient of 0.89 to the open-close mode and 0.81 to the twist mode (note that a coefficient 
of 1.0 means complete coverage). Therefore the ACM simulation using the three modes 
should be better than that using the two modes. On the other hand, there is a technical issue 
that prevents us from using very few (two or even one) collective modes. In this case, the 
temperature of one or two degrees of freedom would fluctuate wildly, which may distort the 
protein structure when the temperature is extremely high (see below the discussion of how to 
set the high temperature in ACM). For different proteins, the number of collective modes to 
be accelerated should be system dependent, but we suggest starting with three modes, and 
adding more if necessary. We have carried out an ACM simulation that coupled the first four 
collective modes at 800 K, which shows a larger sampling area in the essential subspace (Fig. 
S4a) than the three-mode ACM simulation does (Fig. 3). However, the EOM ensembles of 
the two simulations are rather similar (Fig. S4b and Fig. 4c). 

High temperature for ACM coupling. We performed several ACM simulations, which 
couple the first three collective modes to different temperatures, respectively. If the 
temperature is not high enough, the protein cannot cross the energy barrier and reach the 
closed state, so the ensemble selected by EOM does not fit the SAXS data quite well (data 
not shown). Figure S5 shows the results of the ACM simulation at 1000 K, which samples a 
broader region in the essential subspace (Fig. S5a) than the ACM simulation at 800 K does 
(Fig. 3). The two ACM simulations yield very similar EOM ensembles that contain not only 
the closed but also the open conformations of T4L (Fig. S5b and Fig. 4c). Generally we have 
little information on the energy barriers of the protein, so it is not straightforward to 
determine an optimal temperature for ACM coupling. We usually try a relatively high 
temperature firstly in order to obtain efficient sampling, but it should be noted that a very 
high temperature may distort the local structures of the protein since there exists a leakage of 
 



energy between the high-temperature degrees of freedoms to the room-temperature ones. In 
this case, the temperature should be decreased. 

Different simulation times. We have extended the 20 ns ACM simulation of T4L to 40 ns. 
It is found that the 40 ns simulation covers a larger area in the essential subspace (Fig. S6a) 
than the 20 ns simulation does (Fig. 3), but their EOM ensembles are quite similar (Fig. S6b 
and Fig. 4c). 

FBP21-WWs 
We have finished a series of ACM simulations of FBP21-WWs, as those of T4L. Despite 

their differences, the EOM ensembles from various trajectories share some similar clusters of 
structures including both the compact and the extended conformations of the protein (Fig. 6c 
and Fig. S7). The results again indicate a fairly good convergence of ACM in fitting the 
SAXS data. 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

Figure S1. Potential energies of the MD (black solid line) and the ACM (red solid line) 
simulation, respectively. For each trajectory, the explicit water molecules in each frame were 
removed, and then the solvent contribution was estimated by using an implicit solvent model 
called the generalized Born surface area (GBSA) model. The calculations were done by using 
the “-rerun” option of the “mdrun” program in GROMACS-4.5.5 package. In the mdp file, 
the option “GBSA” was turned on. 
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Figure S2. The ACM simulation of T4L starting from a closed structure. (a) Conformations 
in the trajectory are projected onto the 2D essential subspace (colored by red), and the 38 
experimental structures of T4L are also show (colored by blue). (b) The structure ensemble 
selected by EOM with the minimal χ=0.008. 
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Figure S3. Overlap between the ENM modes and the open-close/twist mode of T4L, 
respectively. For the open/close or the twist mode, we projected it on the subspace formed by 
the slowest ENM modes (including from one to six modes, respectively), and obtained the 
overlap values. 
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Figure S4. The ACM simulation of T4L that couples the first four ENM modes at 800 K. (a) 
Conformations in the trajectory are projected onto the 2D essential subspace (colored by red), 
and the 38 experimental structures of T4L are also show (colored by blue). (b) The structure 
ensemble selected by EOM, with the minimal χ=0.007. 
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Figure S5. The ACM simulation of T4L that couples the first three ENM modes at 1000 K. (a) 
Conformations in the trajectory are projected onto the 2D essential subspace (colored by red), 
and the 38 experimental structures of T4L are also show (colored by blue). (b) The structure 
ensemble selected by EOM, with the minimal χ=0.008. 
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Figure S6. The ACM simulation of T4L with a simulation time of 40 ns. (a) Conformations 
in the trajectory are projected onto the 2D essential subspace, and (b) the structure ensemble 
selected by EOM, with the minimal χ=0.006. 
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Figure S7. EOM ensembles from multiple ACM simulations of FBP21-WWs. (a) Structure 
ensemble with the minimal χ=0.165 from the ACM simulation starting from an extended 
structure of the protein. The simulation parameters were the same as those for Figure 6c. (b) 
Structure ensemble with the minimal χ=0.165 from the ACM simulation that coupled the first 
four ENM modes at 500K. (c) Structure ensemble with the minimal χ=0.164 from the ACM 
simulation that coupled the first three ENM modes at 400 K. (d) Structure ensemble with the 
minimal χ=0.170 from a 40 ns ACM simulation that is an extension of the original 20 ns 
simulation (Fig. 6c). The structures are superimposed by the WW1 domain (residues 6-32, 
colored by red), and the WW2 domain (residues 47-73) is colored by yellow. 
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Figure S8. EOM ensemble of FBP21-WWs from the structure pool generated by Pre_bunch, 
with the minimal χ=0.164. The structures are superimposed by the WW1 domain (residues 
6-32, colored by red), and the WW2 domain (residues 47-73) is colored by yellow. 
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