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Comparing different kernels on graph nodes for building process-specific siRNA libraries 

 (a) Global performance on single data sources 

 To test graph-based similarity measures, we represented biological information from various 

sources as undirected weighted graphs and used the corresponding adjacency matrices to compute 

the kernels. As a first test of the ability to predict new functional relationships between genes, we 

compared the performance of the different kernels to retrieve known functional relationships from 

the well documented Panther pathways database (Mi et al, 2005) . We mined six sources of data - 

protein interactions (PI), homology-inferred protein interactions (HIPPO), Gene Ontology 

biological process (BP), text mining (TM), a gene expression network from aggregation of many 

gene expression data sets (MEMP) and ab-initio predicted protein interactions from co-occurring 

domain architectures (CODA) – and examined which kernels gave the best performance for each 

data source. We focused on three kernels as different ways of measuring similarity between graph 

nodes taking into account indirect connections between nodes: 

 - the von Neumann diffusion kernel (VN), which counts all possible paths joining two nodes 

with a free parameter that sets penalties for longer paths, 

 - the commute-time kernel (CT) so called because it is derived from the computation of the 

number of steps needed to go from one node to another and back to the starting node in a random 

walk, 

 - the random forest kernel (RF) which can be interpreted in terms of probabilities of 

reaching a node in a random walk with a random number of steps. 

 Using all Panther pathway genes one at a time as a query to find similar genes, we measured 

kernel sensitivity by the fraction of other genes from the same pathway that are ranked in the top of 

the returned list for thresholds up to 10% of all ranked genes. To estimate false positive rates, we 

generated pathways composed of random genes and processed them in the same way with the 

assumption that randomly picked genes are unlikely to be functionally related. To assess overall 

performance, we first plotted sensitivity versus estimated false positive rate and used the area under 

the curve (AUC) up to 25% false positive rate as a measure of performance. We found that the 

commute time (CT) kernel gave the best AUC value for all tested data sources (Figure 2A). The RF 

kernel performance varied between data types with performance similar to the commute time kernel 

on protein interactions and lower for other data sets. In many cases, the Von Neumann diffusion 

kernel with a small value of its parameter (VNlow) also performed well while the worst performance 

was obtained with the original matrix (A) followed by the Von Neumann diffusion kernel at the 

upper limit of its parameter range (VNmax). Of note, the VNmax curve was close to the curve 



obtained with the degree-based similarity matrix (DB), which suggests that for high values of its 

parameter, the Von Neumann diffusion kernel ranks genes based on their number of connections. 

While our results highlight the fact that not all kernels adequately capture functional relationships 

between genes across all data types, they suggest that the commute time kernel is a robust and, 

since parameter free, easy to use way of measuring functional similarity between genes. 

 Of note, we found that all kernels tested performed poorly on the aggregated gene 

expression data suggesting that either these kernels are not a good representation of this data or that 

this data set doesn't contain significant information on functional relationships between genes.  

 

 (b) Evaluating kernel performance on a preset number of genes 

The AUC does not provide information on the percentage of genes necessary to obtain a 

given sensitivity value. However, to use gene predictions to guide experiments like RNAi 

screening, it is pragmatic to be able to evaluate kernel performance by the number of true positives 

in a preset number of ranked genes, as the experimental capacity is limited to screen for example 

100 genes and it is often acceptable to trade some false positives for a significant gain in true 

positives. A convenient way to do this is to look at the number of false positives and true positives 

of different kernels as a function of ranked gene number up to the top 10% of all ranked genes. This 

lets the experimentalist appreciate whether screening more genes would produce substantial gains in 

true positives. We illustrate this for the protein interaction data set (Supplementary Figure 1A, other 

data sets shown in Supplementary Figure 1). For this particular data set, using the random forest 

(RF) as the best kernel on this data, screening the top 5% of all ranked genes (e.g. about 600 genes) 

would already return, on average across all pathways, 63% of all true positives, while performing 

twice the number of experiments and screening the top 10% (e.g. 1200 genes) would increase this 

fraction to only 71% of all true positives.  

 

Combining the best kernels from several data sources improves function retrieval 

 Several schemes to integrate multiple data sources using kernels have been described by 

other groups. They involve learning weights of a linear (Lanckriet et al, 2004, De Bie et al, 2007) or 

even non-linear (Diosan et al, 2008) combination of kernels or weights of a linear combination of 

graph adjacency matrices (Mostafavi et al, 2008; Mostafavi & Morris, 2010). So to keep the method 

simple and generic, we chose not to learn weights but instead use the straightforward approach of 

summing the kernels. Since the kernels have been normalized, each kernel has the same importance 

in the combination. Choosing to include or exclude kernels (or graphs) from the combination can be 

seen as a binary form of weighting, with the end user deciding which data set is relevant. For 

example, we chose to exclude the MEMP (aggregation of gene expression data) and CODA 



(predicted interactions) data sets because the tests reported above showed that, at least with the 

kernels we used, these data sources did not capture known functional relationships. 

 We compared different ways of integrating the data. Because we converted each data set into 

a graph, one way of integrating data is to combine all graphs into a single graph where two genes 

are connected if there is an edge between them in at least one of the source graphs (combined binary 

graph) and then applying the commute-time kernel to this graph. Another approach is to normalize 

the edge weights in each graph and form the combined graph by setting its edge weights as an 

average of the corresponding edges in the source graphs followed by computation of the commute-

time kernel or random forest kernel as in the GeneMANIA algorithm. The integration methods 

using combined weighted graphs as inputs all give similar results and are better than combining 

data in an unweighted graph (Supplementary Figure 2A). However, instead of combining the 

graphs, combining the best kernel for each data set (e.g. RF for protein interactions and CT for all 

other data) clearly improves performance over the best single data source, protein interactions 

(Supplementary Figure 2B). With the combined kernels, screening the top 5% of the genes would 

now return 77% of true positives, compared to 63% if using RF on protein interactions (PI) alone.  

 

Chromosome condensation phenotypes of S. pombe mutants 

When pmt1, the only DNA methyltransferase found in the S. pombe genome and ortholog of 

DNMT3B, is deleted, the distance between the marked loci starts to decrease earlier than in wild-

type cells and does so at a slower pace over a longer time (Figure 6B, duration and timing). This 

slower, premature chromosome condensation is reminiscent of the DNMT3B knock-down 

phenotype in HeLa cells where condensation takes longer than in control cells (Supplementary 

Figure 5A). 

 Cid14 is the S. pombe ortholog of PAPD5. Its deletion leads to a strong reduction in the 

number of cells entering mitosis. However, the few cells that enter mitosis also do so with 

premature chromosome condensation as indicated by the increased duration and timing of 

compaction (Figure 6B), similar to the lengthened prophase observed in HeLa cells for the PAPD5 

knock-down (Supplementary Figure 5B). 

 In a top1 deletion mutant, condensation takes slightly less time, starting from a more 

condensed state and reaching a less condensed state than in wild-type cells (Figure 6B). Duration of 

condensation is also shorter than in wild-type cells which is consistent with the knock-down of 

TOP1 in HeLa cells leading to a shorter prophase (Supplementary Figure 5C). 

 Clr6 is the S. pombe ortholog of HDAC1. Because a clr6 deletion turned out to be inviable, 

we used a temperature-sensitive mutant. At the restrictive temperature, this mutant enters mitosis 

with significantly more compacted chromosomes and reaches a compaction level similar to wild-



type slightly faster than wild-type cells (Figure 6B), consistent with the shorter prophase observed 

when HDAC1 function is reduced in HeLa cells  (Supplementary Figure 5D). 
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Supplementary figure legends 
 
 
Supplementary figure 1: False positive and sensitivity curves as a function of rank threshold for 

the data sources tested. 

 Solid lines represent sensitivities and dashed lines represent estimated false positive rates. Each 

colour represents a different kernel. A: protein interactions, B: protein interactions from other 

species mapped to human, C: gene co-expression network from the MEM aggregation tool, D: 

CODA-predicted interactions, E: iHOP-generated interactions, F: semantic similarities across GO 

biological processes 

 

Supplementary figure 2: Performance of different data integration schemes. 

A- Comparison of different integration schemes 

B- Comparison of the best integration scheme with the best single data source (protein interactions) 

Solid lines represent sensitivities and dashed lines represent false positive rates. Each colour 

represents a different kernel or graph combination. 

 



Supplementary figure 3: Score distribution of the top 1000 genes predicted to be involved in 

chromosome condensation. 

 

Supplementary Figure 4: Curves from representative cells showing strong phenotypes. 

 NCAPD3 and TRAF3IP1 knockdowns show transient chromatin decondensation at the time of 

nuclear envelope breakdown (arrow) while MCPH1 and DNMT3B knockdowns show slower 

condensation starting earlier than in control cells. 

 

Supplementary figure 5: Distribution of prophase lengths for the hits whose orthologs were tested 

in S. pombe. 

The distribution of prophase length in negative control cells is shown in magenta, the distribution 

for the siRNA treatment is shown in green, overlaps appear in grey. A – DNMT3B (siRNA s4223), 

B – PAPD5 (siRNA s34602), C – TOP1 (siRNA s14304), D – HDAC1 (siRNA s74). 

 

Supplementary figure 6: Example of inadequate curve fitting to a strong MCPH1 knockdown 

phenotype.  

Dots represent normalized chromatin volume from confocal images of a cell with long prophase. 

The blue line represent the result of fitting the chosen sigmoidal function to the points. 
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Supplementary Figure 2
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Supplementary figure 3
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