
Appendix A: Deriving the Efficient Score

Let Oi = (Yi,Ai,Xi), where Yi = (Yi1,Yi2, ...Yini)
T is the ni-dimensional response

vector for the ith independent unit, i = 1, ...,m, Ai is a scalar treatment assignment,
and Xi is a matrix of auxiliary covariates. The optimal index hopt(A, t) is determined
by solving the generalized information equality
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for hopt , where h(·) is any p⇥ni function such that E[yTy]< •.

Conditioning on t, h(A, t) takes up to K different matrix values, h0(t),h1(t), ...,hK�1(t),
which may be denoted by K p⇥ni constant matrices h0,h1, ...,hK�1. Similarly, we
define Dk(X) = E(Y|A = k,X, t)� g(k, t;b ), the ni-dimensional vector of the dif-
ference in the conditional and marginal mean outcomes under treatment k, where
k = 0,1, ...,K � 1. Using this construction, let h = [h0,h1, ...,hK�1] and DK(X) =
{DT

0 (X), ...,DT
K�1(X)}T. The complete index matrix h is therefore of dimension

p⇥Kni, while DK is a Kni-dimensional vector. Estimating functions are then ex-
pressed concisely through defining two auxiliary matrix functions of A. Let A be
the Kni ⇥ ni matrix A = [I(A = 1)In, ..., I(A = K)In]T and Ap be the Kni ⇥ Kni
block diagonal matrix composed of the diagonal matrices {I(A = k)�pk}In, where
In denotes the ni ⇥ni identity matrix.

Rewriting the augmented estimating equations using this notation, we ob-
tain
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Substituting this expression into Newey’s equations we have
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We first note that since h and h
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are constant, we can extract them from
the expectation, leaving
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Since h is nonzero, it must hold that
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Evaluating the left hand side of the equation, we have
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Evaluating the right hand side, we note that we have an expression of the
form E[A�B][Aopt �Bopt ]T. Interpreting the augmented estimating function as a
residual, we note that A�B ? Bopt . We can therefore evaluate E[A�B][Aopt �
Bopt ]T = E[A�B][Aopt ]T. In (3), this becomes

E[A{Y�g(A, t;b )}{Y�g(A, t;b )}T
A]�E[ApD(X){Y�g(A, t;b )}T

A] (4)

Regarding the first term in (4), we have
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where U
N

2=UUT. Since each individual is only assigned to one treatment, only
one of A0, A1,...,AK�1 is nonzero. The non diagonal blocks of (5) are identically
0. The diagonal blocks contain terms of the form E[AkAk{Y� g(A, t;b )}

N
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Evaluating the second term of (4), we have
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From (C
2

), we see that generally, the second term of (4) contains block diag-
onal terms pk(1�pk)EX
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, and block off-diagonal terms �p jpkE
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{D j(X)DT
k (X)}.

Referring back to (3), we see that h

opt

= [C1 �C2]�1
D

⇤, as labeled above.

Appendix B: Supplementary Figures, Simulation Results



Figure 1: MCRE of Locally Efficient and Simple Augmented GEE Relative to
Standard (Unaugmented) GEE. Continuous clustered outcomes. Estimators corre-
sponding to each curve are denoted by ’Estimator-Outcome Regression’ using the
abbreviations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard;
C-Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working
covariance for V (Y |A) and V{E(Y |X ,A)}. The order of curves in the legend fol-
lows the order of curves on the figure, with sets of superimposed curves denoted by
’()’ and ’[]’.

(a) ni=(2,4,6,8,10,12), s2
b = 0

(b) ni=(2,4,6,8,10,12), s2
b = 6



Figure 2: MCRE of Locally Efficient and Simple Augmented GEE Relative to
Standard (Unaugmented) GEE. Continuous longitudinal outcomes. Estimators cor-
responding to each curve are denoted by ’Estimator (Marginal Working Covari-
ance) Outcome Regression’ using the abbreviations: Loc Eff-Locally Efficient,
Simp-Simple Augmented, Std-Standard; AR1-Autoregressive(1) V (Y |A), True-
Exchangeable/AR1 for V{E(Y |X ,A)} and V (Y |X ,A), respectively; C-Correct, W1-
Wrong 1, W2-Wrong 2;a=0.3. The order of curves in the legend follows the order
of curves on the figure, with the set of superimposed curves denoted by ’[]’ and
’{}’.

(a) a=0.1

(b) a=0.5



Figure 3: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE. Binary clustered outcomes. Estimators corresponding
to each curve are denoted by ’Estimator-Outcome Regression’ using the abbre-
viations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-
Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working co-
variance for V (Y |A) and V{E(Y |X ,A)}. The order of curves in the legend follows
the order of curves on the figure, with sets of superimposed curves denoted by ’()’.

(a) ni=(2,4,6,8,10,12), q = 1

(b) ni=(2,4,6,8,10,12), q = 0.8



Appendix C: QIC for selecting working covariance structures

Table 1: QIC for selecting working covariance structures. Conditional model:
E(CD4i j|Trti,Weeki j,Xi) = h0 +h1Ai +h2Weeki j +h3Sexi +h4CD40i . Marginal
model: E(CD4i j|Trti,Weeki j) = h0 +h1Trti +h2Weeki j

Conditional Model
Working Covariance Structure QIC
Independence 1053.44
Exchangeable 1051.9
AR1 1052.29
Unstructured 1049.72

Marginal Model
Working Covariance Structure QIC
Independence 1047.59
Exchangeable 1047.1
AR1 1046.56
Unstructured 1049.35


