Appendix A: Deriving the Efficient Score

Let O; = (Y;,A;,X;), where Y; = (Y;1,Yn,...Y;,)T is the n;-dimensional response
vector for the i independent unit, i = 1,...,m, A; is a scalar treatment assignment,
and X;; is a matrix of auxiliary covariates. The optimal index A, (A, ) is determined
by solving the generalized information equality
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for hyp, where h(-) is any p x n; function such that E[yTy] < o,

Conditioning on ¢, h(A,t) takes up to K different matrix values, ho(t),h;(¢),...,hg—1 (1),
which may be denoted by K p X n; constant matrices hg,hy,....,hg_;. Similarly, we
define Ax(X) = E(Y|A = k,X,t) — g(k,t; B), the n;-dimensional vector of the dif-
ference in the conditional and marginal mean outcomes under treatment k, where
k=0,1,...,K — 1. Using this construction, let h = [hg,h;,...,hg_1] and Ax(X) =
{A}(X),...,AF _;(X)}T. The complete index matrix h is therefore of dimension
p % Kn;, while Ak is a Kn;-dimensional vector. Estimating functions are then ex-
pressed concisely through defining two auxiliary matrix functions of A. Let A be
the Kn; x n; matrix A = [I(A = 1)I,...,I(A = K)I,]T and A, be the Kn; x Kn;
block diagonal matrix composed of the diagonal matrices {I(A = k) — m; }I,,, where
I, denotes the n; X n; identity matrix.

Rewriting the augmented estimating equations using this notation, we ob-
tain .
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Substituting this expression into Newey’s equations we have
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We first note that since h and hgp are constant, we can extract them from
the expectation, leaving
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Since h is nonzero, it must hold that
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Evaluating the left hand side of the equation, we have
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Evaluating the right hand side, we note that we have an expression of the
form E[A — B][Aopr — Bopr)T. Interpreting the augmented estimating function as a
residual, we note that A — B L B,,;. We can therefore evaluate E[A — B|[A,p —
B,,pt]T = E[A—B| [A,,pt]T. In (3), this becomes

E[A{Y —g(A,:B)HY —g(A,1:B)}TA] — E[AzAX){Y —g(4,1:8)}TA]  (4)

Regarding the first term in (4), we have
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where U®?=UUT. Since each individual is only assigned to one treatment, only
one of Ag, Ay,...,Ax_1 is nonzero. The non diagonal blocks of (5) are identically
0. The diagonal blocks contain terms of the form E[A;A{Y —g(A,1;8)}®?] =
E[AJ{Y —g(A,1;:8)}9?] = mV(Y|A = k). Matrix (5) is written as

V(Y|A =0) 0 0
0 nV(YA=1) - 0
) ) . (C)

0 0 o mxV(Y[A=K—1)



Evaluating the second term of (4), we have
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From (C,), we see that generally, the second term of (4) contains block diag-
onal terms 7 (1 — 7, ) Ex {A,? 2(X) }, and block off-diagonal terms —7;mEx {A ;(X)A] (X)}.
Referring back to (3), we see that hgpe = [C1 — C,]~'D*, as labeled above.

Appendix B: Supplementary Figures, Simulation Results
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Figure 1: MCRE of Locally Efficient and Simple Augmented GEE Relative to
Standard (Unaugmented) GEE. Continuous clustered outcomes. Estimators corre-
sponding to each curve are denoted by ’Estimator-Outcome Regression’ using the
abbreviations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard;
C-Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working
covariance for V(Y|A) and V{E(Y|X,A)}. The order of curves in the legend fol-
lows the order of curves on the figure, with sets of superimposed curves denoted by
()’ and *[]".
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Figure 2: MCRE of Locally Efficient and Simple Augmented GEE Relative to
Standard (Unaugmented) GEE. Continuous longitudinal outcomes. Estimators cor-
responding to each curve are denoted by ’Estimator (Marginal Working Covari-
ance) Outcome Regression’ using the abbreviations: Loc Eff-Locally Efficient,
Simp-Simple Augmented, Std-Standard; ARI1-Autoregressive(l) V(Y|A), True-
Exchangeable/ARI1 for V{E(Y|X,A)} and V(Y |X,A), respectively; C-Correct, W1-
Wrong 1, W2-Wrong 2;=0.3. The order of curves in the legend follows the order
of curves on the figure, with the set of superimposed curves denoted by ’[]’ and
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Figure 3: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE. Binary clustered outcomes. Estimators corresponding
to each curve are denoted by ’Estimator-Outcome Regression’ using the abbre-
viations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-
Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working co-
variance for V(Y|A) and V{E(Y|X,A)}. The order of curves in the legend follows
the order of curves on the figure, with sets of superimposed curves denoted by ’()’.
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Appendix C: QIC for selecting working covariance structures

Table 1: QIC for selecting working covariance structures. Conditional model:
E(CD4,'J'|TI’Z,', Weekl-j, Xl'> =No+ MA;+ nzWeek,-j + N3Sex; + 1’]4CD4()[. Marginal
model: E(CD4ij‘Trti, Weekij) = No +mTrt; +npWeek;;

Conditional Model
Working Covariance Structure ~ QIC
Independence 1053.44
Exchangeable 1051.9
AR1 1052.29
Unstructured 1049.72
Marginal Model
Working Covariance Structure ~ QIC
Independence 1047.59
Exchangeable 1047.1
AR1 1046.56

Unstructured 1049.35




