Exon	Reported LQT2 Mutation	Nucleotide Change	Amino Acid Change	NMD	Reference
1	G24fs+34X	c.73del	p.Q25Rfs*35	No	17
2	N33fs+25X	c.100del	p.A34Lfs*26	No	17
2	C39X	c.117C>A	p.C39*	No	9
2	C44X	c.132C>A	p.C44*	No	23, 33
2	E50fs+10X			No	24
2	R73fs+39X	c.219_226delinsT	p.T74Afs*40	No	17
2	R73fs/31	c.221_251del	p.T74Rfs*32	No	33, 38
2	A78fs+62X	c.234_241del	p.A79Dfs*63	Yes	17
2	A83fs/37	c.234_250dup	p.E84Lfs*38	No	23, 33
2	p.A79Dfs*63	c.235_242del	p.A79Dfs*63	Yes	34
2	Q81X	c.241C>T	p.Q81*	No	33
2	Q84X	c.250C>T	p.Q84*	No	20
3	V131fs/185	c.395_456del	p.V132Efs*179	Yes	38
3	P141fs/2	c.422_423insC	p.A142Gfs*3	Yes	33
3	P151fs+179X	c.446_447insG	p.T152Hfs*180	Yes	17, 24
3	T152Pfs*14	c.453del	p.T152Pfs*14	Yes	9, 19, 27, 34, 36
3	P151fs/179	c.453_454insC	p.T152Hfs*180	Yes	17, 22, 33, 38, 42
3	151fs/14	c.453_454insCC	p.T152Pfs*15	Yes	38
4	P168fs+4X	c.506del	p.A169Gfs*5	Yes	17
4	p.Glu177X	c.529G>T	p.E177*	Yes	32
4	R181fs/20	c.544_545insGGTGCGGT	pS182Wfs*22	Yes	38
4	S182X	c.545C>A	p.S182*	Yes	17, 20, 38
4	S182fs+17X	c.548del	p.G183Afs*18	Yes	17
4	A185fs+143X	c.557_566delinsTTCGC	p.G186Vfs*144	Yes	25
4	G192fs+7X	c.576del	p.A193Pfs*8	Yes	25
4	G192fs+135X	c.578_582del	p.A193Gfs*137	Yes	15, 25, 40
4	L200fs/144	c.558_600dup	p.T201Rfs*145	Yes	12, 33, 40
4	T216 fs/120			Yes	40
4	E214X	c.640G>T	p.E214*	Yes	17
4	E229X	c.685G>T	p.E229*	Yes	3, 17, 38
4	P241fs/89	c.724_725insC	p.R242Pfs*90	Yes	33
4	P245fs+114X	c.735_736insCC	p.G246Pfs*115	Yes	25
4	Gly246AlafsX114	c.735del	p.G246Afs*114	Yes	20
4	P251 fs/107	c.754del	p.R252Gfs*108	Yes	16, 40
4	A253fs+76X	c.759_760del	p.H254Qfs*77	Yes	17
4	R273X	c.817 C>T	p.R273*	Yes	9
4	C276fsX359	c.823del	p.S275Afs*85	Yes	39
4	Cys276AlafsX84	c.826del	p.C276Afs*84	Yes	20
4	p.D287Gfs*47	c.853_859dup	p.D287Gfs*47	Yes	34
4	E289X	c.865G>T	p.E289*	Yes	20
4	V295fs/63	c.885del	p.L296Cfs*64	Yes	23, 33
5	M308fs+50X	c.925del	p.H309Tfs*51	Yes	17
5	p.S320X	c.959C>A	p.S320*	Yes	22
5	R326fs/0	c.981_991del	p.Y327*	Yes	38
5	Q335X	c.1003C>T	p.Q335*	Yes	30
5	Q335fs+23X	c.1006del	p.I336Sfs*24	Yes	17
5	K364fs+3X			Yes	24

Exon Reported LQT2 Mutation Nucleotide Change Amino Acid Change Reference NMD 5 Yes R366X c.1096C>T p.R366* 17.38 6 17 S379fs+53X c.1138del p.L380Wfs*54 Yes S379fs+53X Yes 17 6 c.1139del p.L380Rfs*54 Yes 24 6 K386fs+3X 6 Q391X c.1171C>T p.E391* Yes 24, 25 6 W398X c.1193G>A p.W398* Yes 17 W412X c.1235G>A 25 6 p.W412* Yes 10 6 c.1243_1256del Yes I414fs+98X p.L416Hfs*98 Y420fs/12 c.1261del Yes 8,33 6 p.T421Rfs*13 6 17 A422fs+10X c.1266del p.V423Sfs*11 Yes S428STOP c.1283C>A Yes 23, 29, 33 6 p.S428* p.G439Afs*82 Yes 17 6 E438fs+81X c.1316del 6 E444X c.1330G>T p.E444* Yes 20 1335delTG c.1335_1336del Yes 3 6 p.C445Wfs*73 c.1341C>A Tyr447stop p.Y447* Yes 15, 17 6 Q450X c.1348C>T Yes 17 6 p.Q450* 6 V459fs+60X c.1379del p.D460Afs*61 Yes 17 9 6 1382delA c.1382del p.I461Tfs*60 Yes 6 F471fs+50X Yes 24 6 T473fs+26X c.1419_1472delinsA p.T474Pfs*27 Yes 17 6 Y493X c.1479C>G p.Y493* Yes 14.33 p.Y493* Yes 20 6 Y493X c.1479C>A W497X c.1490G>A Yes 9,24 6 p.W497* 7 c.1613 1619del Yes 17, 25 R537fs+24X p.K538Ifs*25 7 L539 fs/47 c.1619_1637del 43 p.D540Afs*48 Yes 7 1631delAG c.1631_1632del 2, 9, 19, 36 p.E544Vfs*110 Yes 7 T556fs/7 c.1671del Yes 31, 33 p.F557Lfs*8 7 W563X c.1688G>A p.W563* Yes 3, 17, 34 7 I567fs+26X c.1701del p.W568Gfs*26 Yes 25 7 Yes 17 W568X c.1704G>A p.W568* 7 Met579GlyX75 c.1735_1736del p.M579Gfs*75 Yes 11 7 17 S581X c.1742C>A Yes p.S581* 7 c.1746_1747insGC Yes 39 R582fs/11 p.I583Afs*12 7 I593X 23 p.I593* Yes 7 Y611X 31, 33 p.Y611* Yes 7 T634fs/78 c.1902del Yes 39 p.N635Tfs*79 8 L650fs/2 c.1951_1952del p.M651Vfs*3 Yes 14, 33 8 c.1955 1960delinsT Yes 17 M651fs+68X p.Y652Lfs*69 8 Yes M651fs+X c.1956del p.Y652fs* 17 8 35 Y652X Yes p.Y652* 8 Y667X c.2001C>A Yes 28 p.Y667* 8 E682X c.2044G>T p.E682* Yes 33 8 Q688X 30 p.Q688* Yes 8 Glu698stop c.2092G>T p.E698* Yes 15,40 8 His703ProfsX11 c.2108del p.H703Pfs*11 Yes 20 8 22 p.W705X c.2114G>A p.W705* Yes 9 K718fs+13X c.2156del p.G719Afs*14 Yes 17

Exon Reported LQT2 Mutation Nucleotide Change Amino Acid Change Reference NMD 9 Yes Q725X c.2173C>T p.Q725* 14, 33 9 24 Q738X Yes c.2212C>T p.Q738* 9 H739fs/63 c.2218_2219insT Yes 33 p.C740Lfs*64 9 Yes 13, 42 p.R744EfsX13 c.2230del p.R744Efs*13 17,23 9 R744stop c.2230C>T p.R744* Yes 9 F743fs+12X c.2231del p.R744Qfs*13 Yes 25 9 c.2235_2245delinsTTT Yes 42 G745fs+54X p.A746Lfs*55 9 17 c.2249_2259dup Yes A753fs+6X p.K754Afs*7 9 R783 fs/24 Yes 40 9 V796fs/22 c.2356 2386dup 14, 33 p.A797Hfs*17 Yes 9 I798fs/10 Yes 33, 38 c.2395del p.L799Wfs*11 10 2399delG Yes 3 c.2399del p.K801Rfs*9 10 G806fs+2X c.2419del p.E807Sfs*3 Yes 17 10 c.2470_2471insG Yes Arg823fs828 p.A824Gfs*6 15 10 K832X c.2494A>T Yes 17,25 p.K832* 10 W853fs+14X Yes 24 10 R863X c.2587C>T p.R863* Yes 17, 20, 24, 37, 38, 40 15 11 Pro872fs877 c.2616del p.G873Afs*5 Yes 11 p.E876fs c.2619_2626dup Yes 22 p.E876Afs*5 11 E876X c.2626G>T p.E876* Yes 20, 38 11 G879fs+38X c.2637_2638del p.G880Lfs*39 Yes 42 11 c.2638_2648del Yes 25 G879fs+35X p.G880Afs*36 11 Q884X c.2650C>T Yes 3 p.Q884* 11 c.2659 2660insCAAGC Yes 17 K886fs+88X p.R887Pfs*89 K886fs/85 c.2660del Yes 11 p.R887Pfs*87 33 11 c.2676_2682del Yes 25 R892fs+79X p.R894Tfs*78 11 c.2676 2680dup Yes 17 R893fs+81X p.R894Pfs*82 11 p.R894fsX920 c.2680_2681insAGGC p.R894Qfs*27 Yes 26 12 Q901fs/71 c.2705del p.P902Qfs*72 Yes 38 12 c.2718_2721dup Yes 17 A907fs+12X p.L908Gfs*13 12 G909fs+58X c.2729_2744del p.P910Qfs*59 Yes 17 12 38 P910fs/16 c.2728 2762del p.R911Afs*17 Yes 12 L911fs+6X Yes 24 12 c.2736_2751del Yes R912fs+55X p.A913Vfs*56 17 12 Yes 24 R912fs+63X 12 G914fs+60X c.2734_2738dup p.A915Rfs*61 Yes 17 12 p.A915fs c.2742_2775del p.A915Rfs*48 Yes 22 12 Yes 23, 33, 38 R920fs/51 c.2762del p.G921Afs*53 12 Yes 38 R922fs+50X c.2766del p.P923Rfs*51 12 13, 18 P923RfsX51 p.P923Rfs*51 Yes c.2768del 12 c.2774_2775delinsT Yes 20 Gly925ValfsX49 p.G925Vfs*49 12 G925fs/13 c.2775_2776insG Yes 22, 33 p.P926Afs*14 12 23, 25 fsGly925 c.2775del p.P926Rfs*48 Yes 12 W927X c.2780G>A Yes 17 p.W927* 12 W927X c.2781G>A p.W927* Yes 25

Yes

Yes

p.E929Rfs*45

p.E929Rfs*11

17

38

12

12

G928fs+44X

G928fs/10

c.2784del

c.2785_2786insG

Exon	Reported LQT2 Mutation	Nucleotide Change	Amino Acid Change	NMD	Reference
12	P964fs+8X	c.2892del	p.G965Efs*9	Yes	17, 20
12	P964fs+153X	c.2892_2893insC	p.G965Rfs*154	No	17
12	G965X	c.2893G>T	p.G965*	Yes	6
12	G965+148X	c.2895_2905del	p.E966Wfs*149	No	25
12	2900_2901insC	c.2900_2901insC	p.P968Afs*151	No	3
12	P968fs/4	c.2906del	p.G969Vfs*5	Yes	23, 33
12	P972fs+1X	c.2918_2919insCC	p.L973Pfs*2	Yes	17
12	P986fs/130	c.2959_2960del	p.L987Vfs*131	No	17, 33, 34
12	Ser988ProfsX71	c.2956_2960dup	p.S988Pfs*71	Yes	20
13	F1000fs+117X	c.3001_3002insT	p.W1001Lfs*118	No	17
13	W1001stop	c.3002G>A	p.W1001*	Yes	7, 17, 20, 23
13	R1005fs/50	c.3014del	p.G1006Afs*51	Yes	38
13	R1007fs+1056X	c.3019del	p.R1007Afs*50	Yes	42
13	Q1010fs+45X	c.3032del	p.E1011Gfs*46	Yes	17
13	R1014PfsX39	c.3036_3048del	p.R1014Pfs*39	Yes	6
13	Arg1014ProfsX101	c.3039_3049del	p.R1014Pfs*101	No	20
13	R1014X	c.3040C>T	p.R1014*	Yes	17, 20, 33, 38
13	C1015X	c.3045C>A	p.C1015*	Yes	25
13	Ser1021AlafsX36	c.3060del	p.S1021Afs*36	Yes	20
13	L1021fs+34X	c.3065del	p.L1022Pfs*35	Yes	41, 42
13	S1029fs+27X	c.3086_3087dup	p.P1030Afs*28	Yes	17
13	G1031fs+87X	c.3090_3093dup	p.R1032Gfs*88	No	17
13	G1031fs/24	c.3094del	p.R1032Gfs*25	Yes	17, 33
13	p.R1032fs	c.3096_3112del	p.R1033Gfs*80	No	22
13	R1032fs+85X	c.3097_3098insC	p.R1033Pfs*86	No	17
13	R1033fs+79X	c.3093_3106del	p.P1034Gfs*80	No	17
13	R1033fs/23	c.3098_3099insCG	p.P1034Gfs*24	Yes	38
13	P1034fs+21X	c.3099del	p.R1035Gfs*22	Yes	17, 20, 25
13	R1033fs+79X	c.3099_3112del	p.P1034Gfs*80	No	17
13	R1033fs+23X	c.3099_3100insCG	p.P1034Rfs*24	Yes	17
13	R1033fs+82X	c.3100_3107delinsGGC	p.P1034Gfs*83	No	17
13	R1033fs/81	c.3101_3108del	p.P1034Rfs*82	No	17, 38
13	P1034fs+18X	c.3102_3111del	p.R1035Wfs*19	Yes	17
13	P1034fs+21X	c.3103del	p.R1035Gfs*22	Yes	17, 24, 38
13	P1034fs+83X	c.3103_3104insC	p.R1035Pfs*84	No	17
13	G1036AfsX21	c.3107del	p.G1036Afs*21	Yes	20
13	G1036fs/82	c.3107_3108insG	p.D1037Rfs*82	No	4, 17, 21, 33, 34
13	D1037fs+23X	c.3099_3112dup	p.V1038Gfs*24	Yes	17
13	p.D1037fs	c.3106_3109dup	p.D1037Gfs*83	No	22
13	V1038fs/80	c.3106_3112dup	p.V1038Gfs*83	No	38
13	V1038AfsX21	c.3107_3111dup	p.V1038Afs*21	Yes	6
14	R1051fs+4X	c.3154del	p.L1052Wfs*5	Yes	25
14	E1053X	c.3157G>T	p.E1053*	Yes	38
14	3160insA	c.3159_3160insA	p.T1054Nfs*65	No	9
14	p.T1054fsX2	c.3161del	p.R1055Gfs*2	Yes	1
14	L1056fs/61	c.3167_3168insT	p.S1057Efs*62	No	38
14	S1057fs/60	c.3172_3173insG	p.A1058Gfs*61	No	38

Exon	Reported LQT2 Mutation	Nucleotide Change	Amino Acid Change	NMD	Reference
14	L1064fsX1068			Yes	7
14	Q1070X	c.3208C>T	p.Q1070*	Yes	5
14	A1077fs+X	c.3234del	p.Y1078*	Yes	17
14	G1085fs+32X	c.3255_3256insG	p.P1086Afs*33	No	17
14	P1101fs	c.3303_3304insC	p.T1102Hfs*17	No	25, 33
15	T1133fs+135X	c.3397_3398del	p.R1134Tfs*135	No	25
15	R1135fs+134X	c.3403_3406dup	p.L1136Pfs*135	No	17
15	G1158fs+110X	c.3470_3471insC	p.S1159Qfs*111	No	17

References

- 1. Andrsova, I., et al., 2012. Clinical characteristics of 30 Czech families with long QT syndrome and KCNQ1 and KCNH2 gene mutations: importance of exercise testing. J Electrocardiol 45, 746–751.
- 2. Behr, E.R., et al., 2008. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur. Heart J. 29, 1670–1680.
- 3. Berge, K.E., et al., 2008. Molecular genetic analysis of long QT syndrome in Norway indicating a high prevalence of heterozygous mutation carriers. Scand. J. Clin. Lab. Invest. 68, 362–368.
- 4. Berthet, M., et al., 1999. C-terminal HERG mutations: the role of hypokalemia and a KCNQ1associated mutation in cardiac event occurrence. Circulation 99, 1464–1470.
- 5. Bhuiyan, Z.A., et al., 2008. Recurrent intrauterine fetal loss due to near absence of HERG: clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. Heart Rhythm 5, 553–561.
- 6. Choe, C.-U., et al., 2006. C-terminal HERG (LQT2) mutations disrupt IKr channel regulation through 14-3-3epsilon. Hum. Mol. Genet. 15, 2888–2902.
- 7. Cuneo, B.F., et al., 2013. In utero diagnosis of long QT syndrome by magnetocardiography. Circulation 128, 2183–2191.
- 8. Curran, M.E., Splawski, I., Timothy, K.W., Vincent, G.M., Green, E.D., Keating, M.T., 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803.
- 9. Fodstad, H., et al., 2004. Four potassium channel mutations account for 73% of the genetic spectrum underlying long-QT syndrome (LQTS) and provide evidence for a strong founder effect in Finland. Ann. Med. 36 Suppl 1, 53–63.
- 10. Gao, Y., Zhang, P., Li, X.-B., Wu, C.-C., and Guo, J.-H., 2013. A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome. Chin. Med. J. 126, 3093–3096.
- 11. Hata, Y., et al., 2014. Identification and characterization of a novel genetic mutation with prolonged QT syndrome in an unexplained postoperative death. Int. J. Legal Med. 128, 105–115.
- 12. Hoorntje, T., et al., 1999. Homozygous premature truncation of the HERG protein : the human HERG knockout. Circulation 100, 1264–1267.
- 13. Hsueh, C.-H., Chen, W.-P., Lin, J.-L., Liu, Y.-B., Su, M.-J., Lai, L.-P., 2008. Functional studies on three novel HCNH2 mutations in Taiwan: identification of distinct mechanisms of channel defect and dissociation between glycosylation defect and assembly defect. Biochem. Biophys. Res. Commun. 373, 572–578.
- 14. Itoh, T., et al., 1998. Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome. Hum Genet 102, 435–439.
- 15. Jongbloed, R., Marcelis, C., Velter, C., Doevendans, P., Geraedts, J., Smeets, H., 2002. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Hum. Mutat. 20, 382–391.
- 16. Kapa, S., et al., 2009. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 120, 1752–1760.
- 17. Kapplinger, J.D., et al., 2009. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm 6, 1297–1303

- 18. Lai, L.-P., et al., 2005. Denaturing high-performance liquid chromatography screening of the long QT syndrome-related cardiac sodium and potassium channel genes and identification of novel mutations and single nucleotide polymorphisms. J. Hum. Genet. 50, 490–496.
- 19. Laitinen, P., et al., 2000. Survey of the coding region of the HERG gene in long QT syndrome reveals six novel mutations and an amino acid polymorphism with possible phenotypic effects. Hum. Mutat. 15, 580–581
- 20. Lieve, K.V., et al., 2013. Results of genetic testing in 855 consecutive unrelated patients referred for long QT syndrome in a clinical laboratory. Genet Test Mol Biomarkers 17, 553–561.
- 21. Lupoglazoff, J.M., et al., 2001. Notched T waves on Holter recordings enhance detection of patients with LQt2 (HERG) mutations. Circulation 103, 1095–1101.
- 22. Millat, G., et al., 2006. Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin. Genet. 70, 214–227.
- 23. Moss, A.J., et al., 2002. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105, 794–799.
- 24. Nagaoka, I., et al., 2008. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ. J. 72, 694–699.
- 25. Napolitano, C., et al., 2005. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 294, 2975–2980.
- 26. Nishimoto, O., et al., 2012. Peripartum cardiomyopathy presenting with syncope due to Torsades de pointes: a case of long QT syndrome with a novel KCNH2 mutation. Intern. Med. 51, 461–464.
- 27. Park, J.K., Oh, Y.-S., Choi, J.-H., Yoon, S.K. 2013. Single nucleotide deletion mutation of KCNH2 gene is responsible for LQT syndrome in a 3-generation Korean family. J. Korean Med. Sci. 28, 1388–1393.
- 28. Paulussen, A., et al., 2000. Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a non-pathological 9 bp insertion. Hum. Mutat. 15, 483.
- 29. Priori, S.G., Napolitano, C., Schwartz, P.J., 1999. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99, 529–533.
- 30. Shimizu, W., et al., 2009. Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062.
- 31. Schulze-Bahr, E., Haverkamp, W., Funke, H., 1995. The long-QT syndrome. N. Engl. J. Med. 333, 1783–1784.
- 32. Silva, D., Miltenberger-Miltenyi, G., Correia, M.J., Diogo, A.N., 2013. Novel mutation in the KCNH2 gene associated with long QT syndrome. Rev Port Cardiol 32, 163–164.
- 33. Splawski, I., et al., 2000. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185.
- 34. Stattin, E.-L., et al., 2012. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing. BMC Cardiovasc Disord 12, 95
- 35. Sun, Y., et al., 2009. A novel nonsense mutation Y652X in the S6/pore region of human ethergo-go gene found in a long QT syndrome family. Scand. Cardiovasc. J. 43, 181–186.
- 36. Swan, H., Viitasalo, M., Piippo, K., Laitinen, P., Kontula, K., Toivonen, L., 1999. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome

patients with KvLQT1 and HERG potassium channel defects. J. Am. Coll. Cardiol. 34, 823–829

- 37. Teng, S., et al., 2004. Clinical and electrophysiological characterization of a novel mutation R863X in HERG C-terminus associated with long QT syndrome. J. Mol. Med. 82, 189–196
- 38. Tester, D.J., Will, M.L., Haglund, C.M., Ackerman, M.J., 2005. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2, 507–517.
- 39. Tester, D.J., Medeiros-Domingo, A., Will, M.L., Haglund, C.M., Ackerman, M.J., 2012. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 87, 524–539.
- 40. Van Langen, I.M., Birnie, E., Alders, M., Jongbloed, R.J., Le Marec, H., Wilde, A.A.M., 2003. The use of genotype-phenotype correlations in mutation analysis for the long QT syndrome. J. Med. Genet. 40, 141–145.
- 41. Yoshinaga, M., et al., 2013. Electrocardiographic screening of 1-month-old infants for identifying prolonged QT intervals. Circ Arrhythm Electrophysiol 6, 932–938.
- 42. Yoshinaga, M., et al., 2013. Genetic Characteristics of Children and Adolescents with Long QT Syndrome Diagnosed by School-Based Electrocardiographic Screening Programs. Circ Arrhythm Electrophysiol. Epub ahead of print.
- 43. Zhang, A., et al., 2013. L539 fs/47, a truncated mutation of human ether-a-go-go-related gene (hERG), decreases hERG ion channel currents in HEK 293 cells. Clin. Exp. Pharmacol. Physiol. 40, 28–36.