Supporting Information

for

Structure/affinity studies in the bicyclo-DNA series: Synthesis and

properties of oligonucleotides containing bc^{en}-T and iso-tricyclo-T

nucleosides

Branislav Dugovic, Michael Wagner and Christian J. Leumann*

Address: Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

Email: Christian J. Leumann - christian.leumann@dcb.unibe.ch

*Corresponding author

Experimental part

Pages S2–S27	Data on synthesis of compounds 1–13
	Figures S1–S16: ¹ H, ¹³ C and ³¹ P NMR spectra of compounds 1–
	13
Page S28	Crystal structure determination - General
Page S29	Figure S17: ORTEP view of compound 8
Pages S29–S36	Tables S1–S9: Crystal structure data of compound 8
Page S37	Figure S18: ORTEP view of compound 11β
Pages S37–S43	Tables S10–S18: Crystal structure data of compound 11β
Page S44	Figure S19: ORTEP view of compound tc-T
Pages S44–S51	Tables S19–S22: Crystal structure data of compound tc-T
Page S52	General procedures for synthesis, deprotection and
	purification of ON1–7
Page S53	Table S23: ESI-M and HPLC characterization of ON1–7
Page S54–S57	Scans of ESI ⁻ -MS of oligonucleotides ON1–4

(2S,3aR,6R,6aR)-2-methoxy-3,3a,6,6a-tetrahydro-2H-cyclopenta[b]furan-3a,6-diol (2). The solution ketone 1 (1.15 g, 6.76 mmol) in MeOH (68 mL) and CeCl₃.7H₂O (2.52 g, 6.76 mmol) was stirred at ambient temperature for 30 min. It was cooled down to -78°C and NaBH₄ (0.26 g, 6.76 mmol) was added during 20 min in three equal portions. Resulting mixture was stirred for 1.5 h at the same temperature. Then the cooling bath was removed, stirring continued for 30 min at RT and afterwards the solvent was evaporated. Residue was purified by CC (3 % MeOH in CH₂Cl₂) to provide 0.85 g (73%, colourless oil) of **2** and 0.11 g (9%, white solid) of **epi-2**.

data for **2**: R_f (6% MeOH in CH₂Cl₂) = 0.28; ¹H NMR (CD₃OD, 300 MHz): δ = 5.82 (ddd, *J* = 5.7, 1.7, 0.6 Hz, 1H), 5.74 (ddd, *J* = 5.7, 1.8, 0.8 Hz, 1H; H-C(4,5)), 5.11 (dd, *J* = 5.4, 2.3 Hz, 1H; H-C(2)), 4.80 (dt, *J* = 5.7, 1.8 Hz, 1H; H-C(6)), 4.24 (d, *J* = 5.5 Hz, 1H; H-C(6a)), 3.39 (s, 3H; OCH₃), 2.28 (dd, *J* = 13.8, 5.4 Hz, 1H; H-C(3)), 2.10 (dd, *J* = 13.8, 2.3 Hz, 1H; H-C(3)) ppm; ¹³C NMR (CD₃OD, 75 MHz): δ = 137.2, 136.0 (2×d, C(4,5)), 108.7 (d, C(2)), 91.7 (s, C(3a)), 86.3 (d, C(6a)), 76.1 (d, C(6)), 55.4 (q, OCH₃), 47.7 (t, C(3)) ppm; ESI⁺-HRMS: calcd for C₈H₁₂NaO₄: 195.0628 [*M*+Na]⁺; found: 195.0629.

data for **epi-2**: R_f (6% MeOH in CH_2CI_2) = 0.19; ¹H NMR (CD₃OD, 300 MHz): δ = 5.91 (dt, J = 5.6, 0.9 Hz, 1H), 5.72 (ddd, J = 5.6, 2.2, 1.1 Hz, 1H; H-C(4,5)), 5.04 (dd, J = 4.3, 2.1 Hz, 1H; H-C(2)), 4.41 (dt, J = 2.0, 0.9 Hz, 1H; H-C(6)), 4.21-4.20 (m, 1H; H-C(6a)), 3.36 (s, 3H; OCH₃), 2.16-2.01 (m, 2H; H-C(3)) ppm; ¹³C NMR (CD₃OD, 75 MHz): δ = 139.4, 133.5 (2×d, C(4,5)), 108.3 (d, C(2)), 97.2 (d, C(6a)), 91.3 (s, C(3a)), 81.2 (d, C(6)), 55.1 (q, OCH₃), 46.1 (t, C(3)) ppm; ESI⁺-HRMS: calcd for C₈H₁₂NaO₄: 195.0628 [*M*+Na]⁺; found: 195.0635.

Figure S1: 1 H (CD₃OD, 300 MHz) and 13 C NMR (CD₃OD, 75 MHz) spectrum of **2**

Figure S2: ¹H (CD₃OD, 300 MHz) and ¹³C NMR (CD₃OD, 75 MHz) spectrum of epi-2

(2*S*,3a*R*,6*R*,6a*R*)-6-{(*tert*-Butyl)dimethylsilyl]oxy}-2-methoxy-3,3a,6,6a-tetrahydro-2*H*cyclopenta[*b*]furan-3a-ol (3). To diol 2 (0.85 g, 4.9 mmol) dissolved in dry CH₂Cl₂ (50 mL) were successively added imidazole (1 g, 14.8 mmol) and TBDMSCl (1.12 g, 7.4 mmol). The reaction mixture

was stirred under an argon atmosphere at ambient temperature overnight. After addition of 1N HCl (30 mL), the aqueous phase was extracted with CH_2Cl_2 (3×) and the organic layer was dried with $MgSO_4$ and evaporated under reduced pressure. The yellowish oil was purified by CC (EtOAc/Hexane 1:1) to afford **3** (1.12 g, 79%) as a yellowish oil.

data for **3**: R_f (3.5% MeOH in CH₂Cl₂) = 0.53; ¹H NMR (400 MHz, CDCl₃) δ = 5.87 (dd, 1H, *J* = 5.8, 0.9 Hz), 5.70 (dd, 1H, *J* = 5.9, 2.1 Hz, H-C(4,5)), 5.16 (dd, 1H, *J* = 4.8, 0.9 Hz, H-C(2)), 4.73 (ddd, 1H, *J* = 5.7, 2.2, 0.9 Hz, H-C(6)), 4.23 (d, 1H, *J* = 5.7 Hz, H-C(6a)), 3.37 (s, 3H, OCH₃), 2.84 (brs, 1H, OH), 2.17 (dd, 1H, *J* = 13.5, 4.8 Hz), 2.06 (dd, 1H, *J* = 13.5, 0.9 Hz, H-C(3)), 0.87 (s, 9H, SiC(CH₃)₃), 0.07 (s, 6H, Si(CH₃)₂) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 135.6 (d), 134.8 (d, C(4,5)), 108.9 (d, C(2)), 91.1 (s, C(3a)), 88.1 (d, C(6a)), 74.7 (d, C(6)), 54.9 (q, OCH₃), 46.9 (t, C(3)), 26.1 (q, SiC(CH₃)₃), 18.6 (s, SiC(CH₃)₃), -4.4, -4.8 (2×Si(CH₃)₂) ppm. ESI-HRMS: calc. for C₁₄H₂₆NaO₄Si 309.1498 [M+Na]⁺, found 309.1496.

70 65 60 55 f1 (ppm) -5 130 125 120 115 110 105

Figure S3: ¹H (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of 3

(25,3aR,3bR,4aS,5R,5aR)-5-{(tert-Butyldimethylsilyl)oxy}-2-methoxy-octahydro-

cyclopropa[3,4]cyclopenta[1,2-*b***]furan-3a-ol (4).** To alcohol **3** (1.12 g, 3.9 mmol) dissolved in dry CH₂Cl₂ (39 mL) under an argon atmosphere a solution of Et₂Zn 1M in hexane (23.4 mL, 23.4 mmol) was added

dropwise at 0 °C and mixture was stirred at this temperature for 15 min. Afterwards, CH_2I_2 (3.1 mL, 39.0 mmol) was added, the reaction mixture was allowed to warm to ambient temperature and it was stirred overnight. The reaction was quenched by the addition of NH_4CI . After separation of the phases the organic layer was washed with $1N Na_2S_2O_3$. The combined aqueous layers were extracted with EtOAc and dried with $MgSO_4$. The solvents were evaporated under reduced pressure. The yellowish oil was purified by CC (EtOAc/Hexane 3:7) to afford **4** (1.01 g, 86%) as colourless solid.

data for **4**: R_f (EtOAc/Hexane 3:7) = 0.38; ¹H NMR (400 MHz, CDCl₃) δ = 5.07 (d, 1H, *J* = 4.9 Hz, H-C(1)), 4.06 (d, 1H, *J* = 5.2, H-C(5)), 3.92 (d, 1H, *J* = 5.1, H-C(4)), 3.34 (s, 3H, OCH₃), 3.23 (brs 1H, OH), 2.30 (dd, 1H, *J* = 13.1, 4.9, H-C(2)), 2.03 (d, 1H, *J* = 13.1, H-C(2)), 1.65 (ddd, 1H, *J* = 7.9, 5.9, 3.7, H-C(7)), 1.38 (ddd, 1H, *J* = 8.7, 5.8, 4.5, H-C(6)), 0.87 (s, 9H, C(CH₃)₃), 0.63-0.57 (m, 1H, H-C(8)), 0.49-0.46 (m, 1H, H-C(8)), 0.05, 0.03(2×s, 2×3H, Si(CH₃)₂) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 108.9 (d, C(1)), 90.0 (d, C(4)), 88.4 (s, C(3)), 71.9 (d, C(5)), 55.0 (q, OCH₃), 45.2 (t, C(2)), 26.1 (q, SiC(CH₃)₃), 23.9 (d, C(6)), 22.8 (d, C(7)), 18.4 (s, SiC(CH₃)₃), 7.8 (t, C(8)), -4.4, -5.0 (q, Si(CH₃)₂) ppm. ESI-HRMS: calc. for C₁₅H₂₈NaO₄Si 323.1655 [M+Na]⁺, found 323.1649.

Figure S4: ¹H (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of 4

(2S,3aR,3bR,4aS,5R,5aR)-5-{(tert-Butyldimethylsilyl)oxy}-2-methoxy octahydro

cyclopropa[3,4]cyclopenta[1,2-*b***]furan-3a-yl pivalate (5).** To mixture of the alcohol **4** (0.37 g, 1.23 mmol) and DMAP (0.90 g, 7.39 mmol) in pyridine (1 mL) and 1,2-dichloroethane (15 mL) cooled in an ice

bath to 0 °C was added PivCl (0.9 mL, 7.39 mmol). After 10 min the ice bath was removed and the reaction mixture was heated at 70 °C overnight. The mixture was poured into sat. aq. NaHCO₃ and extracted with CH_2Cl_2 (3×). The organic layer was dried with MgSO₄, solvents were removed *in vacuo*. Purification by CC (EtOAc/Hexane 1:9) afforded title compound **19** (0.5 g, quant.) as a colourless oil.

data for **5**: R_f (EtOAc/Hex 1:1) = 0.8; ¹H NMR (400 MHz, CDCl₃) δ = 5.14 (dd, 1H, *J* = 5.8, 1.0 Hz, H-C(1)), 4.19 (d, 1H, *J* = 5.2 Hz, H-C(5)), 4.03 (d, 1H, *J* = 5.2 Hz, H-C(4)), 3.27 (s, 3H, OCH₃), 2.47 (d, 1H, *J* = 14.6 Hz, H-C(2)), 2.36 (dd, 1H, *J* = 14.6, 5.9 Hz, H-C(2)), 2.26 (ddd, 1H, *J* = 8.1, 6.0, 3.7 Hz, H-C(6/7)), 1.45 (ddd, 1H, *J* = 8.7, 5.8, 4.6 Hz, H-C(6/7)), 1.16 (s, 9H, COC(CH₃)₃), 0.89 (s, 9H, SiC(CH₃)₃), 0.56-0.50 (m, 1H, H-C(8)), 0.26 (ddd, 1H, *J* = 5.9, 4.5, 3.9 Hz, H-C(8)), 0.07, 0.06 (s, 2×3H, Si(CH₃)₂), ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 178.5 (s, COC(CH₃)₃), 109.1 (d, C(1)), 94.3 (s, C(3)), 89.1 (d, C(4)), 71.2 (d, C(5)), 54.9 (q, OCH₃), 42.4 (t, C(2)), 39.1 (s, COC(CH₃)₃), 27.2 (q, COC(CH₃)₃), 26.1 (q, SiC(CH₃)₃), 25.5 (d,C(6/7)), 22.9 (d, C(6/7)), 18.5 (s, SiC(CH₃)₃), 7.9 (t, C(8)), -4.3, -5.0 (q, Si(CH₃)₂) ppm. ESI-HRMS: calc. for C₂₀H₃₆NaO₅Si 40 7.2230 [M+Na]⁺, found 407.2224.

Figure S5: ¹H (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of 5

(2*S*,3a*R*,3b*R*,4a*S*,5*R*,5a*R*)-5-Hydroxy-2-methoxy octahydro cyclopropa[3,4]cyclopenta[1,2-*b*]furan-3a-yl pivalate (6). The compound 5 (0.5 g, max 1.23 mmol) was dissolved in dry THF (15 mL). To the solution was added 1M TBAF in THF (1.85 mL, 1.85 mmol) and it was stirred at RT overnight. The reaction was

quenched by adding sat. aq. NaHCO₃ and then extracted with EtOAc ($3\times$) and dried over MgSO₄. The compound was purified by CC (EtOAc/Hex 1:1) to afford **6** (314 mg, 95 %) as a colourless solid.

data for **6**: R_f (EtOAc/Hex 1:1) = 0.51; ¹H NMR (400 MHz, CDCl₃) δ = 5.20 (d, 1H, *J* = 5.4 Hz, H-C(1)), 4.28 (d, 1H, *J* = 5.3 Hz, H-C(4)), 4.06 (d, 1H, *J* = 5.3 Hz, H-C(5)), 3.30 (s, 3H, OCH₃), 2.61 (d, 1H, *J* = 14.7 Hz, H-C(2)), 2.54 (d, 1H, *J* = 0.7, OH), 2.30-2.22 (m, 2H, H-C(2), H-C(6/7)), 1.69 (ddd, 1H, *J* = 9.0, 5.1, 5.1, H-C(6/7)), 1.17 (s, 9H, C(CH₃)₃), 0.63 (ddd, 1H, *J* = 8.8, 5.8, 5.8 Hz, H-C(8)), 0.26 (ddd, 1H, *J* = 5.8, 4.2, 4.2 Hz, H-C(8)) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 178.2 (s, COC(CH₃)₃), 149.1 (d,C(1)), 95.0 (s, C(3)), 89.1 (d, C(4)), 69.8 (d, C(5)), 55.1 (q, OCH₃), 42.7 (t, C(2)), 39.0 (s, COC(CH₃)₃), 27.2 (q, COC(CH₃)₃), 25.4 (d, C(6/7)), 24.1 (d, C(6/7)), 7.5 (t, C(8)) ppm. ESI-HRMS: calc. for C₁₄H₂₂NaO₅ 293.1365 [M+Na]⁺, found 293.1359.

Figure S6: ¹H (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of 5

(5'R)-1-(3'-Pivaloyl-2'-deoxy-3',5'-ethano-6',7'-methano- α -and- β -D-ribofuranosyl)thymine (7 α and 7 β). The alcohol **6** (0.31 g, 1.15 mmol) and thymine (0.29 g, 2.29 mmol) suspended in dry acetonitrile (12 mL) were treated with BSA (1.4 mL, 5.73 mmol) at 0 °C. After a clear solution had been formed (1 h) the SnCl₄ (0.54 mL, 4.59 mmol) was added at 0 °C and the reaction was stirred for 17 h while the temperature slowly raised up to RT. The reaction was diluted with EtOAc and poured into satd. aq. NaHCO₃/H₂O (2:1, 50 mL). The aqueous phase was extracted with EtOAc (4×) and dried over MgSO₄. Solvents were removed *in vacuo*, the rest was taken up in CH₂Cl₂, filtered through Celite and concentrated. Purification by CC (2 \rightarrow 5% MeOH in CH₂Cl₂) provided 235 mg (56%) of **7** β and 93 mg (22%) of **7** α (contamined by 8% of **7** β) as white foams.

data for **7α**: R_f (5 % MeOH in CH₂Cl₂) = 0.29; ¹H NMR (300 MHz, CD₃OD) δ = 9.47 (brs, 1H, NH), 7.21 (d, 1H, *J* = 1.1 Hz, H-C(6)), 6.44 (dd, 1H, *J* = 7.9, 1.8 Hz, H-C(1')), 4.46 (d, 1H, *J* = 4.9 Hz, H-C(4')), 4.22 (d, 1H, *J* = 5.0 Hz, H-C(5')), 3.28 (brs, 1H, OH), 2.95 (dd, 1H, *J* = 15.9, 8.0 Hz, H-C(2')), 2.59 (dd, 1H, *J* = 15.8, 0.8 Hz, H-C(2')), 2.38 (ddd, 1H, *J* = 8.1, 5.9, 3.7 Hz, H-C(7')), 1.86 (d, 3H, *J* = 0.7 Hz, CH₃), 1.71 (ddd, 1H, *J* = 8.9, 5.2, 5.2 Hz, H-C(6')), 1.15 (s, 9H, COC(CH₃)₃), 0.72-0.66, 0.34-0.29 (2×m, 2×1H, H-C(8')) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 178.0 (s, COC(CH₃)₃), 164.1 (s, C(4)), 150.4 (d, C(2)), 135.5 (d, C(6)), 110.6 (d, C(5)), 94.8 (s, C(3')), 91.0, 89.9 (2×d, C(5'), C(1')), 70.4 (d, C(4')), 43.5 (t, C(2')), 39.1 (s, COC(CH₃)₃), 27.1 (q, COC(CH₃)₃), 23.9, 23.3 (2×d, C(6'), C(7')), 12.7 (q, CH₃), 7.8 (t, C(8')) ppm; ESI-HRMS: calc. for C₁₈H₂₅N₂O₆ 365.1713 [M+Na]⁺, found 365.1719.

data for **7**β: R_f (5 % MeOH in CH₂Cl₂) = 0.34. ¹H NMR (300 MHz, CDCl₃) δ = 9.13 (brs, 1H, NH),7.74 (d, 1H, J = 0.7 Hz, H-C(6)), 6.38 (dd, 1H, J = 10.8, 4.8 Hz, H-C(1')), 4.23 (dd, 1H, J = 4.9, 2..3 Hz, H-C(5')), 4.10 (d, 1H, J = 5.1 Hz, H-C(4')), 3.75-3.73 (m, 1H, OH), 2.77 (dd, 1H, J = 13.9, 4.8 Hz, H-C(2')), 2.45-2.34 (m, 2H, H-

C(2'), H-C(6')), 1.81 (s, 3H, CH₃), 1.76-1.70 (m, 1H, H-C(7')), 1.18 (s, 9H, COC(CH₃)₃), 0.70-0.63, 0.30-0.26 (2×m, 2×1H, H-C(8')) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 178.2 (s, COC(CH₃)₃), 164.0 (s, C(4)), 150.6 (s, C(2)), 136.6 (d, C(6)), 111.1 (s, C(5)), 94.7 (d, C(3')), 87.9 (d, C(4')), 86.6 (d, C(1')), 69.5 (d, C(5')), 39.4 (t, C(2')), 39.1 (s, COC(CH₃)₃), 27.1 (q, COC(CH₃)₃), 24.7 (d, C(7')), 22.3 (d, C(6')), 12.4 (q, CH₃), 6.9 (t, C(8')) ppm. ESI-HRMS: calc. for C₁₈H₂₄N₂NaO₆ 387.1532 [M+Na]⁺, found 387.1510

Figure S7: ^1H (CDCl_3, 400 MHz) and ^{13}C NMR (CD_3OD, 75 MHz) spectrum of 7α

Figure S8: ¹H (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of **7**β

(5'*R*)-(2'-Deoxy-3',5'-ethano-6',7'-methano- β -D-ribofuranosyl)thymine (8). The solution of 7 β (0.235 g, 0.64 mmol) in dioxane (3 mL) was treated with Bu₄NOH (4.3 mL, 6.45 mmol) at ambient temperature for 16 h. The mixture was diluted with 10 mL of EtOAc/EtOH (9:1) silica-gel was added and all volatiles were removed in vacuo. The product was isolated by CC (EtOAc/EtOH 9:1) to afford title compound **8** (171 mg, 94%) as a white solid.

Data for **8**: $R_f = 0.47$ (EtOAc/EtOH 9:1); ¹H NMR (CD₃OD, 400 MHz) δ 8.32 (q, 1H, J = 1.2 Hz H-C(6)), 6.45 (dd, J = 10.1, 4.9 Hz, 1H, H-C(1')), 4.17 (d, J = 5.4 Hz, 1H, H-C(5')), 3.85 (d, J = 5.3 Hz, 1H, H-C(4')), 2.32 (dd, J = 12.6, 4.9 Hz, 1H), 2.24 (dd, J = 12.6, 10.2 Hz, 1H, H-C(2')), 1.88 (d, J = 1.1 Hz, 3H, CH₃-C(5)), 1.74 ((ddd, J = 8.1, 5.7, 3.8 Hz, H-C(7')), 1.59 ((ddd, J = 8.9, 5.6, 4.4 Hz H-C(6')), 0.69-0.63 (m, 1H, H-C(8')), 0.46 (dt, J = 5.8, 4.1 Hz, 1H, H-C(8')) ppm; ¹³C NMR (CD₃OD, 75 MHz) δ 166.4 (s, C(4)), 152.5 (s, C(2)), 139.2 (d, C(6)), 111.2 (s, C(5)), 90.3 (d, C(4')), 89.1 (s, C(3')), 88.5 (d, C(1')), 71.7 (d, C(5')), 44.7 (t, C(2')), 24.7, 24.6 ($2 \times d$, C(6'), C(7')), 12.5 (q, CH₃-C(5)), 7.5 (t, C(9')) ppm; ESI⁺-HRMS: m/z calcd for C₁₃H₁₇N₂O₅ [M+H]⁺ 281.1137, found 281.1138.

Figure S9: ¹H (CD₃OD, 400 MHz) and ¹³C NMR (CD₃OD, 75 MHz) spectrum of 8

(5'*R*)-(5'-*O*-((4,4'-Dimethoxytriphenyl)methyl)-2'-deoxy-3',5'-ethano-6',7'-methano-β-Dribofuranosyl)thymine (9). To a suspension of 8 (153 mg, 0.55 mmol) in mixture of CH₂Cl₂ (8 mL) dry pyridine (720 μ L) was added DMTrCl (590 mg, 1.74 mmol) in portions over 24 h and the reaction was stirred for additional 12 h at ambient temperature. The mixture was diluted with sat. aq. NaHCO₃, extracted with EtOAc and extracts dried over MgSO₄. The title compound **9** (312 mg, 98%) was isolated by CC (CH₂Cl₂/MeOH 95:5) as a white foam.

Data for **9**: $R_f = 0.62$ (EtOAc/EtOH 9:1); ¹H NMR (CDCl₃, 300 MHz) δ 9.17 (*sbr*, 1H, NH), 7.97 (*d*, *J* = 1.1 Hz, 1H, H-C(6)), 7.50-7.46 (*m*, 2H), 7.40 – 7.27 (*m*, 7H), 6.87- 6.81 (*m*, 4H, H-DMTr), 6.50 (*dd*, *J* = 10.0, 4.2 Hz, 1H, H-C(1')), 4.27 (*d*, *J* = 6.1 Hz, 1H), 4.02 (*d*, *J* = 6.2 Hz, 1H, H-C(5', 4')), 3.80, 3.79 (2×*s*, 6H, H-C(OCH₃)), 3.05 (*s*, 1H, OH), 2.60 (*dd*, *J* = 12.3, 4.2 Hz, 1H), 2.34 (*dd*, *J* = 12.2, 10.1 Hz, 1H, H-C(2')), 1.61- 1.55 (*m*, 1H, H-C(7')), 0.81 (*d*, *J* = 0.8 Hz, 3H, CH₃-C(5)), 0.38-0.17 (*m*, 3H, H-C(6',8')); ¹³C NMR (CDCl₃, 75 MHz) δ 164.1 (*s*, C(4)), 159.1 (*s*, DMTr), 150.7 (*s*, C(2)), 144.6 (*s*, DMTr), 137.0 (*d*, C(6)), 136.1, 136.0 (2×*s*, DMTr), 130.9, 129.2, 128.1, 127.6, 113.3 (6×*d*, DMTr), 111.1 (*s*, C(5)), 89.2 (*d*, C(1'/5')), 88.7, 88.1 (2×*s*, C(3'), C-DMTr), 87.9 (*d*, C(1'/5')), 73.2 (*d*, C(4')), 55.4 (*q*, OCH₃), 44.0 (*t*, C(2')), 24.0, 23.3 (2×*d*, C(6'), C(7')), 10.8 (*q*, CH₃-C(5)), 7.4 (*t*, C(9')) ppm; ESl⁺-HRMS: m/z calcd for C₃₄H₃₄N₂NaO₇ [*M*+Na]⁺ 605.2264, found 605.2268.

Figure S10: ¹H (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectrum of 9

$(5'R)-(5'-O-((4,4'-Dimethoxytriphenyl)methyl)-3'-O-((2-cyanoethoxy)(diisopropylamino)phosphanyl)-2'-deoxy-3',5'-ethano-6',7'-methano-<math>\beta$ -D-ribofuranosyl)thymine (10).

To a solution of **9** (312 mg, 0.54 mmol) and *N*-ethyldiisopropylamine (0.55 mL, 3.21 mmol) in dry THF (5 mL) was added 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (0.36 mL, 1.61 mmol) at rt. After the solution had been stirred for 4 h, the mixture was poured into sat. aq. NaHCO₃, extracted with EtOAc and extracts were dried over MgSO₄. After filtration and evaporation, the residual oil was purified by CC (EtOAc/Hexane 7:3) to give the title compound **10** (373 mg, 89%) as a white foam.

Data for **10**: $R_f = 0.66, 0.51$ (EtOAc/Hex 7:3); ¹H NMR (CDCl₃, 400 MHz) δ 8.99 (*sbr*, 1H, NH), 7.96-7.94 (*m*, 1H, H-C(6)), 7.50-7.47 (*m*, 2H), 7.40-7.26 (*m*, 7H), 6.87-6.82 (*m*, 4H, H-DMTr), 6.48 (*dd*, J = 10.2, 4.0 Hz, 1H, H-C(1')), 4.27-4.25 (*m*, 1H), 4.17-4.10 (*m*, 1H, H-C(4'), H-C(5')), 3.93-3.58 (*m*, 10H, CH-ⁱPr, OCH₃, OCH₂), 2.92-2.58 (*m*, 3H, H-C(2'), CH₂CN), 2.36-2.26 (*m*, 1H, H-C(2')), 1.81-1.73 (*m*, 1H, H-C(6'/7')), 1.27-1.16 (*m*, 12H, CH₃-ⁱPr), 0.77 (*s*, 3H, CH₃-C(5)), 0.45-0.31 (*m*, 2H), 0.27-0.19 (*m*, 1H, H-C(6'), H-C(7'), H-C(8')); ¹³C NMR (CDCl₃, 75 MHz) δ 164.1 (*s*, C(4)), 159.1 (*s*, DMTr), 150.7, 150.4 (2×*s*, C(2)), 144.5 (*s*, DMTr), 137.0, 136.9 (2×*d*, C(6)), 136.1, 136.0, 135.9 (4×*s*, DMTr), 131.0, 130.9, 129.2, 128.1, 127.6 (6×*d*, DMTr), 118.5, 117.8 (2×*s*, CN), 113.3 (*d*, DMTr), 111.0, 110.8 (2×*s*, C(5)), 93.3 (*dd*, ²*J*(*C*,*P*) = 12 Hz, C(3`)), 92.8 (*dd*, ²*J*(*C*,*P*) = 10 Hz, C(3`)), 89.3 (*dd*, ³*J*(*C*,*P*) = 5 Hz, C(4')), 89.2 (*dd*, ³*J*(*C*,*P*) = 4 Hz, C(4')), 88.2 (2×*s*, C-DMTr), 87.7, 87.6 (2×*d*, C(1')), 72.3, 72.1 (2×*d*, C(5')), 58.1, 57.9 (2×*d*, ²*J*(*C*,*P*) = 18 Hz, OCH₂), 55.4 (*q*, OCH₃), 43.6, 43.3 (2×*dd*, ²*J*(*C*,*P*) = 13 Hz, CH-ⁱPr), 24.8-24.4, 22.6-22.2(2×*m*, CH₃-ⁱPr, C(6'), C(7')), 20.5 (2×*td*, ³*J*(*C*,*P*) = 8 Hz, CH₂CN), 10.7, 10.6 (2×*q*, CH₃-C(5)), 8.7 (*t*, C(8')); ³¹P NMR (CDCl₃, 122 MHz) δ 143.0, 142.3; ESI⁺-HRMS: m/z calcd for C₄₃H₅₁N₄NaO₈P [*M*+Na]⁺ 805.3342, found 805.3354.

Figure S11: ¹H (CDCl₃, 400 MHz), ¹³C (CDCl₃, 75 MHz) and ³¹P NMR (CDCl₃, 122 MHz) spectrum of **10**

(2'-Deoxy-3',5'-etheno- α -and- β -p-ribofuranosyl)thymine (11 α , β). Into stirred ice-cooled suspension of thymine (0.494 g, 3.92 mmol) and 2 (0.270 g, 1.57 mmol) in MeCN (16 mL) under the atmosphere of Ar were added BSA (2.3 mL, 9.41 mmol) and TMSCI (0.05 mL, 0.63 mmol) successively and the mixture was stirred until clear solution appeared (40 min). Then the TMSOTf (1.42 mL, 7.84 mmol) was added drop wise at 0 °C, cooling bath was removed and the reaction mixture was stirred at ambient temperature for 2.5 h. The reaction was quenched by addition of sat. aq. NaHCO₃ (5.5 mL), silica gel was added and all liquids were evaporated. The mixture was chromatographed to afford 0.906 g of crude product containing inseparable mixture of 11 α , β which was used without further treatment for the subsequent step. Compounds 11 α and 11 β (white solids) for analyses were obtained by preparative TLC (8% MeOH in CH₂Cl₂).

data for **11***β*: R_f (8% MeOH in CH_2Cl_2) = 0.16; ¹H NMR (CD_3OD , 300 MHz): δ = 7.93 (q, J = 1.2 Hz, 1H; H-C(6)), 6.43 (dd, J = 8.0, 6.1 Hz, 1H; H-C(1`)), 5.93 (dd, J = 5.8, 1.1 Hz, 1H), 5.86 (dd, J = 5.8, 2.0 Hz, 1H; H-C(6`,7`)), 4.80 (ddd, J = 5.7, 2.0, 1.1 Hz, 1H; H-C(5`)), 4.21 (d, J = 5.7 Hz, 1H; H-C(4`)), 2.48 (dd, J = 13.6, 6.1 Hz, 1H; H-C(2`)), 2.13 (dd, J = 13.6, 8.0 Hz, 1H; H-C(2`)), 1.86 (d, J = 1.2 Hz, 1H; CH₃) ppm; ¹³C NMR (CD₃OD, 75 MHz): δ = 166.6 (s, C(4)), 152.5 (s, C(2)), 138.8 (d, C(6)), 137.7, 135.5 (2×d, C(6`, 7`)), 111.4 (s C(5)), 91.3 (s, C(3`)), 89.3, 89.2 (2×d, C(1`, 5`)), 75.2 (d, C(4`)), 46.3 (t, C(2`)), 12.6 (q, CH₃) ppm.

data for **11***a*: R_f (8% MeOH in CH_2Cl_2) = 0.16; ¹H NMR (CD_3OD , 300 MHz): δ = 7.74 (q, *J* = 1.2 Hz, 1H; H-C(6)), 6.22 (t, *J* = 6.6 Hz, 1H; H-C(1`)), 5.95 (dd, *J* = 5.9, 0.9 Hz, 1H), 5.91 (ddd, *J* = 5.9, 1.7, 0.5 Hz, 1H; H-C(6`,7`)), 4.77 (ddd, *J* = 5.3, 1.6, 1.2 Hz, 1H; H-C(5`)), 4.44 (d, *J* = 5.3 Hz, 1H; H-C(4`)), 2.57 (dd, *J* = 13.7, 6.6

Hz, 1H; H-C(2`)), 2.26 (dd, J = 13.7, 6.5 Hz, 1H; H-C(2`)), 1.91 (d, J = 1.2 Hz, 3H, H-CH₃) ppm; ¹³C NMR (CD₃OD, 75 MHz): $\delta = 166.6$ (s, C(4)), 152.5 (s, C(2)), 138.3 (d, C(6)), 137.2, 136.8 (2×d, C(6`, 7`)), 111.9 (s, C(5)), 90.7 (s, C(3`)), 89.1 (2×d, C(1`, 4`)), 76.2 (d, C(5`)), 45.7 (t, C(2`)), 12.6 (q, CH₃) ppm.

Figure S12: ¹H (CD₃OD, 300 MHz), ¹³C NMR (CD₃OD, 75 MHz) spectrum of 11β

Figure S13: ^1H (CD_3OD, 300 MHz), ^{13}C NMR (CD_3OD, 75 MHz) spectrum of 11α

[5'-O-((4,4'-Dimethoxytriphenyl)methyl)-2'-deoxy-3',5'-etheno- α -and- β -D-ribofuranosyl]thymine (12 α , β). The crude mixture of 11 α , β (0.906 g, containing max. 1.57 mmol of 11 α , β) was dissolved in dry pyridine (15 mL) and DMTCl (1.06 g, 3.14 mmol) was added in one portion. The solution was stirred overnight at RT under atmosphere of Ar. It was poured into sat. aq. NaHCO₃ and extracted with EtOAc. Extracts were dried with MgSO₄ and after evaporation chromatographed (silica gel, 3.5% MeOH in CH₂Cl₂) to provide 0.262 g of 12 α (29%, pale yellow foam) and 0.307 g of 12 β (34%, pale yellow foam).

data for **12***β*: R_f (8% MeOH in CH_2CI_2) = 0.33; ¹H NMR (CDCI₃, 400 MHz): δ = 8.95 (s, 1H; NH), 7.96 (q, *J* = 1.2 Hz, 1H; H-C(6)), 7.54-7.48 (m, 2H), 7.46-7.36 (m, 4H), 7.31-7.17 (m, 3H), 6.87-6.78 (m, 4H; Ph), 6.18 (dd, *J* = 6.6, 4.0 Hz, 1H; H-C(1`)), 5.53 (dd, *J* = 5.7, 1.6 Hz, 1H; H-C(7`)), 4.80 (dt, *J* = 5.3, 1.6 Hz, 1H; H-C(5`)), 4.69 (ddd, *J* = 5.6, 1.6, 0.8 Hz, 1H; H-C(6`)), 4.16 (d, *J* = 5.3 Hz, 1H; H-C(4`)), 3.77 (2×s, 2×3H; OMe), 2.71 (dd, *J* = 14.1, 6.6 Hz, 1H; H-C(2`)), 2.47 (s, 1H; OH), 2.31 (dd, *J* = 14.1, 4.0 Hz, 1H; H-C(2`)), 1.66 (d, *J* = 1.2 Hz, 3H; H-CH₃) ppm; ¹³C NMR (CDCI₃, 100 MHz): δ = 164.3 (s, C(4)), 159.0 (s, C-Ph), 150.6 (s, C(2)), 145.3 (s, C-Ph), 137.3 (d, C(6)), 136.6 (d, C(6`)), 136.4 (2×s, C-Ph), 134.6 (d, C(7`)), 130.3, 128.3, 127.3, 113.6 (7×d, C-Ph), 109.6 (s C(5)), 89.5 (s, C(3`)), 88.6 (d, C(1`)), 88.2 (d, C(4`)), 88.1 (s, C(CPh₃)), 77.5 (d, C(5`)), 55.5 (q, OCH₃), 45.9 (t, C(2`)), 12.4 (q, CH₃) ppm; ESI⁺-HRMS: calcd for C₃₃H₃₂N₂NaO₇: 591.2102 [*M*+Na]⁺; found: 591.2121.

data for **12***a*: R_f (8% MeOH in CH₂Cl₂) = 0.33; ¹H NMR (CDCl₃, 400 MHz): δ = 8.85 (s, 1H; NH), 7.51-7.48 (m, 2H), 7.43-7.34 (m, 4H), 7.32-7.22 (m, 3H; H-Ph, H-C(6)), 7.23-7.15 (m, 1H), 6.85-6.76 (m, 4H; Ph), 6.26 (dd, *J* = 7.3, 5.4 Hz, 1H; H-C(1`)), 5.70 (dd, *J* = 5.9, 1.0 Hz, 1H; H-C(7`)), 4.73 (dd, *J* = 5.9, 1.9 Hz, 1H; H-C(6`)), 4.62 (ddd, *J* = 5.8, 1.9, 1.2 Hz, 1H; H-C(5`)), 4.16 (d, *J* = 5.8 Hz, 1H; H-C(4`)), 3.77 (s, 6H; OMe), 3.02 (s, 1H; OH), 2.67 (dd, *J* = 14.1, 7.3 Hz, 1H; H-C(2`)), 2.30 (dd, *J* = 14.1, 5.4 Hz, 1H; H-C(2`)), 1.94 (d, *J* = 1.1 Hz, 3H; H-CH₃) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ = 164.0 (s, C(4)), 158.9 (s, C-Ph), 150.5 (s, C(2)), 145.5 (s, C-Ph), 137.7 (d, C(6)), 137.0, 136.8 (2×s, C-Ph), 135.5, 135.4 (2×d, C(6`, 7`)), 130.5, 128.5, 128.1, 127.1, 113.4 (7×d, C-Ph), 111.1 (s C(5)), 90.3, 90.3 (s, d, C(1`, 3`)), 88.8 (d, C(4`)), 87.6 (s, CPh₃), 76.7 (d, C(5`)), 55.5 (q, OCH₃), 45.1 (t, C(2`)), 12.7 (q, CH₃) ppm; ESI⁺-HRMS: calcd for C₃₃H₃₂N₂NaO₇: 591.2102 [*M*+Na]⁺; found: 591.2122.

Figure S14: 1 H (CDCl₃, 400 MHz), 13 C NMR (CDCl₃, 100 MHz) spectrum of 12β

Figure S15: 1 H (CDCl₃, 400 MHz), 13 C NMR (CDCl₃, 100 MHz) spectrum of 12α

{3´-O-[(2-Cyanoethoxy)(diisopropylamino)phosphanyl]-5´-O-(4,4´-dimethoxytriphenyl)methyl-2´deoxy-3´,5´-etheno-β-D-ribofuranosyl}thymine (13). 2-Cyanoethyl *N*,*N*-

diisopropylchlorophosphoramidite (CEPCl, 0.34 mL, 1.51 mmol) was added at RT into a solution of

nucleoside **12** β (0.286 g, 0.50 mmol) and DIPEA (0.52 mL, 3.02 mmol) in dry THF (5 mL). After stirring for 1 h under an Ar atmosphere, the mixture was poured into sat. aq. NaHCO₃ and extracted with Et₂O. Extracts were dried with MgSO₄ and after evaporation of solvents the remaining crude was purified by CC (EtOAc/hexane 7:3) to provide title compound **13** (0.355 g, 94%) as a white foam.

data for **13**: R_f (7:3 EtOAc/hexane) = 0.57, 0.43; ¹H NMR (CDCl₃, 400 MHz): δ = 8.83 (brs, 1H; NH), 7.98 (q. J = 1.2 Hz, 0.4H; H-C(6)), 7.91 (q, J = 1.2 Hz, 0.6H; H-C(6)), 7.56-7.47 (m, 2H), 7.46-7.34 (m, 4H), 7.36-7.16 (m, 3H), 6.89-6.77 (m, 4H; H-Ph), 6.18 (dd, J = 6.6, 4.3 Hz, 0.6H; H-C(1`)), 6.13 (dd, J = 6.7, 3.6 Hz, 0.4H; H-C(1`)), 5.71 (d, J = 5.7 Hz, 0.6H; H-C(7`)), 5.64 (dt, J = 5.5, 1.4 Hz, 0.4H; H-C(7`)), 4.78 (d, J = 5.9 Hz, 0.6H; H-C(6`)), 4.76 – 4.69 (m, 1.4H; H-C(6`, 5`)), 4.28 (d, J = 5.1 Hz, 0.4H; H-C(4`)), 4.23 (d, J = 5.3 Hz, 0.6H; H-C(4`)), 3.79, 3.78, 3.77 (4×s, 6H; OMe), 3.71-3.43 (m, 4H; H-C(*i*-Pr), OCH₂), 2.89-2.84 (m, 1H; H-C(2`)), 2.55-2.49 (m, 1H; -CH₂CN), 2.42-2.33 (m, 1H; H-C(2[`])), 2.34-2.18 (m, 1H; CH₂CN), 1.69 (d, *J* = 1.2 Hz, 1.3H; H-CH₃), 1.66 (d, J = 1.2 Hz, 1.8H; H-CH₃), 1.11 – 1.05 (m, 9H; CH(CH₃)₂), 1.01 (d, J = 6.8 Hz, 3H; CH(CH₃)₂) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ = 164.3, 164.2 (2×s, C(4)), 159.0 (2×s, C-Ph), 150.5 (s, C(2)), 145.3 (2×s, C-Ph), 137.3, 137.1 (2×d, C(6)), 136.8 (d, C(7`)), 136.5 (s, C-Ph), 136.4 (d, C(6`)), 136.3 (s, C-Ph), 134.4 (dd, ${}^{3}J(C,P) = 7 \text{ Hz}, C(7), 134.0 (dd, {}^{3}J(C,P) = 8 \text{ Hz}, C(7), 130.4, 130.3, 128.3, 128.2, 127.4, 127.3 (9×d, C-Ph),$ 117.7, 117.4 (2×s, CN), 113.7, 113.6, 113.5 (4×d, C-Ph), 109.7, 109.4 (2×s C(5)), 92.4 (d, ²J(C,P) = 11 Hz, C(3`)), 92.5 d, ²J(C,P) = 10 Hz, C(3`)), 88.5 (2×d, C(1`)), 88.1 (2×s, C(CPh₃)), 87.8, 87.7 (2×d, C(4`)), 77.6 (dd, ${}^{4}J(C,P) = 1 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 58.2 (dt, {}^{2}J(C,P) = 18 \text{ Hz}, OCH_{2}), 58.0 (dt, {}^{2}J(C,P) = 17 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P) = 3 \text{ Hz}, C(5^{\circ})), 77.3 (dd, {}^{4}J(C,P)$ Hz, OCH₂), 55.5 (2×q, OCH₃), 46.2, 46.1 (2×dt, ³J(*C*,*P*) = 6 Hz, C(2`)), 43.6, 43.5 (2×dd, ²J(*C*,*P*) = 13 Hz, CH(CH₃)₂), 24.7, 24.5, 24.4 ($3 \times dq$, ${}^{3}J(C,P) = 6$ Hz, CH(CH₃)₂), 20.5, 20.0, ($2 \times dt$, ${}^{3}J(C,P) = 7$ Hz, -CH₂CN), 12.4 (q, CH₃) ppm; ³¹P NMR (122 MHz, CDCl₃): δ = 143.60, 142.99 ppm; ESI⁺-HRMS: calcd for C₄₂H₄₉N₄NaO₈P: 791.3180 [*M*+Na]⁺; found: 791.3160.

Figure S16: ¹H (CDCl₃, 400 MHz), ¹³C (CDCl₃, 100 MHz) and ³¹P NMR (CDCl₃, 122 MHz) spectrum of 13

Crystal-Structure Determination. – A colorless crystals of $C_{13}H_{16}N_2O_5$ (8), $C_{12}H_{14}N_2O$ (11 β) and $C_{13}H_{16}N_2O_5$ (tc-T) were mounted in air and used for X-ray structure determination at 173K. All measurements were made on an *Oxford Diffraction SuperNova* area-detector diffractometer using mirror optics monochromated Mo *K* α radiation ($\lambda = 0.71073$ Å) and Al filtered. The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the ranges 2° < θ < 27.2° (8), 2° < θ < 30° (11 β) and 1.9° < θ < 25.0° (tc-T). A total of 1088, frames were collected using ω scans, with 5+5 seconds exposure time, a rotation angle of 1.0° per frame for compound 8, 1035 frames were collected using ω scans, with 30+30 seconds exposure time for compound tc-T, a rotation angle of 0.5° per frame, a crystal-detector distance of 65.0 mm, at T = 173(2) K.

Data reduction was performed using the *CrysAlisPro* program. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in *CrysAlisPro* was applied. Data collection and refinement parameters are given bellow.

The structures were solved by direct methods using *SHELXS-97*, which revealed the positions of all nonhydrogen atoms of title compounds. The non-hydrogen atoms were refined anisotropically. All H-atoms were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for the methyl groups).

Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w (F_o^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections.

All calculations were performed using the SHELXL-97 program.

Compound 8: The data did not allow assignment of absolute configuration, which was assigned based on the knowledge of the parent compound. Friedel pairs were then merged before the refinement.

Figure S17: ORTEP view of compound 8 with labeling.

```
{\bf Table \ S1} - Crystal Data and Details of the Structure Determination
           for: 8 in P2(1)
                                    Crystal Data
        Formula
                                                               C13 H16 N2 O5
                                                                      280.28
        Formula Weight
        Crystal System
                                                                  Monoclinic
        Space group
                                                       P2_1
                                                                     (No. 4)
        a, b, c [Angstrom]
                                        9.7669(4)
                                                      6.8089(3)
                                                                   9.9511(4)
        alpha, beta, gamma [deg]
                                               90
                                                    110.324(5)
                                                                          90
        V [Ang**3]
                                                                   620.57(5)
        Ζ
        D(calc) [g/cm**3]
                                                                       1.500
        Mu(MoKa) [ /mm ]
                                                                       0.116
        F(000)
                                                                         296
        Crystal Size [mm]
                                                       0.40 x 0.15 x 0.08
```

```
S29
```

2

Data Collection 173 Temperature (K) 0.71073 Radiation [Angstrom] MoKa 2.0, 26.7 Theta Min-Max [Deg] 12:-12; 8:-8; 12:-12 Dataset 9679, 1394, 0.000 Tot., Uniq. Data, R(int) Observed data [I > 2.0 sigma(I)] 1324 Refinement 1394, 196 Nref, Npar R, wR2, S 3.44, 7.77, 1.06 R, wR2 (I > 2 sigma(I))3.17, 7.49 Max. and Av. Shift/Error 0.01, 0.001 Min. and Max. Resd. Dens. [e/Ang^3] 0.19,-0.22

Table S2 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: 8 in P2(1)

Atom	Х	У	Z	U(eq) [Ang^2]
01	0.02923(18)	1.0259(3)	0.10145(17)	0.0251(5)
02	-0.38533(17)	0.7029(3)	-0.14771(17)	0.0298(5)
03	0.38044(17)	0.7586(3)	0.57982(17)	0.0254(5)
04	0.10124(16)	0.2408(3)	0.35014(17)	0.0240(5)
012	0.21261(16)	0.5775(3)	0.27657(15)	0.0194(5)
N2	-0.1807(2)	0.8644(3)	-0.01342(19)	0.0201(5)
N6	-0.01613(18)	0.7348(3)	0.19546(18)	0.0179(5)
C1	-0.0494(2)	0.8834(4)	0.0950(2)	0.0181(6)
C3	-0.2770(2)	0.7070(4)	-0.0382(2)	0.0205(6)
C4	-0.2377(2)	0.5585(4)	0.0727(2)	0.0226(7)
C5	-0.1095(2)	0.5764(4)	0.1803(2)	0.0207(6)
C7	-0.3343(3)	0.3827(4)	0.0580(3)	0.0394(9)
C8	0.1281(2)	0.7322(4)	0.3085(2)	0.0181(6)
С9	0.1281(2)	0.6888(4)	0.4587(2)	0.0200(6)
C10	0.2795(2)	0.5992(4)	0.5326(2)	0.0182(6)
C11	0.3017(2)	0.4838(4)	0.4074(2)	0.0180(6)
C12	0.2906(3)	0.4483(4)	0.6458(2)	0.0237(7)
C13	0.2822(3)	0.2468(4)	0.5795(3)	0.0251(7)
C14	0.2546(2)	0.2693(4)	0.4217(2)	0.0210(7)
C15	0.4236(3)	0.3191(4)	0.6830(3)	0.0315(8)
U(eq)	= 1/3 of the	trace of the	orthogonaliz	ed U Tensor

Table S3 - Hydrogen Atom Positions and Isotropic Displacement
Parameters for: 8 in P2(1)

Atom	х	У	z t	J(iso) [Ang^2]
H2	-0.20727	0.96269	-0.07442	0.0241
нЗ	0.455(2)	0.724(5)	0.6675(15)	0.0300

S30

0.089(3)	0.183(4)	0.2600(15)	0.0300
-0.08098	0.47489	0.25005	0.0249
-0.304(2)	0.296(3)	0.1547(14)	0.0300
-0.4445(12)	0.436(4)	0.0343(17)	0.0300
-0.331(2)	0.291(3)	-0.0293(13)	0.0300
0.17767	0.86086	0.30919	0.0216
0.04990	0.59471	0.45606	0.0240
0.11542	0.81049	0.50759	0.0240
0.40675	0.48769	0.41585	0.0216
0.24294	0.47270	0.71840	0.0284
0.22963	0.14033	0.61112	0.0301
0.31305	0.17295	0.38809	0.0252
0.50087	0.35617	0.64450	0.0378
0.45956	0.25904	0.77956	0.0378
	0.089(3) -0.08098 -0.304(2) -0.4445(12) -0.331(2) 0.17767 0.04990 0.11542 0.40675 0.24294 0.22963 0.31305 0.50087 0.45956	0.089(3)0.183(4)-0.080980.47489-0.304(2)0.296(3)-0.4445(12)0.436(4)-0.331(2)0.291(3)0.177670.860860.049900.594710.115420.810490.406750.487690.242940.472700.229630.140330.313050.172950.500870.356170.459560.25904	$\begin{array}{cccccc} 0.089(3) & 0.183(4) & 0.2600(15) \\ -0.08098 & 0.47489 & 0.25005 \\ -0.304(2) & 0.296(3) & 0.1547(14) \\ -0.4445(12) & 0.436(4) & 0.0343(17) \\ -0.331(2) & 0.291(3) & -0.0293(13) \\ 0.17767 & 0.86086 & 0.30919 \\ 0.04990 & 0.59471 & 0.45606 \\ 0.11542 & 0.81049 & 0.50759 \\ 0.40675 & 0.48769 & 0.41585 \\ 0.24294 & 0.47270 & 0.71840 \\ 0.22963 & 0.14033 & 0.61112 \\ 0.31305 & 0.17295 & 0.38809 \\ 0.50087 & 0.35617 & 0.64450 \\ 0.45956 & 0.25904 & 0.77956 \\ \end{array}$

The Temperature Factor has the Form of Exp(-T) Where

T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters for: 8 in P2(1)

Atom	U(1,1) or 1	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
01	0.0298(8)	0.0241(10)	0.0185(8)	0.0001(7)	0.0046(7)	-0.0083(8)
02	0.0200(8)	0.0399(12)	0.0206(8)	0.0035(8)	-0.0042(6)	-0.0028(8)
03	0.0239(8)	0.0203(10)	0.0227(8)	-0.0011(8)	-0.0037(7)	-0.0046(8)
04	0.0224(8)	0.0252(10)	0.0218(8)	-0.0068(8)	0.0044(7)	-0.0058(8)
012	0.0207(8)	0.0224(9)	0.0146(7)	-0.0005(7)	0.0056(6)	0.0047(7)
N2	0.0208(9)	0.0203(10)	0.0164(9)	0.0031(8)	0.0029(8)	0.0024(8)
N6	0.0158(8)	0.0188(10)	0.0157(9)	-0.0004(9)	0.0013(7)	-0.0023(9)
C1	0.0216(10)	0.0186(12)	0.0150(10)	-0.0014(10)	0.0074(8)	0.0000(10)
С3	0.0164(10)	0.0248(13)	0.0196(10)	-0.0011(10)	0.0055(8)	-0.0008(10)
C4	0.0192(10)	0.0280(14)	0.0184(11)	0.0006(10)	0.0037(9)	-0.0038(10)
С5	0.0223(11)	0.0217(12)	0.0178(10)	0.0017(10)	0.0066(9)	-0.0034(10)
C7	0.0358(14)	0.0434(19)	0.0283(13)	0.0076(14)	-0.0023(11)	-0.0208(15)
C8	0.0151(9)	0.0193(12)	0.0168(10)	-0.0027(10)	0.0018(8)	-0.0001(10)
С9	0.0193(10)	0.0237(13)	0.0158(10)	-0.0036(10)	0.0045(8)	0.0011(10)
C10	0.0152(10)	0.0182(12)	0.0176(11)	-0.0022(9)	0.0011(8)	-0.0024(9)
C11	0.0170(10)	0.0196(12)	0.0153(10)	-0.0001(9)	0.0029(8)	-0.0006(9)
C12	0.0290(12)	0.0233(14)	0.0163(11)	-0.0023(10)	0.0048(9)	-0.0042(10)
C13	0.0300(12)	0.0204(12)	0.0217(11)	0.0016(11)	0.0051(10)	-0.0024(12)
C14	0.0204(11)	0.0204(13)	0.0196(11)	-0.0033(10)	0.0037(9)	-0.0009(10)
C15	0.0351(14)	0.0251(15)	0.0233(12)	0.0025(11)	-0.0038(11)	0.0013(12)

The Temperature Factor has the Form of Exp(-T) Where

T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for

Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and

h(i) are the Reflection Indices.

01 $-C1$ $1.225(3)$ $C10$ $-C12$ 1.501 02 $-C3$ $1.228(3)$ $C11$ $-C14$ 1.553 03 $-C10$ $1.431(3)$ $C12$ $-C13$ 1.512 04 $-C14$ $1.431(3)$ $C12$ $-C15$ 1.505 012 $-C8$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(0)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(0)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(0)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.00 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15B$ 0.9 $C10$ $-C11$ $1.551(3)$ $C15$ $-H15B$ 0.9						
02 $-C3$ $1.228(3)$ $C11$ $-C14$ 1.553 03 $-C10$ $1.431(3)$ $C12$ $-C13$ 1.512 04 $-C14$ $1.431(3)$ $C12$ $-C15$ 1.505 012 $-C8$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(0)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(0)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(0)$ $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9A$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C4$ $-C7$ $1.524(3)$ $C15$ $-H15A$ 0.9 $C9$ $-C10$ $1.531(3)$ $C15$ $-H15B$ 0.9	01	-C1	1.225(3)	C10	-C12	1.501(3)
03 $-C10$ $1.431(3)$ $C12$ $-C13$ 1.512 04 $-C14$ $1.431(3)$ $C12$ $-C15$ 1.505 012 $-C8$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(10)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(10)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(10)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.00 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15A$ 0.9 $C9$ $-C10$ $1.531(3)$ $C15$ $-H15B$ 0.9	02	-C3	1.228(3)	C11	-C14	1.553(4)
04 $-C14$ $1.431(3)$ $C12$ $-C15$ 1.505 012 $-C8$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(1)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(1)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(1)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.00 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9B$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15A$ 0.9 $C9$ $-C10$ $1.531(3)$ $C15$ $-H15B$ 0.9	03	-C10	1.431(3)	C12	-C13	1.512(4)
012 $-C8$ $1.440(3)$ $C13$ $-C14$ 1.506 012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(1)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(1)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(1)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.0 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9B$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15A$ 0.9 $C9$ $-C10$ $1.531(3)$ $C15$ $-H15B$ 0.9	04	-C14	1.431(3)	C12	-C15	1.505(4)
012 $-C11$ $1.440(3)$ $C13$ $-C15$ 1.491 03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(1)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(1)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(1)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.00 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9B$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C5$ $1.341(3)$ $C13$ $-H13$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15B$ 0.9 $C10$ $-C11$ $1.551(3)$ $C15$ $-H15B$ 0.9	012	-C8	1.440(3)	C13	-C14	1.506(3)
03 $-H3$ $0.952(17)$ $C5$ $-H5$ 0.9 04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079(1)$ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081(1)$ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079(1)$ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.0 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9B$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C5$ $1.341(3)$ $C13$ $-H13$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15B$ 0.9 $C9$ $-C10$ $1.531(3)$ $C15$ $-H15B$ 0.9	012	-C11	1.440(3)	C13	-C15	1.491(4)
04 $-H4$ $0.948(18)$ $C7$ $-H7A$ $1.079($ $N2$ $-C3$ $1.390(3)$ $C7$ $-H7B$ $1.081($ $N2$ $-C1$ $1.365(3)$ $C7$ $-H7C$ $1.079($ $N6$ $-C8$ $1.466(3)$ $C8$ $-H8$ 1.0 $N6$ $-C5$ $1.386(3)$ $C9$ $-H9A$ 0.9 $N6$ $-C1$ $1.380(3)$ $C9$ $-H9B$ 0.9 $N2$ $-H2$ 0.8800 $C11$ $-H11$ 1.00 $C3$ $-C4$ $1.447(3)$ $C12$ $-H12$ 1.00 $C4$ $-C5$ $1.341(3)$ $C13$ $-H13$ 1.00 $C4$ $-C7$ $1.500(4)$ $C14$ $-H14$ 1.00 $C8$ $-C9$ $1.524(3)$ $C15$ $-H15B$ 0.9 $C10$ $-C11$ $1.551(3)$ $C15$ $-H15B$ 0.9	03	-НЗ	0.952(17)	C5	-H5	0.9500
N2 $-C3$ $1.390(3)$ C7 $-H7B$ $1.081($ N2 $-C1$ $1.365(3)$ C7 $-H7C$ $1.079($ N6 $-C8$ $1.466(3)$ C8 $-H8$ 1.0 N6 $-C5$ $1.386(3)$ C9 $-H9A$ 0.9 N6 $-C1$ $1.380(3)$ C9 $-H9B$ 0.9 N2 $-H2$ 0.8800 C11 $-H11$ 1.00 C3 $-C4$ $1.447(3)$ C12 $-H12$ 1.00 C4 $-C5$ $1.341(3)$ C13 $-H13$ 1.00 C4 $-C7$ $1.500(4)$ C14 $-H14$ 1.00 C8 $-C9$ $1.524(3)$ C15 $-H15B$ 0.9 C10 $-C11$ $1.551(3)$ C15 $-H15B$ 0.9	04	-H4	0.948(18)	C7	-H7A	1.079(16)
N2-C1 $1.365(3)$ C7 $-H7C$ $1.079($ N6-C8 $1.466(3)$ C8 $-H8$ 1.0 N6-C5 $1.386(3)$ C9 $-H9A$ 0.9 N6-C1 $1.380(3)$ C9 $-H9B$ 0.9 N2 $-H2$ 0.8800 C11 $-H11$ 1.00 C3-C4 $1.447(3)$ C12 $-H12$ 1.00 C4-C5 $1.341(3)$ C13 $-H13$ 1.00 C4-C7 $1.500(4)$ C14 $-H14$ 1.00 C8-C9 $1.524(3)$ C15 $-H15A$ 0.9 C9-C10 $1.531(3)$ C15 $-H15B$ 0.9	N2	-C3	1.390(3)	C7	-H7B	1.081(16)
N6 -C8 1.466(3) C8 -H8 1.0 N6 -C5 1.386(3) C9 -H9A 0.9 N6 -C1 1.380(3) C9 -H9B 0.9 N2 -H2 0.8800 C11 -H11 1.0 C3 -C4 1.447(3) C12 -H12 1.0 C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9	N2	-C1	1.365(3)	C7	-H7C	1.079(16)
N6 -C5 1.386(3) C9 -H9A 0.9 N6 -C1 1.380(3) C9 -H9B 0.9 N2 -H2 0.8800 C11 -H11 1.0 C3 -C4 1.447(3) C12 -H12 1.0 C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9	NG	-C8	1.466(3)	C8	-H8	1.0000
N6 -C1 1.380(3) C9 -H9B 0.9 N2 -H2 0.8800 C11 -H11 1.0 C3 -C4 1.447(3) C12 -H12 1.0 C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9	NG	-C5	1.386(3)	С9	-H9A	0.9900
N2 -H2 0.8800 C11 -H11 1.0 C3 -C4 1.447(3) C12 -H12 1.0 C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9	NG	-C1	1.380(3)	С9	-Н9В	0.9900
C3 -C4 1.447(3) C12 -H12 1.0 C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9	N2	-H2	0.8800	C11	-H11	1.0000
C4 -C5 1.341(3) C13 -H13 1.0 C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9 C10 -C11 1.551(3) C15 -H15B 0.9	С3	-C4	1.447(3)	C12	-H12	1.0000
C4 -C7 1.500(4) C14 -H14 1.0 C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9 C10 -C11 1.551(3) C15 -H15B 0.9	C4	-C5	1.341(3)	C13	-H13	1.0000
C8 -C9 1.524(3) C15 -H15A 0.9 C9 -C10 1.531(3) C15 -H15B 0.9 C10 -C11 1.551(3) C15 -H15B 0.9	C4	-C7	1.500(4)	C14	-H14	1.0000
C9 -C10 1.531(3) C15 -H15B 0.9	С8	-C9	1.524(3)	C15	-H15A	0.9900
C10 = C11 = 1.551(3)	С9	-C10	1.531(3)	C15	-H15B	0.9900
CTO CTT T.JJT(J)	C10	-C11	1.551(3)			

Table S5 - Bond Distances (Angstrom) for: 8 in P2(1)

Table S6 - Bond Angles (Degrees) for: 8 in P2(1)

C8	-012	-C11	109.72(15)	C11	-C10	-C12	105.2(2)
C10	-03	-НЗ	109.5(19)	C10	-C11	-C14	105.93(17)
C14	-04	-H4	107.1(18)	012	-C11	-C10	107.03(19)
C1	-N2	-C3	127.2(2)	012	-C11	-C14	113.24(17)
C1	-N6	-C8	119.12(19)	C10	-C12	-C15	114.6(2)
C1	-N6	-C5	120.75(18)	C13	-C12	-C15	59.22(19)
C5	-N6	-C8	119.64(19)	C10	-C12	-C13	108.36(19)
C1	-N2	-H2	116.00	C12	-C13	-C14	109.0(2)
C3	-N2	-H2	116.00	C12	-C13	-C15	60.14(18)
01	-C1	-N2	121.1(2)	C14	-C13	-C15	118.3(2)
01	-C1	-N6	123.87(19)	04	-C14	-C13	106.41(19)
N2	-C1	-N6	115.0(2)	C11	-C14	-C13	103.88(19)
N2	-C3	-C4	114.81(18)	04	-C14	-C11	111.98(19)
02	-C3	-C4	125.4(2)	C12	-C15	-C13	60.64(19)
02	-C3	-N2	119.8(2)	NG	-C5	-H5	118.00
C3	-C4	-C7	119.49(19)	C4	-C5	-H5	118.00
C5	-C4	-C7	122.1(2)	C4	-C7	-H7A	112.4(10)
C3	-C4	-C5	118.2(2)	C4	-C7	-H7B	107.4(14)
N6	-C5	-C4	123.7(2)	C4	-C7	-H7C	110.3(11)
012	-C8	-N6	108.13(17)	H7A	-C7	-H7B	108.8(15)
012	-C8	-C9	105.66(19)	H7A	-C7	-H7C	109.0(14)
N6	-C8	-C9	115.32(17)	H7B	-C7	-H7C	108.9(14)

C8	-C9	-C10	102.67(16)	012	-C8	-H8	109.00
03	-C10	-C11	112.05(17)	NG	-C8	-H8	109.00
03	-C10	-C12	114.26(17)	С9	-C8	-H8	109.00
С9	-C10	-C11	101.38(15)	C8	-C9	-H9A	111.00
03	-C10	-C9	107.2(2)	C8	-C9	-Н9В	111.00
С9	-C10	-C12	116.1(2)	C10	-C9	-H9A	111.00
C10	-C9	-Н9В	111.00	C15	-C13	-H13	118.00
H9A	-C9	-Н9В	109.00	04	-C14	-H14	111.00
012	-C11	-H11	110.00	C11	-C14	-H14	111.00
C10	-C11	-H11	110.00	C13	-C14	-H14	111.00
C14	-C11	-H11	110.00	C12	-C15	-H15A	118.00
C10	-C12	-H12	120.00	C12	-C15	-H15B	118.00
C13	-C12	-H12	120.00	C13	-C15	-H15A	118.00
C15	-C12	-H12	120.00	C13	-C15	-H15B	118.00
C12	-C13	-H13	118.00	H15A	-C15	-H15B	115.00
C14	-C13	-H13	118.00				

Table S7 - Torsion Angles (Degrees) for: 8 in P2(1)

C8	-012	-C11	-C14	112.0(2)
C11	-012	-C8	-N6	-142.76(18)
C11	-012	-C8	-C9	-18.8(2)
C8	-012	-C11	-C10	-4.4(2)
C3	-N2	-C1	-01	176.4(2)
C1	-N2	-C3	-C4	6.6(3)
C1	-N2	-C3	-02	-173.5(2)
C3	-N2	-C1	-N6	-5.1(3)
C8	-N6	-C1	-N2	174.35(19)
C8	-N6	-C1	-01	-7.3(3)
C5	-N6	-C1	-N2	2.5(3)
C1	-N6	-C8	-012	-106.4(2)
C5	-N6	-C8	-012	65.6(2)
C5	-N6	-C1	-01	-179.2(2)
C1	-N6	-C5	-C4	-2.1(3)
C8	-N6	-C5	-C4	-174.0(2)
C1	-N6	-C8	-C9	135.7(2)
C5	-N6	-C8	-C9	-52.4(3)
N2	-C3	-C4	-C5	-5.5(3)
02	-C3	-C4	-C7	-0.4(4)
N2	-C3	-C4	-C7	179.5(2)
02	-C3	-C4	-C5	174.7(2)
C7	-C4	-C5	-N6	178.6(2)
C3	-C4	-C5	-N6	3.7(3)
NG	-C8	-C9	-C10	153.6(2)
012	-C8	-C9	-C10	34.2(2)
C8	-C9	-C10	-C12	-148.6(2)
C8	-C9	-C10	-C11	-35.3(2)

C8	-C9	-C10	-03	82.3(2)
03	-C10	-C11	-C14	150.07(18)
03	-C10	-C11	-012	-88.8(2)
C12	-C10	-C11	-012	146.45(19)
С9	-C10	-C11	-012	25.2(2)
С9	-C10	-C11	-C14	-95.9(2)
03	-C10	-C12	-C15	-72.8(3)
С9	-C10	-C12	-C13	97.9(3)
С9	-C10	-C12	-C15	161.7(2)
C11	-C10	-C12	-C13	-13.3(3)
C11	-C10	-C12	-C15	50.6(2)
C12	-C10	-C11	-C14	25.4(2)
03	-C10	-C12	-C13	-136.6(2)
012	-C11	-C14	-04	-30.1(2)
012	-C11	-C14	-C13	-144.54(19)
C10	-C11	-C14	-04	86.88(19)
C10	-C11	-C14	-C13	-27.5(2)
C10	-C12	-C13	-C14	-4.2(3)
C10	-C12	-C13	-C15	108.2(3)
C15	-C12	-C13	-C14	-112.4(3)
C10	-C12	-C15	-C13	-97.5(2)
C12	-C13	-C14	-04	-98.7(3)
C12	-C13	-C14	-C11	19.7(3)
C15	-C13	-C14	-04	-164.3(2)
C15	-C13	-C14	-C11	-46.0(3)
C14	-C13	-C15	-C12	96.7(3)

Table S8 - Contact Distances(Angstrom) for: 8 in P2(1)

01	.04_a	2.748(2)	03	.H11_f	2.5900
01	.C5_b	3.181(3)	04	.H9A	2.7500
01	.C1_b	3.171(3)	04	.H8_g	2.7600
01	.N2_b	3.028(3)	04	.H5	2.3400
01	.N6_b	3.241(2)	012	.H5	2.8700
01	.C3_b	2.972(3)	012	.H2_h	2.1400
01	.C4_b	3.106(3)	N2	.01_h	3.028(3)
02	.03_c	2.902(2)	N2	.012_b	2.914(2)
02	.C14_b	3.419(3)	NG	.01_h	3.241(2)
02	.C15_c	3.312(3)	C1	.01_h	3.171(3)
02	.C7_d	3.390(4)	C3	.01_h	2.972(3)
03	.02_e	2.902(2)	C4	.01_h	3.106(3)
03	.012	3.143(2)	C5	.C13_i	3.564(4)
04	.C9	3.216(3)	C5	.04	3.146(3)
04	.012	2.744(3)	C5	.01_h	3.181(3)
04	.01_g	2.748(2)	C7	.02_j	3.390(4)
04	.C5	3.146(3)	C8	.04	3.393(3)
04	.C8	3.393(3)	С9	.04	3.216(3)
012	.N2_h	2.914(2)	C13	.C5_k	3.564(4)

012	.04	2.744(3)	C14	.02_h	3.419(3)
012	.03	3.143(2)	C15	.02_e	3.312(3)
01	.H8	2.3600	C1	.H4_a	2.67(2)
01	.H4_a	1.83(2)	C5	.H13_i	2.7500
02	.H14_b	2.7300	C5	.H9A	2.6500
02	.H7B	2.77(2)	C7	.H15B_c	2.9300
02	.H3_c	1.960(16)	С9	.H5	2.7700
02	.H7B_d	2.803(19)	C11	.H15A	2.6300
03	.H8	2.8200	C12	.H7A_i	3.063(18)
C14	.H9A	3.0800	H7C	.H15B_c	2.2700
C14	.H8_g	2.9900	Н8	.01	2.3600
C15	.H3	2.78(3)	Н8	.03	2.8200
C15	.H7C_e	3.035(15)	Н8	.04_a	2.7600
C15	.H11	2.8500	Н8	.C14_a	2.9900
H2	.012_b	2.1400	Н8	.H4_a	2.3500
нЗ	.02_e	1.960(16)	Н8	.H14_a	2.4800
НЗ	.C15	2.78(3)	H9A	.04	2.7500
НЗ	.H15A	2.5700	H9A	.C5	2.6500
нЗ	.H11_f	2.5500	н9а	.C14	3.0800
НЗ	.H14_f	2.5400	H9A	.H5	2.1600
H4	.01_g	1.83(2)	н9а	.H13_i	2.5900
H4	.C1_g	2.67(2)	Н9В	.H13_a	2.5600
H4	.H5	2.5700	H11	.C15	2.8500
H4	.H8_g	2.3500	H11	.H15A	2.3200
Н5	.04	2.3400	H11	.03_1	2.5900
Н5	.012	2.8700	H11	.H3_1	2.5500
Н5	.C9	2.7700	H12	.H7A_i	2.5000
Н5	.H4	2.5700	H13	.H9B_g	2.5600
Н5	.H7A	2.3900	H13	.C5_k	2.7500
Н5	.H9A	2.1600	H13	.H5_k	2.5800
Н5	.H13_i	2.5800	H13	.H9A_k	2.5900
H7A	.H5	2.3900	H14	.H8_g	2.4800
H7A	.C12_k	3.063(18)	H14	.02_h	2.7300
H7A	.H12_k	2.5000	H14	.H3_1	2.5400
H7B	.02	2.77(2)	H15A	.C11	2.6300
H7B	.02_j	2.803(19)	H15A	. H3	2.5700
H7C	.C15_c	3.035(15)	H15A	.H11	2.3200
H15B	.C7_e	2.9300	H15B	.H7C_e	2.2700

Table S9 - Hydrogen Bonds (Angstrom, Deg)for: 8 in P2(1)

N2	H2	012	0.8800	2.1400	2.914(2)	146.00	2_555
03	НЗ	02	0.952(17)	1.960(16)	2.902(2)	170(3)	1_656
04	H4	01	0.948(18)	1.83(2)	2.748(2)	163(3)	1_545
C5	Н5	04	0.9500	2.3400	3.146(3)	143.00	•
С8	H8	01	1.0000	2.3600	2.792(3)	105.00	
C11	H11	03	1.0000	2.5900	3.425(3)	141.00	2_646

Translation of Symmetry Code to Equiv.Pos

а	= [1565.00]	= x,1+y,z
b	= [2555.00]	= -x,1/2+y,-z
С	= [1454.00]	= -1+x,y,-1+z
d	= [2455.00]	= -1-x, 1/2+y, -z
е	= [1656.00]	= 1+x,y,1+z
f	= [2656.00]	= 1-x,1/2+y,1-z
g	= [1545.00]	= x,-1+y,z
h	= [2545.00]	= -x, -1/2+y, -z
i	= [2556.00]	= -x,1/2+y,1-z
j	= [2445.00]	= -1-x, -1/2+y, -z
k	= [2546.00]	= -x, -1/2+y, 1-z
1	= [2646.00]	= 1-x, -1/2+y, 1-z

Compound 11 β : The crystal space group type is chiral, only one molecule crystallize in the unit cell. Absolute configuration cannot be unambiguously determined from X-ray data (Flack parameter -0.0(9)), therefore it is assigned based on the known stereochemistry of the reactant.

Figure S18: ORTEP view of compound 11β with labeling.

Table S10 - Crystal Data and Details of the Structure Determination

```
for: 11β P 1 21 1 R = 0.04
```

Crystal Data

Formula		C	12 H14 N2 O5
Formula Weight			266.25
Crystal System			Monoclinic
Space group		P21	(No. 4)
a, b, c [Angstrom]	9.6135(2)	6.7389(1)	10.0548(2)
alpha, beta, gamma [deg]	90	111.785(3)	90
V [Ang**3]			604.87(2)
Z			2

D(calc) [g/cm**3] 1.462 0.115 Mu(MoKa) [/mm] F(000) 280 0.09 x 0.14 x 0.68 Crystal Size [mm] Data Collection 173 Temperature (K) Radiation [Angstrom] МоКа 0.71069 2.2, 26.7 Theta Min-Max [Deg] Dataset -11: 12 ; -8: 8 ; -12: 11 8853, 2358, 0.023 Tot., Uniq. Data, R(int) Observed data [I > 0.0 sigma(I)] 2256 Refinement 2358, 174 Nref, Npar R, wR2, S 0.0351, 0.0934, 1.05 $w = 1/[s^2(Fo^2)+(0.0483P)^2+0.2494P]$ where $P=(Fo^2+2Fc^2)/3$ Max. and Av. Shift/Error 0.00, 0.00 Flack x -0.1(10) -0.27, 0.32 Min. and Max. Resd. Dens. [e/Ang^3]

 Table S11 - Final Coordinates and Equivalent Isotropic Displacement

 Parameters of the non-Hydrogen atoms

for: 11β P 1 21 1 R = 0.04

Atom	X	У	Z	U(eq) [Ang^2]
01	0.11514(17)	0.8680(3)	0.32482(16)	0.0380(5)
02	0.51115(16)	1.2267(2)	0.60733(15)	0.0273(4)
03	0.70955(14)	0.7573(2)	0.78469(13)	0.0206(4)
04	0.86987(15)	0.9709(2)	1.08671(15)	0.0273(4)
05	0.61283(15)	0.4162(2)	0.87397(16)	0.0275(4)
N1	0.30957(18)	1.0457(3)	0.47299(17)	0.0217(5)
N3	0.47746(17)	0.9170(2)	0.68563(16)	0.0197(4)
C2	0.4395(2)	1.0735(3)	0.5911(2)	0.0200(5)
C4	0.3878(2)	0.7510(3)	0.6632(2)	0.0215(5)
C5	0.2609(2)	0.7262(3)	0.5488(2)	0.0243(6)
C6	0.2199(2)	0.8793(3)	0.4396(2)	0.0243(6)
C7	0.1645(3)	0.5443(4)	0.5230(3)	0.0403(7)
C8	0.6226(2)	0.9199(3)	0.80435(19)	0.0194(5)
С9	0.6163(2)	0.8905(3)	0.95188(19)	0.0212(5)
C10	0.7715(2)	0.8058(3)	1.03685(19)	0.0198(5)
C11	0.8033(2)	0.6813(3)	0.92307(19)	0.0197(5)
C12	0.7673(2)	0.4646(3)	0.9482(2)	0.0233(5)
C13	0.7917(3)	0.4693(4)	1.1055(2)	0.0336(7)
C14	0.7835(2)	0.6533(3)	1.1513(2)	0.0253(6)
/ >				

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Table S12 - Hydrogen Atom Positions and Isotropic Displacement

Parameters for: 11β P 1 21 1 R = 0.04

Atom	х	У	Z	U(iso)	[Ang^2]
Н1	0.28080	1.14530	0.4123	0	0.0260
H4	0.41760	0.64830	0.7328	0	0.0260
H4A	0.94880	0.93390	1.1528	0	0.0410
Н5	0.59980	0.37680	0.7909	0	0.0410
H7A	0.07790	0.55940	0.4333	0	0.0600
H7B	0.12980	0.52670	0.6025	0	0.0600
H7C	0.22280	0.42790	0.5166	0	0.0600
Н8	0.67500	1.04750	0.8026	0	0.0230
H9A	0.53630	0.79610	0.9487	0	0.0250
Н9В	0.60000	1.01790	0.9929	0	0.0250
H11	0.91120	0.69350	0.9359	0	0.0240
H12	0.83550	0.36820	0.9271	0	0.0280
H13	0.81050	0.35480	1.1647	0	0.0400
H14	0.78500	0.68460	1.2440	0	0.0300

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table S13 - (An)isotropic Displacement Parameters for: 11β P 1 21 1 R = 0.04

U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
0.0292(8)	0.0422(10)	0.0275(8)	0.0108(7)	-0.0070(7)	-0.0074(7)
0.0317(8)	0.0224(8)	0.0233(7)	0.0043(6)	0.0050(6)	-0.0050(6)
0.0221(7)	0.0217(7)	0.0163(6)	0.0002(6)	0.0051(5)	0.0044(6)
0.0243(7)	0.0210(7)	0.0255(7)	-0.0016(6)	-0.0036(6)	-0.0039(6)
0.0267(7)	0.0244(8)	0.0308(7)	-0.0036(7)	0.0100(6)	-0.0047(6)
0.0218(8)	0.0221(8)	0.0170(8)	0.0066(7)	0.0023(6)	0.0038(7)
0.0198(8)	0.0191(8)	0.0166(7)	0.0015(6)	0.0026(6)	0.0002(7)
0.0212(9)	0.0202(9)	0.0180(9)	-0.0002(7)	0.0066(8)	-0.0003(8)
0.0238(9)	0.0200(10)	0.0184(9)	0.0037(8)	0.0052(7)	-0.0011(8)
0.0201(9)	0.0251(11)	0.0240(9)	0.0020(8)	0.0040(8)	-0.0025(8)
0.0190(9)	0.0279(11)	0.0233(10)	0.0035(8)	0.0047(8)	0.0010(8)
0.0347(12)	0.0344(13)	0.0397(13)	0.0089(11)	-0.0001(10)	-0.0157(11)
0.0167(9)	0.0195(9)	0.0187(9)	-0.0012(8)	0.0029(7)	0.0015(7)
0.0196(9)	0.0230(10)	0.0184(9)	-0.0024(8)	0.0040(7)	0.0031(8)
0.0184(9)	0.0189(10)	0.0183(9)	-0.0018(7)	0.0023(8)	-0.0013(7)
0.0176(9)	0.0209(10)	0.0178(9)	0.0011(7)	0.0034(7)	0.0018(7)
0.0247(9)	0.0189(9)	0.0247(10)	-0.0003(8)	0.0072(8)	0.0016(8)
0.0465(13)	0.0261(11)	0.0235(10)	0.0040(9)	0.0074(9)	-0.0026(10)
0.0273(11)	0.0283(11)	0.0164(10)	0.0022(8)	0.0036(8)	-0.0027(9)
	U(1,1) or 1 0.0292(8) 0.0317(8) 0.0221(7) 0.0243(7) 0.0267(7) 0.0218(8) 0.0198(8) 0.0212(9) 0.0238(9) 0.0201(9) 0.0201(9) 0.0190(9) 0.0196(9) 0.0196(9) 0.0176(9) 0.0247(9) 0.0247(9) 0.0273(11)	U(1,1) or U U(2,2) 0.0292(8) 0.0422(10) 0.0317(8) 0.0224(8) 0.0221(7) 0.0217(7) 0.0243(7) 0.0210(7) 0.0267(7) 0.0244(8) 0.0218(8) 0.0221(8) 0.0198(8) 0.0191(8) 0.0212(9) 0.0202(9) 0.0238(9) 0.0200(10) 0.0201(9) 0.0251(11) 0.0190(9) 0.0279(11) 0.0196(9) 0.0230(10) 0.0196(9) 0.0230(10) 0.0184(9) 0.0189(10) 0.0247(9) 0.0189(9) 0.0465(13) 0.0261(11) 0.0273(11) 0.0283(11)	U(1,1) or U U(2,2) U(3,3) 	U(1,1) or U U(2,2) U(3,3) U(2,3) 	U(1,1) or U U(2,2) U(3,3) U(2,3) U(1,3) 0.0292(8) 0.0422(10) 0.0275(8) 0.0108(7) -0.0070(7) 0.0317(8) 0.0224(8) 0.0233(7) 0.0043(6) 0.0050(6) 0.0221(7) 0.0217(7) 0.0163(6) 0.0002(6) 0.0051(5) 0.0243(7) 0.0210(7) 0.0255(7) -0.0016(6) -0.0036(6) 0.0267(7) 0.0214(8) 0.0308(7) -0.0036(7) 0.0100(6) 0.0218(8) 0.0221(8) 0.0170(8) 0.0066(7) 0.0023(6) 0.0198(8) 0.0191(8) 0.0166(7) 0.0015(6) 0.0022(7) 0.0212(9) 0.0180(9) -0.0002(7) 0.0066(8) 0.0212(9) 0.0220(10) 0.0184(9) 0.0037(8) 0.0052(7) 0.0201(9) 0.0279(11) 0.0233(10) 0.0035(8) 0.0047(8) 0.0190(9) 0.0279(11) 0.0233(10) 0.0035(8) 0.0047(8) 0.0147(12) 0.0344(13) 0.0397(13) 0.0089(11)-0.0001(10) 0.0167(9) 0.0195(9) 0.0187(9) -0.0012(8) 0.0029(7) 0.0196(9) 0.0230(10) 0.0183(9) </td

The Temperature Factor has the Form of $\ensuremath{\mathsf{Exp}}\,(\ensuremath{-}\ensuremath{\mathsf{T}})$ Where

T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms
T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and
h(i) are the Reflection Indices.

Table S14	- Bond Distances	(Angstrom)	for: 11β	P 1 21 1	R = 0.04
01	-C6	1.220(2)	С9	-C10	1.528(3)
02	-C2	1.218(2)	C10	-C14	1.515(3)
03	-C8	1.436(2)	C10	-C11	1.538(3)
03	-C11	1.442(2)	C11	-C12	1.543(3)
04	-C10	1.425(2)	C12	-C13	1.511(3)
05	-C12	1.430(3)	C13	-C14	1.335(3)
04	-H4A	0.8400	C4	-H4	0.9500
05	-H5	0.8400	C7	-H7A	0.9800
N1	-C6	1.378(3)	C7	-Н7В	0.9800
N1	-C2	1.380(3)	C7	-H7C	0.9800
N3	-C4	1.379(3)	C8	-H8	1.0000
N3	-C8	1.462(2)	С9	-H9A	0.9900
N3	-C2	1.375(2)	С9	-Н9В	0.9900
N1	-H1	0.8800	C11	-H11	1.0000
C4	-C5	1.341(3)	C12	-H12	1.0000
C5	-C6	1.451(3)	C13	-H13	0.9500
C5	-C7	1.500(3)	C14	-H14	0.9500
C8	-C9	1.520(3)			

Table S15 - Bond Angles (Degrees) for: 11β $\,$ P 1 21 1 $\,$ R = 0.04 $\,$

C8	-03	-C11	109.00(13)	04	-C10	-C14	114.13(15)
C10	-04	-H4A	109.00	03	-C11	-C10	107.36(15)
C12	-05	-H5	109.00	03	-C11	-C12	113.34(15)
C2	-N1	-C6	127.21(18)	C10	-C11	-C12	106.01(15)
C4	-N3	-C8	119.59(15)	05	-C12	-C11	112.51(16)
C2	-N3	-C8	118.83(16)	C11	-C12	-C13	101.21(17)
C2	-N3	-C4	121.31(16)	05	-C12	-C13	106.19(18)
C2	-N1	-H1	116.00	C12	-C13	-C14	112.0(2)
C6	-N1	-H1	116.00	C10	-C14	-C13	111.44(17)
N1	-C2	-N3	114.45(18)	N3	-C4	-H4	118.00
02	-C2	-N3	124.44(18)	C5	-C4	-H4	118.00
02	-C2	-N1	121.10(18)	C5	-C7	-H7A	109.00
NЗ	-C4	-C5	123.78(18)	C5	-C7	-H7B	109.00
C4	-C5	-C6	117.76(18)	C5	-C7	-H7C	109.00
C4	-C5	-C7	123.9(2)	H7A	-C7	-H7B	109.00
C6	-C5	-C7	118.26(19)	H7A	-C7	-H7C	110.00
01	-C6	-N1	120.22(19)	H7B	-C7	-H7C	109.00
01	-C6	-C5	124.7(2)	03	-C8	-H8	109.00
N1	-C6	-C5	115.13(17)	NЗ	-C8	-H8	109.00

03	-C8	-C9	105.73(15)	С9	-C8	-H8	109.00
N3	-C8	-C9	115.07(17)	C8	-C9	-H9A	111.00
03	-C8	-N3	107.79(14)	C8	-C9	-H9B	111.00
C8	-C9	-C10	102.13(16)	C10	-C9	-H9A	111.00
С9	-C10	-C11	102.14(14)	C10	-C9	-Н9В	111.00
C11	-C10	-C14	102.41(16)	H9A	-C9	-H9B	109.00
04	-C10	-C11	113.47(16)	03	-C11	-H11	110.00
С9	-C10	-C14	117.47(17)	C10	-C11	-H11	110.00
04	-C10	-C9	106.72(16)	C12	-C11	-H11	110.00
05	-C12	-H12	112.00	C14	-C13	-H13	124.00
C11	-C12	-H12	112.00	C10	-C14	-H14	124.00
C13	-C12	-H12	112.00	C13	-C14	-H14	124.00
C12	-C13	-H13	124.00				

Table S16 - Torsion Angles (Degrees) for: 11β $\,$ P 1 21 1 $\,$ R = 0.04 $\,$

C8	-03	-C11	-C12	116.94(17)
C11	-03	-C8	-N3	-146.32(15)
C11	-03	-C8	-C9	-22.8(2)
C8	-03	-C11	-C10	0.2(2)
C6	-N1	-C2	-02	178.4(2)
C2	-N1	-C6	-01	-173.4(2)
C6	-N1	-C2	-N3	-2.2(3)
C2	-N1	-C6	-C5	6.4(3)
C4	-N3	-C2	-N1	-2.0(3)
C8	-N3	-C2	-02	-8.5(3)
C4	-N3	-C2	-02	177.40(19)
C2	-N3	-C8	-03	-115.68(18)
C4	-N3	-C8	-03	58.6(2)
C2	-N3	-C8	-C9	126.65(19)
C8	-N3	-C4	-C5	-172.58(19)
C2	-N3	-C4	-C5	1.5(3)
C8	-N3	-C2	-N1	172.11(17)
C4	-N3	-C8	-C9	-59.1(2)
N3	-C4	-C5	-C6	2.9(3)
N3	-C4	-C5	-C7	179.0(2)
C4	-C5	-C6	-01	173.3(2)
C4	-C5	-C6	-N1	-6.4(3)
C7	-C5	-C6	-01	-2.9(3)
C7	-C5	-C6	-N1	177.4(2)
03	-C8	-C9	-C10	35.88(19)
N3	-C8	-C9	-C10	154.70(16)
C8	-C9	-C10	-C11	-34.27(19)
C8	-C9	-C10	-04	85.07(17)
C8	-C9	-C10	-C14	-145.34(17)
04	-C10	-C11	-C12	146.02(16)
04	-C10	-C11	-03	-92.54(18)
C14	-C10	-C11	-03	143.97(16)

C14	-C10	-C11	-C12	22.53(19)
04	-C10	-C14	-C13	-133.1(2)
С9	-C10	-C14	-C13	100.9(2)
C11	-C10	-C14	-C13	-10.0(2)
С9	-C10	-C11	-03	21.9(2)
С9	-C10	-C11	-C12	-99.51(17)
03	-C11	-C12	-05	-30.6(2)
03	-C11	-C12	-C13	-143.53(18)
C10	-C11	-C12	-05	86.93(18)
C10	-C11	-C12	-C13	-26.0(2)
05	-C12	-C13	-C14	-96.7(2)
C11	-C12	-C13	-C14	20.9(3)
C12	-C13	-C14	-C10	-7.1(3)

Table S17 - Contact Distances(Angstrom) for: 11β P 1 21 1 R = 0.04

01	.04_a	2.754(2)	03	.H4	2.7600
01	.C14_a	3.343(3)	03	. H5	2.7800
01	.C12_b	3.397(3)	04	.H11_g	2.6600
02	.C6_b	2.978(3)	04	.H8	2.8200
02	.C2_b	3.220(2)	04	.H13_d	2.8200
02	.N3_b	3.252(2)	05	.H8_h	2.7100
02	.05_d	2.798(2)	05	.H9A	2.8400
02	.C5_b	3.134(3)	05	.H4	2.4500
02	.N1_b	3.046(2)	05	.H9A_i	2.7900
02	.C4_b	3.214(2)	05	.H9B_i	2.9100
03	.05	2.752(2)	N1	.02_e	3.046(2)
03	.04	3.1930(19)	N1	.03_b	2.903(2)
03	.N1_e	2.903(2)	NЗ	.02_e	3.252(2)
04	.01_f	2.754(2)	N1	.H7C_d	2.7900
04	.03	3.1930(19)	C2	.02_e	3.220(2)
05	.C9_i	3.288(3)	C4	.05	3.295(2)
05	.C9	3.288(2)	C4	.02_e	3.214(2)
05	.C4	3.295(2)	C5	.02_e	3.134(3)
05	.02_h	2.798(2)	C6	.02_e	2.978(3)
05	.03	2.752(2)	С9	.05	3.288(2)
01	.H4A_a	1.9200	С9	.05_j	3.288(3)
01	.H7A	2.4400	C12	.01_e	3.397(3)
01	.H12_b	2.7400	C14	.01_f	3.343(3)
01	.H7B_c	2.9200	C2	.H7C_d	3.0700
02	.H8	2.3400	C2	.H5_d	2.8800
02	.H7C_d	2.9100	C4	.H9A	2.7100
02	.H5_d	2.0000	C4	.н13_ј	3.0900
03	.H1_e	2.1500	C8	.H5_d	3.0900
C9	.H4	2.8400	H7C	.C2_h	3.0700
H1	.H7C_d	2.3400	H7C	.H1_h	2.3400
H1	.03_b	2.1500	Н8	.02	2.3400
H4	.03	2.7600	H8	.04	2.8200

S42

	H4	.05	2.4500	Н8	.05_d	2.7100
	H4	.C9	2.8400	H8	.H5_d	2.3200
	H4	.H5	2.4500	H9A	.05	2.8400
	H4	.H9A	2.2700	H9A	.C4	2.7100
	H4A	.01_f	1.9200	H9A	.H4	2.2700
	H4A	.H11_g	2.5600	H9A	.05_j	2.7900
	H4A	.H12_g	2.5300	H9A	.H9B_i	2.4800
	Н5	.02_h	2.0000	H9B	.05_j	2.9100
	Н5	.03	2.7800	H9B	.Н9А_ј	2.4800
	Н5	.C2_h	2.8800	H11	.04_1	2.6600
	Н5	.C8_h	3.0900	H11	.H4A_l	2.5600
	Н5	.H4	2.4500	H11	.H12_g	2.5900
	Н5	.H8_h	2.3200	H12	.01_e	2.7400
	H7A	.01	2.4400	H12	.H4A_l	2.5300
	H7B	.01_k	2.9200	H12	.H11_l	2.5900
	H7C	.02_h	2.9100	H13	.04_h	2.8200
	H7C	.N1_h	2.7900	H13	.C4_i	3.0900
Tabl	e S18 - Hy	drogen Bonds	(Angstrom,	Deg) for:	: 11β Ρ 1 21	1 R = 0.04
N1	H1 .	. 03	0.8800	2.1500	2.903(2)	143.00 2_656
04	H4A .	. 01	0.8400	1.9200	2.754(2)	171.00 1_656
05	н5 .	. 02	0.8400	2.0000	2.798(2)	159.00 1_545
C4	н4 .	. 05	0.9500	2.4500	3.295(2)	148.00 .
C7	H7A .	. 01	0.9800	2.4400	2.873(3)	107.00 .
C8	Н8 .	. 02	1.0000	2.3400	2.788(2)	106.00 .

Translation of Symmetry Code to Equiv.Pos

a	= [1454.00]	= -1+x, y, -1+z
b	= [2656.00]	= 1-x,1/2+y,1-z
С	= [2556.00]	= -x,1/2+y,1-z
d	= [1565.00]	= x,1+y,z
е	= [2646.00]	= 1-x,-1/2+y,1-z
f	= [1656.00]	= 1+x,y,1+z
g	= [2757.00]	= 2-x,1/2+y,2-z
h	= [1545.00]	= x,-1+y,z
i	= [2647.00]	= 1-x,-1/2+y,2-z
j	= [2657.00]	= 1-x,1/2+y,2-z
k	= [2546.00]	= -x, -1/2+y, 1-z
1	= [2747.00]	= 2-x, -1/2+y, 2-z

Compound tc-T: The quality of the data is highly affected by the very small size of the crystals and their poor quality. Even after cooling, diffraction remains quite limited and for this reason there is a very large internal agreement index and the low precision on bond distances. Absolute configuration could not be determined.

There are two independent molecules in the asymmetric unit, which differ for the conformation of the two five member rings. Therefore, the possibility of higher symmetry or smaller unit cell dimensions could be safely excluded.

Figure S19: ORTEP view of compound tc-T with labeling.

Table S19.	Crystal	data	and	structure	refinement	t for	tc-7	Γ.
------------	---------	------	-----	-----------	------------	-------	------	----

Identification code	shelx			
Empirical formula	C13 H16 N2 O5			
Formula weight	280.28			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 14.1759(10) Å	<i>α</i> = 90°.		
	b = 6.0768(4) Å	$\beta = 95.400(6)^{\circ}.$		

	c = 14.6965(9) Å	$\gamma = 90^{\circ}$.	
Volume	1260.40(14) Å ³		
Z	4		
Density (calculated)	1.477 Mg/m ³		
Absorption coefficient	0.115 mm ⁻¹		
F(000)	592		
Crystal size	0.1217 x 0.0319 x 0.0281 mm ³		
Theta range for data collection	1.908 to 25.023°.		
Index ranges	-16<=h<=16, -7<=k<=7, -17<=	=l<=17	
Reflections collected	10070		
Independent reflections	4366 [R(int) = 0.0703]		
Completeness to theta = 25.000°	99.9 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1 and 0.80897		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4366 / 1 / 364		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0918, wR2 = 0.2292		
R indices (all data)	R1 = 0.1179, wR2 = 0.2493		
Absolute structure parameter	0.0(10)		
Extinction coefficient	0.046(9)		
Largest diff. peak and hole	0.620 and -0.425 e.Å ⁻³		

Table S20. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **tc-T**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

X	у	Z	U(eq)
6145(7)	8007(18)	6889(7)	26(2)
4939(7)	10441(17)	6111(7)	23(2)
4957(7)	11776(18)	6907(7)	25(2)
5519(7)	11163(17)	7644(7)	23(2)
4337(8)	13789(17)	6893(7)	30(3)
6720(7)	8822(19)	8479(6)	22(2)
7465(7)	10601(18)	8722(6)	21(2)
7667(7)	10350(16)	9746(6)	16(2)
7972(8)	12469(18)	10226(7)	29(3)
	x 6145(7) 4939(7) 4957(7) 5519(7) 4337(8) 6720(7) 7465(7) 7667(7) 7972(8)	xy6145(7)8007(18)4939(7)10441(17)4957(7)11776(18)5519(7)11163(17)4337(8)13789(17)6720(7)8822(19)7465(7)10601(18)7667(7)10350(16)7972(8)12469(18)	xyz6145(7)8007(18)6889(7)4939(7)10441(17)6111(7)4957(7)11776(18)6907(7)5519(7)11163(17)7644(7)4337(8)13789(17)6893(7)6720(7)8822(19)8479(6)7465(7)10601(18)8722(6)7667(7)10350(16)9746(6)7972(8)12469(18)10226(7)

C(110)	7060(8)	13619(19)	10350(8)	33(3)
C(111)	6270(8)	12015(18)	10229(7)	25(2)
C(113)	6548(8)	12910(20)	11159(7)	35(3)
C(201)	1551(7)	11467(17)	7693(7)	22(2)
C(202)	321(6)	9907(16)	8576(6)	18(2)
C(203)	217(7)	8085(16)	7921(7)	18(2)
C(204)	770(7)	8074(17)	7231(7)	22(2)
C(205)	-495(8)	6307(18)	8074(7)	29(3)
C(206)	1923(6)	9628(16)	6296(6)	16(2)
C(207)	2581(7)	7674(17)	6207(6)	21(2)
C(209)	2049(8)	4804(17)	4994(7)	26(2)
C(210)	1282(8)	5063(18)	4221(7)	30(3)
C(211)	1036(7)	7460(17)	4128(6)	22(2)
C(212)	1704(7)	8722(16)	4771(6)	18(2)
C(213)	1507(9)	6340(20)	3392(7)	33(3)
C(208)	2474(6)	7084(16)	5188(6)	16(2)
C(112)	6677(6)	9766(16)	10033(6)	18(2)
N(101)	5508(6)	8618(15)	6160(5)	24(2)
N(102)	6095(6)	9269(14)	7647(5)	23(2)
N(201)	995(6)	11413(14)	8417(5)	21(2)
N(202)	1415(5)	9672(13)	7120(5)	16(2)
O(101)	6658(6)	6425(14)	6859(5)	40(2)
O(102)	4414(5)	10805(13)	5389(5)	30(2)
O(103)	6183(4)	8715(12)	9252(4)	21(2)
O(104)	5397(5)	12571(13)	9764(5)	33(2)
O(105)	8315(5)	8552(12)	9951(4)	23(2)
O(201)	2109(5)	12976(12)	7590(5)	31(2)
O(202)	-133(5)	10169(11)	9238(5)	25(2)
O(203)	1234(4)	9519(11)	5531(4)	19(2)
O(204)	3321(5)	7165(12)	4759(5)	25(2)
O(205)	107(5)	8210(14)	3936(5)	30(2)

Table S21. Bond lengths [Å] and angles [°] for tc-T.

C(101)-O(101)	1.209(13)
C(101)-N(102)	1.360(13)
C(101)-N(101)	1.385(13)

C(102)-O(102)	1.257(12)
C(102)-N(101)	1.367(14)
C(102)-C(103)	1.423(15)
C(103)-C(104)	1.335(14)
C(103)-C(105)	1.506(14)
C(104)-N(102)	1.411(13)
C(106)-O(103)	1.427(11)
C(106)-N(102)	1.466(12)
C(106)-C(107)	1.531(14)
C(107)-C(108)	1.512(12)
C(108)-O(105)	1.440(11)
C(108)-C(109)	1.512(14)
C(108)-C(112)	1.545(13)
C(109)-C(110)	1.497(16)
C(110)-C(111)	1.482(16)
C(110)-C(113)	1.513(16)
C(111)-O(104)	1.397(12)
C(111)-C(113)	1.489(14)
C(111)-C(112)	1.521(14)
C(201)-O(201)	1.230(12)
C(201)-N(202)	1.380(13)
C(201)-N(201)	1.382(12)
C(202)-O(202)	1.227(11)
C(202)-N(201)	1.359(12)
C(202)-C(203)	1.465(14)
C(203)-C(204)	1.338(13)
C(203)-C(205)	1.510(14)
C(204)-N(202)	1.354(12)
C(206)-O(203)	1.419(11)
C(206)-N(202)	1.467(12)
C(206)-C(207)	1.523(13)
C(207)-C(208)	1.533(13)
C(209)-C(210)	1.505(16)
C(209)-C(208)	1.527(14)
C(210)-C(211)	1.501(15)
C(210)-C(213)	1.505(15)
C(211)-O(205)	1.398(12)
C(211)-C(213)	1.486(14)

C(211)-C(212)	1.486(13)
C(212)-O(203)	1.438(10)
C(212)-C(208)	1.560(13)
C(208)-O(204)	1.409(11)
C(112)-O(103)	1.436(11)
O(101)-C(101)-N(102)	123.8(9)
O(101)-C(101)-N(101)	122.4(9)
N(102)-C(101)-N(101)	113.7(9)
O(102)-C(102)-N(101)	119.2(10)
O(102)-C(102)-C(103)	123.8(10)
N(101)-C(102)-C(103)	116.9(9)
C(104)-C(103)-C(102)	118.1(10)
C(104)-C(103)-C(105)	122.7(10)
C(102)-C(103)-C(105)	119.1(9)
C(103)-C(104)-N(102)	122.1(10)
O(103)-C(106)-N(102)	110.3(7)
O(103)-C(106)-C(107)	104.7(7)
N(102)-C(106)-C(107)	114.4(8)
C(108)-C(107)-C(106)	102.9(8)
O(105)-C(108)-C(107)	110.0(8)
O(105)-C(108)-C(109)	113.6(8)
C(107)-C(108)-C(109)	113.4(8)
O(105)-C(108)-C(112)	110.3(8)
C(107)-C(108)-C(112)	101.7(8)
C(109)-C(108)-C(112)	107.2(8)
C(110)-C(109)-C(108)	104.0(9)
C(111)-C(110)-C(109)	109.3(9)
C(111)-C(110)-C(113)	59.6(7)
C(109)-C(110)-C(113)	116.5(10)
O(104)-C(111)-C(110)	121.6(9)
O(104)-C(111)-C(113)	120.4(9)
C(110)-C(111)-C(113)	61.2(8)
O(104)-C(111)-C(112)	117.3(9)
C(110)-C(111)-C(112)	108.5(8)
C(113)-C(111)-C(112)	115.4(9)
C(111)-C(113)-C(110)	59.2(7)
O(201)-C(201)-N(202)	124.6(8)

O(201)-C(201)-N(201)	122.2(9)
N(202)-C(201)-N(201)	113.2(9)
O(202)-C(202)-N(201)	118.6(9)
O(202)-C(202)-C(203)	126.3(9)
N(201)-C(202)-C(203)	115.1(8)
C(204)-C(203)-C(202)	118.1(9)
C(204)-C(203)-C(205)	123.8(9)
C(202)-C(203)-C(205)	118.1(8)
C(203)-C(204)-N(202)	122.5(9)
O(203)-C(206)-N(202)	107.4(7)
O(203)-C(206)-C(207)	106.1(7)
N(202)-C(206)-C(207)	115.9(8)
C(206)-C(207)-C(208)	105.1(7)
C(210)-C(209)-C(208)	106.9(8)
C(211)-C(210)-C(213)	59.3(7)
C(211)-C(210)-C(209)	108.4(9)
C(213)-C(210)-C(209)	118.2(10)
O(205)-C(211)-C(213)	118.8(8)
O(205)-C(211)-C(212)	119.4(8)
C(213)-C(211)-C(212)	113.3(8)
O(205)-C(211)-C(210)	122.8(9)
C(213)-C(211)-C(210)	60.5(7)
C(212)-C(211)-C(210)	108.3(8)
O(203)-C(212)-C(211)	110.8(7)
O(203)-C(212)-C(208)	105.5(7)
C(211)-C(212)-C(208)	107.5(8)
C(211)-C(213)-C(210)	60.2(7)
O(204)-C(208)-C(209)	106.6(8)
O(204)-C(208)-C(207)	114.8(8)
C(209)-C(208)-C(207)	113.3(8)
O(204)-C(208)-C(212)	113.4(7)
C(209)-C(208)-C(212)	104.8(7)
C(207)-C(208)-C(212)	103.7(7)
O(103)-C(112)-C(111)	112.7(8)
O(103)-C(112)-C(108)	105.7(7)
C(111)-C(112)-C(108)	102.5(8)
C(102)-N(101)-C(101)	126.6(9)
C(101)-N(102)-C(104)	122.1(8)

C(101)-N(102)-C(106)	120.3(8)
C(104)-N(102)-C(106)	117.3(8)
C(202)-N(201)-C(201)	127.5(9)
C(204)-N(202)-C(201)	123.4(8)
C(204)-N(202)-C(206)	118.4(8)
C(201)-N(202)-C(206)	117.8(8)
C(106)-O(103)-C(112)	111.1(7)
C(206)-O(203)-C(212)	107.2(7)

Symmetry transformations used to generate equivalent atoms:

Table S22. Anisotropic displacement parameters (Å²x 10³)for **tc-T**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(101)	27(6)	25(6)	25(5)	-4(5)	-5(4)	0(5)
C(102)	20(5)	22(5)	26(5)	7(5)	0(4)	-16(5)
C(103)	15(5)	31(6)	29(5)	1(5)	-3(4)	2(5)
C(104)	14(5)	27(6)	27(5)	3(5)	1(4)	-8(5)
C(105)	36(6)	21(6)	32(6)	-3(5)	-6(5)	6(5)
C(106)	20(5)	37(6)	9(4)	-6(4)	-4(4)	7(5)
C(107)	14(5)	36(6)	12(4)	11(4)	-2(4)	0(5)
C(108)	17(5)	16(5)	16(5)	3(4)	6(4)	2(4)
C(109)	33(6)	27(6)	25(5)	-6(5)	-5(5)	-3(5)
C(110)	35(6)	21(6)	45(7)	-2(5)	8(5)	-6(5)
C(111)	27(6)	26(6)	23(5)	0(4)	1(4)	7(5)
C(113)	40(7)	35(6)	31(6)	-18(5)	1(5)	1(6)
C(201)	21(5)	24(6)	20(5)	-3(4)	6(4)	3(5)
C(202)	12(5)	29(6)	14(5)	10(4)	3(4)	1(4)
C(203)	16(5)	12(5)	27(5)	3(4)	3(4)	-2(4)
C(204)	23(5)	20(5)	22(5)	1(4)	1(4)	1(5)
C(205)	29(6)	25(6)	33(6)	5(5)	8(5)	-4(5)
C(206)	14(5)	19(5)	17(5)	1(4)	3(4)	0(4)
C(207)	20(5)	23(5)	20(5)	1(4)	2(4)	10(5)
C(209)	27(6)	19(5)	32(6)	-8(4)	4(5)	6(5)
C(210)	30(6)	27(6)	35(6)	-3(5)	13(5)	-8(5)

C(211)	17(5)	32(6)	16(5)	6(4)	0(4)	2(5)
C(212)	22(5)	17(5)	15(4)	-1(4)	10(4)	2(4)
C(213)	36(6)	39(7)	24(6)	-10(5)	8(5)	-6(6)
C(208)	11(5)	19(5)	18(5)	5(4)	3(4)	2(4)
C(112)	10(5)	24(5)	19(5)	-7(4)	-4(4)	-8(4)
N(101)	28(5)	23(4)	20(4)	-3(4)	-1(4)	-7(4)
N(102)	21(4)	26(5)	20(4)	2(4)	-6(3)	4(4)
N(201)	25(5)	22(4)	16(4)	-5(3)	6(3)	-1(4)
N(202)	16(4)	14(4)	17(4)	-1(3)	-1(3)	-3(4)
O(101)	48(5)	39(5)	32(4)	-8(4)	-4(4)	12(5)
O(102)	28(4)	35(4)	25(4)	9(3)	-3(3)	-8(4)
O(103)	19(3)	28(4)	16(3)	0(3)	0(3)	-5(3)
O(104)	23(4)	43(5)	33(4)	0(4)	1(3)	20(4)
O(105)	19(4)	29(4)	23(3)	7(3)	3(3)	4(3)
O(201)	38(4)	27(4)	29(4)	-12(3)	14(3)	-14(4)
O(202)	25(4)	28(4)	23(4)	-5(3)	10(3)	-4(3)
O(203)	17(3)	23(3)	16(3)	1(3)	0(3)	6(3)
O(204)	20(4)	25(4)	30(4)	-2(3)	12(3)	-4(3)
O(205)	24(4)	40(5)	28(4)	-7(3)	3(3)	12(4)

Oligonucleotide Synthesis.

Syntheses of oligonucleotides were performed on the 1.3 µmol scale of a DNA synthesizer using standard solid-phase phosphoramidite chemistry. Oligomers were assembled using the manufacturer's protocols on nucleoside preloaded dA-CPG 500 (48 µmol/g). Natural phosphoramidites (dT, dC4Bz, dA6Bz, dG2dmf) were coupled as a 0.1 M solution in CH₃CN, iso-tricyclo- and bicyclophosphoramidites **10** and **13** as 0.15 M solution in CH₃CN. The coupling step was 90 s for natural phosphoramidites. An extended coupling step of 7 min for amidites **10** and **13** and 12 min for the **tc-T** phosphoramidite was necessary to achieve >95% coupling efficiency (trityl assay). As a coupling reagent, 5-(ethylthio)-1*H*-tetrazole (0.25 M in CH₃CN) was used. Capping was performed with a solution of DMAP (0.5 M in CH₃CN, Cap A) and a solution of 25% Ac₂O and 12.5% sym-collidine in CH₃CN (Cap B). Oxidation was performed with a solution of 20 mM I₂ and 0.45 M sym-collidine in 2.1:1 CH₃CN/H₂O. In order to achieve the full length sequence of oligonucleotide **ON4**, oxidation was performed using 1.1 M *tert*-butyl hydroperoxide in CH₂Cl₂ (0.8 min). Detritylation after coupling of phosphoramidites was carried out using a solution of 3% dichloroacetic acid in dichloroethane.

Oligonucleotide Deprotection and Purification.

Deprotection of the oligonucleotides and detachment from the solid support was carried out using standard conditions (concd aq NH₃ for 16 h at 55 °C). The solutions were centrifuged after deprotection, the supernatants were collected and the remaining beads washed with 2×0.5 mL of H₂O. The combined supernatants were then concentrated to dryness. Crude oligomers were purified by ion-exchange HPLC (Dionex DNA Pac-PA200 or DNA Pac-PA100). As mobile phases, the following buffers were prepared: (A) 25 mM Trizma (2-amino-2-hydroxymethyl-1,3-propanediol) in H₂O, pH 8.0; (B) 25 mM Trizma, 1.25 M NaCl in H₂O, pH 8.0. Linear gradients of B in A were used (typically 0 to 50% B in A over 30 min), with a 1 mL/min flow rate and detection at 260 nm. Purified oligonucleotides were desalted over Sep-Pak cartridges, quantified at 260 nm with a Nanodrop spectrophotometer, and analyzed by ESI⁻ mass spectrometry. Oligonucleotides **ON6** and **ON7**, which were synthesized as DMT-on, were after abovementioned purification and desalting lyophilized and detritytlated by treatment with 300 µL 80% AcOH for 45 min at RT. These solutions were subsequently diluted with 300 µL of H₂O and extracted with Et₂O (3×300 µL). Aqueous layer was further diafiltered (Centrifugal Filters Amicon Ultra 0.5 mL, Ultracel – 3K, MWCO 3 kDa) against water until neutral pH. All solutions of oligonucleotides in H₂O were then stored at -18 °C.

UV-Melting Curves.

UV-melting curves were recorded on a Varian Cary Bio100 UV/vis spectrophotometer. Absorbances were monitored at 260 nm, and the heating rate was set to 0.5 °C/min. A cooling-heating-cooling cycle in the temperature range 20–70 °C was applied. T_m values were obtained from the maximum of the first derivative curves and reported as the average of at least three ramps (± 1 °C error). All measurements were carried out in NaCl (150 mM), NaH₂PO₄ (10 mM) buffer at pH 7.0 with a duplex concentration of 1.2 μ M.

Entry	m/z	m/z	t _r	Conditions	HPLC-purity
	calc	found	(min)		
ON1	3700.4	3700.6	22.6	Buffer A: 25 mM Trizma in H ₂ O, pH 8	87%
ON2	3724.5	3724.4	22.6	Buffer B: 25 mM Trizma, 1.25 M NaCl in H_2O ,	90%
ON3	3724.5	3724.4	22.4	pH 8	93%
ON4	3714.5	3714.6	22.4	Dionex DNA-Pac PA200, 0-50 % B in 30 min	89%
ON5	3714.5	3714.6	22.5	Buffer A: 10 mM NaOH in H ₂ O, pH 12	
ON6	3752.5	3752.6	22.1	Buffre B: 10 mM NaOH, 1.5 M NaCl in H ₂ O, pH	
ON7	3752.5	3752.7	22.1	12	
				Dionex DNA-Pac PA200, 0-50 % B in 30 min	

Table S23. ESI-MS and HPLC characterization of	of modified	oligonucleotides	ON1-7
--	-------------	------------------	-------

:q. File: n/a			Elec	trospray Low I	Resolution	ACN / H2O (1:1) + 1% TEA				
						Negative Ion	Mode			
Dataset N	ame: -Q1	: 0.100 t	0.60	l min fro	om Sample	1 (GSE 2_2	27) of Dugo	vic GSE 2_	27.wiff (Turbo Spr	ay)
Analysis	Results									
#	Mass (avg.)	m/z	z	Area	+/-	Apex Mass	Area Et	vidence		
1	3/24.4110	371 4135	-10	406437	68 -0.0202	3724.3493	11101053100			
		412.8394	-9	2212810	.5 0.0233					
		464.5363	-8	4589628	.50.0078					
		531.0537	-7	2231224	.5 0.0023					
		619.7095	-6	1098304	.30.0183					
		743.9055	-5	461537.	78 0.0306					
	3346 4455	929.9800	-4	181080.	390.1155	3746 3090	9514602 0 0			
2	3/90.9956	373.6485	-10	191537.	70 0.0113	3/40.3202	2014005-0-0			
		415.2745	-9	1808198	.2 0.0102					
		467.2836	-8	3582552	.50.0147					
		534.2224	-7	1876631	.8 0.0233					
		623.4140	-6	1249058	.1 0.0138					
		748.2537	-5	592186.	930.0280					
	2262 0240	935.4959	- 4	214436.	050.1081	3767 8558	5898605 2 C			
3	3/6/.8/42	375 5769	-10	114225	94 -0.2032	3/0/.0558	5030000.2mC			
		417,5914	-9	897905.	680.0539					
		469.9745	-8	1503313	.00.0023					
		537.2980	-7	1465355	.6 0.0377					
		627.0160	-6	1087575	.2 0.0444					
		752.5794	-5	539404.	50 0.0120					
		940.9495	-4	290825.	280.0116					
University of Bern					Applied	d Biosystems /	Sciex QTrap	Acc	ą. Date: n/a	No brite in the life
enartment of Ch	mistry and Bioch	nemistry						Acc	a. Time: n/a	
oparation of Ch	and y and block	icinibu y						1104		

cq. rile: n/a					Elect	TOSPICAY LOW H	CSUILION	ACN	/ 120 (1.1) + 170 ICA
						Negative Ion I	Mode		
Detect No	-01	· 0 100 +	0 0 601	min from	Sample	1 (GSE 3 2	7) of Dugovic G	SE 3 27 wiff (Turk	o Sprav)
Dataset Na	ame: -91	: 0.100 1	.0 0.001	min iion	1 pampre	1 (055 5_2	IT DI DUGOVIC G	SE 5_27.WILL (Idir	o spray
Analysis R	tesults								
#	Mass (avg.)	m/z	z	Area	+/-	Apex Mass	Area Evidence		
1	3124.3904	371.4176	-10	335889.9	60.0148	DIENIMITE	5556667.56		
		412,8089	-9	2008751.	20.0057				
		464.5440	-8	3986916.	7 0.0016				
		531.0667	-7	1977006.	6 0.0172				
		619.7244	-6	871151.0	60.0012				
		743.8578	-5	261677.6	00.0145				
		929.8568	-4	117474.2	60.2354		CONCERSION OF THE		
2	3746.5299		12.12			3746.2269	8342563.0C		
		373.7011	-10	167928.2	6 0.0556				
		415.3039	-9	1061423.	0 0.0302 5 -0.0370				
		467.2709	-8	295/939.	5 =0.0379				
		633 12022	-6	1134692	3 0.0061				
		748 2772	-5	433132.8	40.0213				
		935.4664	- 4	233880.5	70.1586				
3	3767.4685					3767.4625	6412650.4C		
		375.5595	-10	108821.9	60.1799				
		417.5286	-9	1066407.	60.0716				
		469.9254	-8	2046674.	80.0008				
		537.2310	-7	1469329.	2 0.0287				
		626.9644	-6	958665.6	2 0.0604				
		752.5690	-5	497113.3	4 0.0827				
		940.9045	- 4	265637.7	8 0.0448				
niversity of Bern					Applied	Biosystems /	Sciex QTrap	Acq. Date: n/a	A MARK SIGN
anadement of Cha	minters and Diash	and the second						Aco Timo: n/a	
epartment of Che	mistry and Bioch	emistry						Acq. Time: IVa	

cq. File: n/a				Elect	trospray Low F	Resolution	ACN / H2O (1:1) + 1% TEA		
mple Name: n/a									
Dataset Na	-Q1	: 0.100 1	to 0.70	1 min from	Sample	1 (BD237_1	GSE7) of Dugovi	ic BD237_1_GSE7.wiff (Turbo	
	Spi	ay)							
Analysis R	esults								
#	Mass (avg.) 3714,5049	m/z	z	Area	+/-	Apex Mass 3714.4507	Area Evidence		
		529.6863	-7	531963.37	0.0502				
		618.0677	-6	776530.56	-0.0090				
		741.8129	-5	216861.75	-0.0807				
2	3751,8730	321.3133	- 4	1444/0740	-0.0333	3751.9331	485002.60C		
		534.9659	-7	70487.898	4 -0.0085				
		624.3148	-6	269635.43	0.0100				
		749.3767	-5	102372.42	0.0095				
3	3736.5180	330.0013	- 4	42000.000	9-0.0335	3736.7343	341014.32C		
		532.8142	-7	73807.859	4 0.0333				
		621.7816	-6	158940.18	0.0360				
		746.2697	-5	53899.867	2 -0.0265				
		556.52.11		545001400	0.2014				
versity of Bern					Applied	Biosystems /	Sciex QTrap	Acq. Date: n/a	
antmont of Cha	mictor and Rioch	omistry						Aco Time: n/a	