Supporting Information

Rodríguez-Verdugo et al. 10.1073/pnas.1406886111

SI Materials and Methods

Estimation of Relative Fitness. Briefly, both competitors (the Araevolved line and the ancestral Ara+ REL1207 strain) were revived in Luria–Bertani (LB) broth and grown separately for 1 d at 37 °C and a second day at the temperature of interest (20 °C or 37 °C) in 10 mL DM25. Then the two competitors were mixed at a 1:1 volumetric ratio and diluted 100-fold into 10 mL fresh DM25 and incubated 1 d at the assay temperature. The initial and final densities were estimated by plating the culture onto tetrazoliumarabinose (TA) agar plates.

Estimation of Absolute Fitness. Briefly, the assays began by reviving the clones in 1 mL LB and incubating overnight at 37 °C with constant shaking (100 rpm). The following day, cultures were diluted 100-fold into MgSO₄ (10 mM solution) and 10 µl of this dilution was transferred into 990 µl DM25. The 96-well plates (Megatiter plates, Neptune) were covered with gas permeable seals (Thermo Scientific) and incubated 1 d at 37 °C (day 0) to allow the clones to acclimate to culture conditions. The following days (days 1-3), we transferred 10 µl of the overnight culture in 990 µl of fresh DM25 (100-fold dilution) and we incubated the plates at the assay temperature. The plates were incubated in a shaking incubator (Innova 4300) with an accuracy of ± 0.25 °C. At the end of each day we measured population densities using an electronic particle counter (Coulter Counter model Multisizer 3 equipped with a 30-µm-diameter aperture tube). To measure density, 50 µl of culture was diluted in 9.9 mL IsotonII diluent (Beckman Coulter), and 50 µl of the resulting dilution was counted electronically. We subtracted the background noise to the counts by measuring the number of particle in 50 µl sterile DM25. Our pilot study showed a high correlation between the densities estimated with viable cell counts (colony-forming units) and estimated with electronic counts ($R^2 = 0.867, P = 7.55^{-15^{***}}$).

To estimate the absolute fitness we used a fixed effects linear model, in which we defined the natural logarithm of the cell density as the dependent variable, and the time (daily transfers) as the independent variable. The cell density from the first day of acclimation (day 0) was excluded from the regression.

Let $y_{r,d}^{l}$ be the natural logarithm of the bacterial density, in which *d* is the day of transfer, *l* is the line analyzed (high-temperature adapted clones or the ancestor), and *r* is the replicate. We used the following model:

$$y_{r,d}^{l} = \left(\beta_{o,1} * \mathbf{1}_{r=1} + \beta_{o,2} * \mathbf{1}_{r=2} + \beta_{o,3} * \mathbf{1}_{r=3}\right) + \beta_{1} * d + \varepsilon_{r,d}^{l},$$

where β_0 is the intercept for each replicate, β_1 is the regression coefficient, and $\varepsilon_{r,d}^l$ is the error term. The slope of the fitted linear regression β_1 is equivalent to the absolute fitness of a given genotype at a given temperature.

Strain Construction and Confirmation of Recombinants. We used the pJk611 recombineering plasmid, kindly provided by M. Raffatellu, Department of Microbiology and Molecular Genetics, University of California, Irvine, CA. The pJk611 plasmid is identical to the pkD46 plasmid, with the addition of a *sacB* gene used to eliminate the plasmid when counterselected on LB with sucrose.

Briefly, we first introduced the pJk611 plasmid into the ancestral strain, electroporating 2 μ l plasmid (containing between 0.5 and 1 μ g plasmid) into 50 μ l of competent cells using an Eppendorf Electroporator 2510 set at 1.8 kV. Following electroporation, we added 1 mL LB and incubated the cells at 30 °C for 2 h with shaking. We then plated 100 μ l of cells on LB agar

plates containing 100 µg/mL ampicillin to select ampicillin-resistant (amp^R) transformants. The ancestral strain carrying the pJk611 plasmid was then grown overnight at room temperature (~20 °C) in 25 mL LB with 100 µg/mL ampicillin and 1 mM L-arabinose (Sigma) until it reached an OD_{600} of 0.6. We made electrocompetent cells by washing the cultures five times with ice-cold water. We simultaneously introduce two oligos of 70 bp with the desired nucleotide change in the center of the oligo (Table S3). The first oligo was used to introduce single mutation in rpoB or rho; the second oligo was to introduce the mutation that produces the Ara+ phenotype. Two µl of each oligo (10 µM) was electroporated into 50 µl of cells. After electroporation we added 1 mL LB and incubated cells at 37 °C for 3 h with shaking and spread 500 µl in minimal medium agar (MA) plates supplemented with L-arabinose. The remainder was grown overnight at room temperature and 100 µl was spread in MA plates. The plates were incubated 48 h at 42 °C. We selected 94 single colonies and streaked them onto TA agar plates, incubated overnight at 37 °C. We screened for the mutations by doing PCR on single colonies to amplify the region of the *rpoB* or *rho* gene with the mutation and Sanger sequencing the fragments of ~370 bp (Table S3). The PCR thermal cycling conditions were 94 °C for 10 min followed by 30 cycles of 94 °C 20 s, 60 °C 30 s, and 68 °C 1 min; finally 68 °C for 5 min.

Genetic Associations. We first created a list of unique mutations (these mutations can be any kind of molecular change, from point mutations to large deletions) occurring in 114 high-temperature adapted clones. We then selected five of the most commonly shared mutations (mutations shared by 14 or more clones), which represent a disjoint set at the right tail of the frequency distribution (Fig. S3), to explore the effect of each mutation on the absolute fitness (Table 1).

We selected L_m , which is the list of the high-temperature adapted clones in which the mutation m occurred (see Fig. S7 for a simplified example). We then found all of the mutations occurring in L_m , denoted by M_m (including m), and included them in the analysis.

Except for the mutations that are shared in more than one clone, most of the mutations are cooccurring in the same clone, which prevents us from drawing conclusions regarding the effect of single mutations on the phenotype. To overcome this problem, we partitioned the mutations into clusters C. A cluster is a subset of mutations that always occur together, and it contains a mutation m if and only if $m \in C$ for all lines in L_m . If a mutation has no cooccurring mutation, then it forms its own cluster. We created a cluster incidence matrix showing the presence or absence of a cluster in a clone (Fig. S7). We then combined the cluster incidence matrix with the continuous data of absolute fitness at 18 °C to fit the following fixed effects linear model:

$$\begin{aligned} y_{r,d}^{l} &= \left(\beta_{0}^{l=1} * \mathbf{1}_{l=1} + \ldots + \beta_{0}^{l=n} * \mathbf{1}_{l=n}\right) + \beta_{1} * d \\ &+ \left(\beta_{1,m_{1}} * d * \mathbf{1}_{m1} + \ldots + \beta_{1,m_{M}} * d * \mathbf{1}_{m_{M}}\right) + \varepsilon_{r,d}^{l}, \end{aligned}$$

where m_1, \ldots, m_M are the groups of mutations that are being analyzed. In our model, $\beta_0^{l=1} * 1_{l=1} + \ldots + \beta_0^{l=n} * 1_{l=n}$ are the interceptions coefficients associate with each clone, β_1 is the absolute fitness of the overall population (all clones in L_m) without the effect of the mutations m_1 to m_M . In our model, the effect of the presence of the mutation m_i on the absolute fitness is given by the coefficient β_{1m_i} .

In short, the model fitted a regression line for each one of the clones, where the slope of the regression for a given clone is given by the sum of the individual slope coefficient of the occurring mutations in that clone.

18°C 17°C Absolute fitness equal to 0 Absolute fitness equal to 0 plute fitness less than 0 17 17 16 16 Density (In cells/ml) Density (In cells/ml) 107 58 13 13 12 12 3 Time (days) Time (days) Time (days) Time (days) 19°C 45°C olute fitness less that ute fitness equal to (Absolute fitness less th olute fitness equal to 0 17 17 16 16 Density (In cells/mI) Density (In cells/ml) Ancestor 107 13 13 12 12 Time (days) Time (days) Time (days) Time (days)

Finally, for each one of the most commonly shared mutations we selected a final model based on the lowest Akaike Information Criterion

and goodness of fit to obtain a parsimonious model that quantifies the contribution of each mutation group to the overall population fitness.

Fig. S1. Population density trajectories of the 114 high-temperature adapted clones and the ancestor at 17 °C, 18 °C, 19 °C, and 45 °C. For each temperature, the clones are divided in two groups: (*Left*), which contains the clones in which the slope of the regression is significantly less than zero; and (*Right*), which contains the clones in which the slope of the regression is not significantly different from zero (Table S2). Each line corresponds to a local polynomial regression fitting of three replicates. The two horizontal dotted lines correspond to background noise (SE limits estimated from the mean number of particles present in 71 samples of sterile DM25). Populations crossing the dotted lines are considered extinct. When the background noise was higher than the population density (negative value), the point was excluded from the analysis.

Fig. S2. Lazarus effect observed in the ancestor at 45 °C. Each point corresponds to the bacterial density measured at the end of a growth cycle (24 h). The eight solid lines connecting the circles correspond to eight replicate measurements of the ancestor at 45 °C.

Fig. S3. Distribution of the number of high-temperature adapted clones sharing the same identical mutation.

DN A C

Fig. S4. Kernel density plot from the absolute fitness data at 18 °C. The area under the curve represents the empirical probability of occurrence of an absolute fitness value at 18 °C, for the population of 114 high-temperature adapted clones.

Fig. S5. Population density trajectories of the high-temperature evolved clones with the (A) rho I15N mutation, (B) rpoB I966S mutation, (C) 1-bp deletion, (D) 23164 bp large deletion, and (E) 71416 bp large deletion.

Fig. S6. Structural mapping of the codons analyzed. (*A*) Front view of the RNAP from *Escherichia coli* [Protein Data Bank (PDB) ID code 3LUO], color-coded as follows: α I and α II, yellow; β , green; β' , blue; ω , orange. Residues I572 (in the active site of the RNAP) and I966 (at the base of the flap domain) are shown as red spheres. Below is the top view of a ribbon diagram of the β -subunit colored from the N terminus (blue) to the C terminus (red) using a rainbow color gradient. Solvent-exposed residues in the back face of the ladder, including residue 1966, are believed to interact with an unidentified regulatory factor. (*B*) Front view of the Rho hexamer from *E. coli* (PDB ID code 1PV4). Residue I15 is shown as red sphere. Below is the bottom view of a Rho protomer colored from the N terminus (blue) to the C terminus (red) using a rainbow color gradient.

Fig. 57. Schematic representation of the procedure followed to prepare the data that were analyzed in the genetic association study. In this simplified example, only six high-temperature adapted clones with few mutations are considered. The first step consists of the selection of the mutations and the high-temperature clones to be analyzed. The second step consists of forming clusters of mutations cooccurring in the same clone. In the last step, the mutation clusters incidence matrix is combined with the absolute fitness data, containing the values of bacterial density (y) of the high-temperature adapted clones (l), measured in different days (d) and with several replicates (r).

SANG SAL

Table S1.	Statistical analyses summary of the relative fitnesses of the 114 high-temperature adapted clones at 20 °C, 37 °C (this study),
and 42.2°	

Hightemperature

PNAS PNAS

adapted clones	Mean at 20 °	fitness C \pm SE ^a	±95% Cl ^b	Significance (P value) ^c	Mean at 37 °	fitness C \pm SE ^a	±95% Cl ^b	Significance (P value) ^c	Mean fi 42.2 °C <u>-</u>	tness at ± SE ^a (1)	±95% Cl ^b	Significance (P value) ^c
1	0.853	0.013	0.058	0.008**	0.998	0.016	0.067	0.924	1.409	0.024	0.063	<0.001***
2	0.986	0.035	0.151	0.723	0.989	0.031	0.134	0.753	1.484	0.062	0.160	0.001**
3	0.981	0.019	0.050	0.370	0.922	0.013	0.057	0.028*	1.257	0.065	0.167	0.011*
4	0.936	0.023	0.058	0.038*	1.004	0.014	0.062	0.820	1.327	0.079	0.202	0.009**
5	1.023	0.024	0.062	0.386	0.958	0.032	0.139	0.326	1.559	0.109	0.279	0.004**
7	0.980	0.028	0.120	0.553	0.874	0.029	0.123	0.048*	1.529	0.054	0.139	<0.001***
8	0.958	0.013	0.033	0.023*	0.935	0.030	0.130	0.164	1.525	0.032	0.082	< 0.001***
9	0.834	0.013	0.032	0.000***	0.970	0.036	0.153	0.493	1.4/2	0.051	0.130	<0.001***
10	1.011	0.009	0.040	0.355	1.019	0.033	0.085	0.598	1.007	0.072	0.180	<0.001**
17	0.000	0.029	0.125	0.045"	0.020	0.025	0.100	0.020**	1.244	0.032	0.065	0.001**
12	0.882	0.028	0.121	0.033.	0.900	0.019	0.040	0.004.	1.525	0.048	0.124	0.001
14	0.920	0.003	0.040	0.020	1 006	0.073	0.070	0.504	1.500	0.070	0.200	0.001**
15	0.973	0.021	0.089	0.321	0.990	0.045	0.192	0.841	1.499	0.070	0.180	0.001**
16	0.888	0.016	0.068	0.019*	0.948	0.028	0.120	0.201	1.272	0.070	0.180	0.012*
17	0.973	0.025	0.106	0.381	0.944	0.031	0.132	0.207	1.460	0.044	0.113	< 0.001***
18	0.698	0.065	0.167	0.043*	0.889	0.026	0.110	0.049*	1.561	0.104	0.267	0.003**
20	0.861	0.028	0.120	0.038*	0.995	0.023	0.097	0.845	1.278	0.053	0.137	0.003**
21	0.967	0.023	0.097	0.286	1.019	0.016	0.040	0.272	1.478	0.118	0.303	0.010*
22	0.867	0.021	0.053	0.001**	0.962	0.003	0.014	0.008**	1.325	0.042	0.107	0.001**
23	0.996	0.018	0.076	0.837	1.027	0.030	0.131	0.464	1.129	0.035	0.089	0.014*
24	0.900	0.025	0.065	0.011*	1.003	0.024	0.103	0.913	1.570	0.067	0.172	<0.001***
25	0.897	0.011	0.027	0.000***	0.946	0.035	0.151	0.261	1.184	0.038	0.098	0.005**
26	1.006	0.025	0.106	0.842	0.939	0.011	0.048	0.031*	1.503	0.037	0.102	<0.001***
27	0.900	0.014	0.036	0.001**	0.966	0.007	0.030	0.039*	1.243	0.058	0.150	0.009**
28	0.790	0.009	0.022	0.000***	1.010	0.044	0.188	0.846	1.503	0.083	0.214	0.002**
31	0.742	0.037	0.161	0.020*	0.997	0.041	0.175	0.947	1.330	0.049	0.126	0.001**
32	0.948	0.016	0.068	0.080.	1.034	0.021	0.054	0.169	1.290	0.042	0.109	0.001**
33	0.646	0.020	0.084	0.003^^	1.014	0.009	0.038	0.247	1.402	0.036	0.092	<0.001***
34	0.978	0.029	0.124	0.521	1.013	0.047	0.202	0.812	1.510	0.059	0.152	<0.001**
20	0.942	0.010	0.044	0.030"	0.068	0.019	0.049	0.064.	1.475	0.062	0.159	0.001***
39	0.904	0.041	0.170	0.470	0.908	0.022	0.030	0.232	1.405	0.054	0.140	<0.001
40	0.330	0.015	0.000	0.104	0.908	0.018	0.070	0.210	1 368	0.008	0.174	<0.001
40	0.897	0.030	0.210	0.020	0.942	0.005	0.020	0.032*	1 306	0.057	0.055	0.004**
42	0.834	0.038	0.164	0.049*	0.964	0.036	0.156	0.422	1.561	0.053	0.137	<0.001***
43	0.865	0.018	0.047	0.001**	0.970	0.041	0.176	0.544	1.496	0.048	0.124	<0.001***
44	0.932	0.052	0.224	0.320	1.028	0.019	0.048	0.192	1.516	0.078	0.201	0.001**
45	0.942	0.025	0.109	0.149	0.993	0.022	0.095	0.793	1.293	0.061	0.156	0.005**
46	0.941	0.034	0.145	0.222	1.030	0.013	0.035	0.077.	1.473	0.063	0.161	0.001**
47	0.875	0.025	0.106	0.036*	1.065	0.080	0.346	0.501	1.546	0.077	0.197	0.001**
48	0.929	0.014	0.061	0.038*	0.967	0.020	0.088	0.253	1.298	0.065	0.180	0.010*
51	0.905	0.020	0.086	0.042*	1.004	0.013	0.056	0.798	1.349	0.078	0.200	0.006**
52	1.009	0.061	0.265	0.901	0.972	0.027	0.115	0.411	1.415	0.053	0.136	0.001**
53	0.911	0.029	0.125	0.093.	0.982	0.028	0.122	0.581	1.096	0.043	0.110	0.074.
54	0.916	0.012	0.050	0.018*	0.995	0.035	0.149	0.904	1.384	0.079	0.204	0.005**
55	0.792	0.034	0.146	0.026*	0.896	0.023	0.100	0.046*	1.390	0.091	0.235	0.008**
56	1.035	0.018	0.047	0.117	0.940	0.015	0.039	0.011*	1.319	0.070	0.1/9	0.006**
57	0.779	0.050	0.129	0.007**	0.939	0.010	0.026	0.002**	1.279	0.043	0.110	0.001**
58	0.932	0.008	0.019	0.012*	0.832	0.020	0.087	0.014*	1.419	0.092	0.235	0.006**
59	0.845	0.024	0.102	0.023^	0.954	0.024	0.102	0.189	1.383	0.066	0.170	0.002**
60 61	0.993	0.017	0.072	0.723	1.016	0.021	0.055	0.487	1.2//	0.043	0.110	0.001**
6/	0.035	0.030	0.130	0.052° 0.001**	0.998	0.020	0.112	0.952 0.000***	1.550	0.107	0.270 0 197	0.004^^
04 65	0.070	0.004	0.010	0.001**	1 020	0.000	0.022	0.000	1.490	0.075	0.10/	0.001**
66	1 033	0.004	0.078	0.002	0.941	0.049	0.215	0.004	1 430	0.052	0.154	0.001**
67	0.926	0.075	0.020	0.025	0.969	0.009	0.040	0.024	1 378	0.035	0.087	<0.001***
68	0.892	0.013	0.055	0.014*	0.882	0.022	0.097	0.034*	1.283	0.060	0.155	0.005**
69	0.907	0.032	0,138	0.102	1.041	0.032	0.137	0.322	1.541	0.047	0.121	<0.001***
70	1.029	0.015	0.063	0.183	0.992	0.025	0.064	0.752	1.308	0.035	0.091	<0.001***
-												

Table S1.	Cont.
-----------	-------

High-

PNAS PNAS

temperature adapted clones	Mean at 20 °C	fitness C ± SE ^a	±95% Cl ^b	Significance (P value) ^c	Mean at 37 °	fitness C ± SE ^a	±95% Cl ^b	Significance (P value) ^c	Mean fit 42.2 °C ±	ness at SE ^a (1)	±95% Cl ^b	Significance (P value) ^c
71	0.833	0.023	0.099	0.018*	0.900	0.029	0.073	0.017*	1.270	0.060	0.154	0.006**
72	0.998	0.046	0.196	0.973	0.992	0.021	0.090	0.736	1.463	0.095	0.244	0.005**
73	1.031	0.016	0.069	0.192	1.028	0.019	0.084	0.285	1.419	0.062	0.160	0.001**
74	0.839	0.009	0.037	0.003**	0.857	0.026	0.110	0.030*	1.314	0.041	0.114	0.002**
75	0.881	0.012	0.053	0.011*	1.085	0.025	0.064	0.019*	1.357	0.062	0.158	0.002**
76	0.703	0.022	0.095	0.005**	0.976	0.005	0.020	0.034*	1.377	0.035	0.089	<0.001***
77	0.912	0.022	0.094	0.057.	0.930	0.004	0.016	0.003**	1.430	0.096	0.248	0.007**
78	1.004	0.013	0.056	0.790	1.033	0.062	0.269	0.653	1.570	0.096	0.247	0.002**
79	0.953	0.014	0.062	0.081.	0.977	0.018	0.078	0.326	1.238	0.048	0.132	0.008**
80	0.955	0.030	0.078	0.196	1.003	0.038	0.165	0.953	1.270	0.079	0.203	0.019*
81	0.864	0.025	0.064	0.003**	1.016	0.015	0.037	0.321	1.480	0.078	0.201	0.002**
82	0.876	0.019	0.050	0.001**	0.939	0.017	0.043	0.015*	1.498	0.053	0.137	<0.001***
83	0.995	0.030	0.128	0.881	0.970	0.026	0.112	0.374	1.178	0.036	0.092	0.004**
84	0.978	0.019	0.080	0.353	0.999	0.017	0.044	0.971	1.180	0.070	0.181	0.051.
85	0.848	0.020	0.085	0.017*	0.996	0.013	0.034	0.758	1.662	0.087	0.222	0.001**
86	0.866	0.014	0.061	0.011*	0.952	0.019	0.050	0.055.	1.310	0.077	0.198	0.010*
87	1.010	0.032	0.139	0.781	1.015	0.032	0.139	0.689	1.703	0.137	0.351	0.004**
89	0.941	0.044	0.189	0.313	0.975	0.041	0.177	0.600	1.387	0.046	0.117	<0.001***
91	0.784	0.022	0.095	0.010*	0.990	0.023	0.098	0.695	1.472	0.057	0.146	<0.001***
92	0.825	0.009	0.040	0.003**	0.918	0.016	0.068	0.035*	1.446	0.093	0.239	0.005**
93	0.907	0.011	0.049	0.015*	1.010	0.019	0.081	0.650	1.396	0.040	0.103	<0.001***
94	0.968	0.001	0.005	0.001**	0.941	0.007	0.028	0.012*	1.767	0.134	0.344	0.002**
95	0.903	0.001	0.003	0.000***	0.921	0.013	0.034	0.002**	1.488	0.109	0.280	0.007**
96	0.934	0.048	0.124	0.302	0.990	0.018	0.077	0.641	1.439	0.105	0.270	0.009**
97	0.926	0.105	0.269	0.512	0.978	0.019	0.049	0.310	1.277	0.096	0.247	0.034*
101	0.976	0.018	0.047	0.248	1.014	0.016	0.041	0.438	1.404	0.031	0.079	<0.001***
105	0.939	0.020	0.088	0.095.	1.025	0.020	0.087	0.338	1.397	0.038	0.097	<0.001***
106	0.928	0.008	0.035	0.012*	1.016	0.031	0.079	0.620	1.383	0.100	0.258	0.012*
107	Could not gr	ow at 20 °C			0.982	0.011	0.028	0.168	1.635	0.061	0.157	<0.001***
108	0.870	0.003	0.014	0.001**	0.989	0.020	0.085	0.642	1.671	0.112	0.289	0.002**
110	0.913	0.028	0.072	0.089.	1.007	0.006	0.024	0.361	1.469	0.073	0.187	0.001**
112	0.906	0.004	0.018	0.002**	0.992	0.019	0.048	0.693	1.230	0.085	0.218	0.042*
114	0.830	0.012	0.052	0.005**	0.967	0.005	0.022	0.023*	1.217	0.063	0.162	0.018*
118	0.849	0.022	0.056	0.001**	0.935	0.004	0.017	0.004**	1.612	0.039	0.101	<0.001***
119	0.716	0.015	0.038	0.003**	0.953	0.009	0.038	0.033*	1.626	0.098	0.253	0.001**
120	0.807	0.020	0.086	0.011*	0.954	0.015	0.039	0.029*	1.300	0.055	0.153	0.005**
122	0.908	0.015	0.066	0.027*	0.975	0.044	0.189	0.626	1.381	0.033	0.084	<0.001***
124	0.935	0.017	0.044	0.012*	0.913	0.015	0.066	0.030*	1.427	0.048	0.122	<0.001***
126	0.998	0.017	0.043	0.929	0.970	0.025	0.108	0.358	1.544	0.061	0.157	<0.001***
127	0.890	0.025	0.063	0.006**	1.003	0.012	0.031	0.822	1.387	0.047	0.120	<0.001***
130	0.999	0.011	0.028	0.935	0.990	0.010	0.041	0.392	1.284	0.068	0.188	0.014*
131	0.968	0.026	0.114	0.348	0.948	0.012	0.050	0.047*	1.345	0.036	0.093	<0.001***
132	1.009	0.015	0.066	0.601	0.980	0.053	0.227	0.737	1.432	0.082	0.212	0.003**
133	0.684	0.012	0.053	0.002**	0.919	0.004	0.015	0.002**	1.379	0.070	0.180	0.003**
134	1.032	0.017	0.044	0.118	0.985	0.017	0.044	0.408	1.380	0.053	0.136	0.001**
135	0.947	0.018	0.046	0.031*	0.993	0.017	0.074	0.715	1.473	0.056	0.143	<0.001***
136	0.911	0.007	0.018	0.000***	0.886	0.000	0.002	0.000***	1.295	0.028	0.072	<0.001***
137	0.932	0.006	0.025	0.008**	0.927	0.008	0.036	0.013*	1.349	0.041	0.104	<0.001***
138	0.968	0.021	0.088	0.261	1.011	0.017	0.043	0.558	1.433	0.081	0.209	0.003**
139	0.877	0.015	0.039	0.000***	0.966	0.024	0.104	0.299	1.375	0.053	0.135	0.001**
140	0.981	0.024	0.104	0.516	1.024	0.031	0.134	0.522	1.648	0.039	0.101	<0.001***
141	0.991	0.025	0.064	0.736	0.956	0.009	0.038	0.038*	1.460	0.055	0.141	<0.001***
142	0.885	0.015	0.038	0.001**	0.959	0.033	0.142	0.336	1.609	0.067	0.172	<0.001***
143	0.927	0.017	0.043	0.007**	0.967	0.029	0.127	0.375	1.540	0.081	0.208	0.001**

^aMean relative fitness and SEM. ^b95% confidence interval (CI).

^cThe null hypothesis is that mean fitness relative to the ancestor equals 1; probabilities calculated using a two-tailed *t* test. The asterisks represent significant deviation from the null hypothesis that mean fitness equals 1.0, with a single asterisk denoting significance at 0.01 < P < 0.05, double asterisks denoting significance at 0.001 < P < 0.01, and triple asterisks denoting significance at P < 0.001 and a dot denoting 0.05 < P < 0.1.

1. Tenaillon O, et al. (2012) The molecular diversity of adaptive convergence. Science 335():457-461.

Table S2.	Statistical analyses summary of the absolute fitnesses of the ancestor and the 114 high-temperature adapted clones at 17 °C,
18 °C, 19 °	°C, and 45 °C

High-	Mean			Mean			Mean			Mean		
temperature	absolute	95% CI	Less	absolute	95% CI	Less	absolute	95% CI	Less	absolute	95% CI	Less
adapted	fitness at	(upper	than	fitness at	(upper	than	fitness at	(upper	than	fitness at	(upper	than
clones	17 °C ^a	limit) ^b	0? ^c	18 °Cª	limit) ^b	0? ^c	19 °Cª	limit) ^b	0? ^c	45 °C ^a	limit) ^b	0? ^c
1	_1 015	_0 751	VES	_0/15	_0 352	VES	_0 13/	_0.006	VES	_0.092	0.095	NO
2	_0 301	_0.059	VES	0.415	0.332	NO	0.134	0.000	NO	_0.052	_0.000	VES
2	-0.501	-0.657	VES	_0.037	0.134	NO	0.010	0.001	NO	0.015	0.062	NO
1	1 200	1 00/	VEC	0 5 4 2	0.040	VEC	0.022	0.121	VEC	0.015	0.002	NO
4 F	-1.500	-1.004		-0.545	-0.405	NO	-0.219	-0.007	NO	-0.038	0.017	
5	-0.931	0.010		-0.089	0.095	NO	0.115	0.210	NO	-0.030	0.041	NO
/	-0.460	-0.505		-0.034	0.062		0.075	0.120	NO	0.018	0.064	NO
8	-0.867	-0.551	TES VEC	-0.260	-0.017	TES	0.096	0.213	NO	-0.062	0.021	NO
9	-1.627	-1.180	TES	-0.791	-0.696	TES	-0.285	-0.049	TES	-0.032	0.035	NO
10	-0.893	-0.572	YES	-0.221	-0.054	YES	0.034	0.100	NO	-0.109	0.024	NO
11	-1.254	-0.530	YES	-0.852	-0.325	YES	-0.688	-0.549	YES	-0.003	0.055	NO
12	-1.099	-0.456	YES	-0.550	-0.314	YES	-0.076	0.130	NO	-0.061	0.033	NO
13	-0.752	-0.507	YES	0.056	0.164	NO	0.033	0.089	NO	-0.032	0.042	NO
14	-1.025	-0.774	YES	-0.314	-0.177	YES	-0.114	0.061	NO	0.022	0.080	NO
15	-0.458	-0.171	YES	0.033	0.088	NO	0.039	0.131	NO	0.052	0.095	NO
16	-0.952	-0.770	YES	-0.393	-0.294	YES	-0.072	0.014	NO	-0.029	0.037	NO
17	-0.658	-0.485	YES	-0.104	-0.020	YES	0.055	0.130	NO	0.004	0.064	NO
18	-0.937	-0.492	YES	-0.746	-0.174	YES	-0.316	-0.068	YES	0.035	0.076	NO
20	-1.221	-0.775	YES	-0.609	-0.447	YES	-0.072	0.105	NO	-0.004	0.065	NO
21	-0.964	-0.705	YES	-0.059	0.027	NO	0.008	0.110	NO	0.018	0.080	NO
22	-1.262	-1.024	YES	-0.586	-0.485	YES	0.043	0.132	NO	-0.025	0.037	NO
23	-0.434	-0.190	YES	0.048	0.105	NO	-0.063	-0.002	YES ^d	-0.011	0.052	NO
24	-1.250	-0.863	YES	-0.478	-0.287	YES	-0.300	-0.120	YES	-0.069	0.006	NO
25	-1.000	-0.790	YES	-0.388	-0.258	YES	-0.057	0.008	NO	-0.081	0.016	NO
26	-1.155	-1.033	YES	0.079	0.188	NO	0.006	0.074	NO	0.029	0.115	NO
27	-1.236	-0.981	YES	-0.272	-0.188	YES	-0.052	0.051	NO	0.028	0.057	NO
28	-1.245	-0.666	YES	-0.306	-0.231	YES	-0.036	0.024	NO	-0.012	0.052	NO
31	-1.200	-0.893	YES	-1.003	-0.725	YES	-0.334	-0.127	YES	-0.016	0.037	NO
32	-1.343	-0.795	YES	0.013	0.094	NO	-0.037	0.021	NO	-0.038	0.034	NO
33	-1.847	-1.259	YES	-1.424	-0.674	YES	-0.216	0.220	NO	-0.013	0.044	NO
34	-1.071	-0.907	YES	-0.113	-0.047	YES	-0.082	0.020	NO	0.000	0.076	NO
35	-1.077	-0.741	YES	-0.236	-0.125	YES	0.023	0.173	NO	-0.024	0.035	NO
38	-0.991	-0.827	YES	0.029	0.131	NO	-0.016	0.062	NO	-0.061	0.005	NO
39	-0.825	-0.686	YES	-0.005	0.078	NO	-0.042	0.024	NO	-0.056	0.014	NO
40	-1.395	-1.192	YES	-0.928	-0.823	YES	-0.276	-0.060	YES	-0.038	0.012	NO
41	-1.078	-0.746	YES	-0.067	0.029	NO	-0.026	0.057	NO	-0.015	0.058	NO
42	-0.948	-0.680	YES	0.020	0.083	NO	0.043	0.115	NO	-0.016	0.052	NO
43	-1.071	-0.753	YES	-0.276	-0.165	YES	0.066	0.146	NO	0.012	0.084	NO
44	-0.724	-0.522	YES	0.004	0.088	NO	0.027	0.131	NO	0.014	0.075	NO
45	-1 151	-0.913	YES	-0.428	-0.232	YES	-0.034	0 118	NO	-0.002	0.072	NO
46	-1 165	-0.925	YES	-0 112	0.015	NO	0.037	0 103	NO	0.028	0.078	NO
47	-1 691	_1 274	YES	-0.598	-0 449	YES	-0.105	0.077	NO	0.010	0.050	NO
48	-0.704	-0.456	YES	-0.022	0.100	NO	0.050	0.159	NO	-0.001	0.083	NO
51	-0.815	-0 583	YES	0.011	0.090	NO	0.049	0 146	NO	0.015	0.071	NO
52	-0.867	_0.505	YES	0.020	0.050	NO	0.015	0 1 10	NO	0.000	0.045	NO
52	_1 124	-0.966	YES	-0.018	0.005	NO	0.027	0.110	NO	-0.007	0.045	NO
50	_0.621	_0.300	VES	0.074	0.070	NO	0.005	0.170	NO	-0.016	0.039	NO
55	_1 9//	_1 ///	VES	_0.713	_0.122	VES	_0.005	_0.125	VES	-0.018	0.035	NO
56	1 27/	0.956	VES	0.176	0.057	VES	0.070	0 125	NO	0.003	0.002	NO
50	-1.274	-0.950		-0.170	-0.005		0.070	0.125		0.003	0.108	NO
57	-1.564	-1.101	NOd	-1.157	-0.605		-0.240	0.142	NO	-0.017	0.041	NO
50	1 610	כוס.ט כדר 1		1 040	0.002		-0.105	0.145		0.021	0.000	
23	0.000	-1.2/3		-1.040	0 13/		-0.070	0.045		-0.027	0.000	
60	-0.990	-0.0/0		0.043	0.154		0.047	0.149	NO	-0.074	-0.017	TES
01	-1.409	-1.165	YES	-0.3/8	-0.211	YES	-0.084	0.102	NO	-0.026	0.030	NO
о4 СГ	-1.396	-1.151	YES	-0.353	-0.193	YES	0.085	0.179	NO	-0.042	0.006	NO NG
60	-1.425	-1.05/	YES	-0.079	0.030	NO	-0.005	0.068	NO	-0.046	0.020	NO
00	-0.904	-0.545	YES	0.120	0.223	NO	0.053	0.111	NO	-0.01/	0.030	NO
6/	-1.369	-0.894	YES	-0.617	-0.453	YES	0.005	0.109	NO	-0.054	0.017	NO
68	-1.437	-0.679	YES	-0.576	-0.427	YES	-0.135	0.023	NO	-0.042	0.078	NO
69	-1.123	-0.894	YES	-0.490	-0.348	YES	0.003	0.079	NO	0.012	0.078	NO

PNAS PNAS

Table S2. Cont.												
High- temperature adapted clones	Mean absolute fitness at 17 °C ^a	95% Cl (upper limit) ^b	Less than 0? ^c	Mean absolute fitness at 18 °C ^a	95% Cl (upper limit) ^b	Less than 0? ^c	Mean absolute fitness at 19 °C ^a	95% Cl (upper limit) ^b	Less than 0? ^c	Mean absolute fitness at 45 °C ^a	95% Cl (upper limit) ^b	Less than 0? ^c
70	-0.885	-0.670	YES	0.093	0.211	NO	0.054	0.169	NO	-0.001	0.031	NO
71	-1.313	-0.828	YES	-1.070	-0.845	YES	-0.166	0.059	NO	-0.016	0.038	NO
72	-1.352	-1.068	YES	-0.148	0.000	YES	-0.060	0.098	NO	-0.010	0.038	NO
73	-0.648	-0.367	YES	-0.091	0.034	NO	0.092	0.166	NO	-0.048	0.019	NO
74	-1.193	-0.245	YES	-0.677	-0.419	YES	-0.129	0.063	NO	0.041	0.093	NO
75 76	-1.8/1	-1.511	YES VES	-0.808	-0.426	YES	-0.093	0.097		-0.006	0.075	NO
70	-1.303	-0.947	YES	-0.321	-0.478	YES	0.000	-0.447	NO	-0.012	-0.008	YES
78	-0.634	-0.546	YES	0.040	0.144	NO	0.039	0.116	NO	-0.027	0.021	NO
79	-1.189	-1.035	YES	-0.077	0.020	NO	0.077	0.156	NO	-0.068	0.018	NO
80	-1.058	-0.818	YES	0.033	0.128	NO	0.012	0.081	NO	-0.007	0.057	NO
81	-0.885	-0.714	YES	0.043	0.136	NO	0.049	0.104	NO	-0.028	0.047	NO
82	-0.674	-0.416	YES	0.071	0.132	NO	-0.003	0.079	NO	-0.044	0.006	NO
83	-1.128	-0.716	YES	-0.034	0.042	NO	0.043	0.108	NO	-0.034	0.006	NO
84	-0.913	-0.540	YES	-0.009	0.109	NO	0.062	0.139	NO	-0.013	0.046	NO
85 86	-1.602 1 597	-0.979		-0.756	-0.605	YES	-0.206	0.039	NO	-0.019	0.017	NO
87	-1.567	-0.510	YES	-0.089	0.200	NO	-0.041	0.061	NO	-0.005	0.032	NO
89	-0.995	-0.802	YES	-0.003	0.037	NO	0.040	0.122	NO	-0.001	0.057	NO
91	-1.584	-1.189	YES	-0.806	-0.491	YES	0.020	0.094	NO	-0.026	0.023	NO
92	-1.943	-1.370	YES	-0.725	-0.440	YES	-0.353	-0.101	YES	-0.074	0.023	NO
93	-1.079	-0.735	YES	-0.118	0.019	NO	0.048	0.094	NO	-0.037	0.057	NO
94	-0.844	-0.570	YES	0.113	0.215	NO	0.070	0.141	NO	0.006	0.054	NO
95	-0.981	-0.822	YES	0.015	0.126	NO	0.022	0.081	NO	-0.009	0.026	NO
96	-0.747	-0.573	YES	0.086	0.175	NO	-0.015	0.084	NO	-0.004	0.043	NO
97	-1.270	-0.675	YES	-0.119	0.011	NO	0.032	0.075	NO	-0.157	0.038	NO
101	-0.838	-0.539	YES	0.009	0.189	NO	0.097	0.182	NO	0.043	0.089	NO
105	-0.591	-0.343	VES	0.023	0.119	NO	0.030	0.094	NO	-0.008	0.031	NO
100	-0.956	1.094	NO ^d	-0.690	-0.334	YES	-0.354	-0.072	YES	-0.032	0.023	NO
108	-1.043	-0.782	YES	0.080	0.162	NO	0.050	0.107	NO	0.026	0.068	NO
110	-1.283	-1.033	YES	0.136	0.380	NO	0.069	0.141	NO	0.028	0.066	NO
112	-1.289	-0.858	YES	-0.024	0.045	NO	-0.002	0.120	NO	0.039	0.074	NO
114	-1.658	-0.794	YES	-0.808	-0.680	YES	-0.228	0.002	NO	-0.380	0.058	NO
118	-1.609	-1.256	YES	-0.372	-0.249	YES	-0.159	0.040	NO	0.044	0.088	NO
119	-1.137	-0.759	YES	-0.298	-0.124	YES	-0.100	0.085	NO	0.005	0.076	NO
120	-1.414	-1.239	YES	-0.223	0.005	NO	-0.021	0.277	NO	0.041	0.083	NO
122	-1.120	-0.975		-0.664	-0.430		0.023	0.100	NO	0.023	0.099	NO
124	-1.002	-0.371	VES	-0.330	0.300	NO	-0.030	0.021	NO	-0.008	0.064	NO
120	-1.398	-1.121	YES	-0.257	-0.083	YES	-0.153	0.018	NO	0.014	0.097	NO
130	-1.369	-1.058	YES	-0.454	-0.303	YES	-0.114	-0.004	YES	0.060	0.157	NO
131	-0.426	-0.274	YES	-0.035	0.031	NO	0.065	0.111	NO	-0.137	-0.066	YES
132	-0.449	-0.292	YES	-0.010	0.099	NO	0.039	0.124	NO	0.200	0.500	NO
133	-1.731	-1.523	YES	-0.834	-0.669	YES	-0.840	-0.595	YES	0.049	0.157	NO
134	-0.563	-0.263	YES	0.004	0.089	NO	0.070	0.146	NO	-0.319	0.172	NO
135	-1.491	-1.251	YES	-0.387	-0.234	YES	-0.107	0.098	NO	0.038	0.095	NO
136	-1.548	-1.160	YES	-0.364	-0.286	YES	-0.185	0.062	NO	0.024	0.072	NO
137	-1.1/2	-0.933	YES	-0.111	0.028	NO	0.046	0.156	NO	-0.015	0.024	NO
130	-0.966	-0.700		-0.061	0.047	NO	0.045	0.179	NO	-0.033	0.055	NO
140	-0.939	-0.657	YES	0.010	0.110	NO	0.032	0.101	NO	0.010	0.054	NO
141	-0.801	-0.463	YES	-0.005	0.068	NO	0.105	0.197	NO	0.000	0.072	NO
142	-1.078	-0.784	YES	0.001	0.129	NO	0.106	0.181	NO	-0.067	0.000	NO
143	-0.508	-0.174	YES	-0.023	0.041	NO	0.062	0.122	NÖ	-0.062	-0.012	YES
REL1206	-0.413	-0.264	YES	0.000	0.075	NO	-0.004	0.070	NO	-0.290	0.097	NO

^aMean absolute fitness (slope of the fitted linear regression) based on three replicates.

^bOne-sided confidence interval at 95% based on 3 replicates.

PNAS PNAS

^cThe null hypothesis is that the mean absolute fitness equals 0. If the one-sided interval is equal to zero, the absolute fitness is not less than zero (NO); if the one-sided interval is less than zero the absolute fitness is less than zero (YES).

^dThe populations go extinct between day 1 and 2, resulting in a large variance and an underestimation of the mean absolute fitness.

Table S3. Oligonucleotides and primers used in this study

PNAS PNAS

Oligos used for recombineering to create <i>rpoB</i> and <i>rho</i> mutants						
rpoB 1966S (T2897G)	5'-cag cac gga tac ggc tga aca gac ccg ctt cga ggc tct gca gtt ctt cag aca ggt ctt tct tcg cct g-3'					
rho I15N (T44A)	5'-cag gtt ttc cag ccc cat att ttc gcc gag agt gtt cag ctc aga aac cgg cgt att ctt taa ttc ggt-3'					
araA D92G (A275G)	5'-cac acc ttc tcc ccg gcc aaa atg tgg atc aac ggc ctg acc atg ctc aac aaa ccg ttg ctg caa ttc c-3'					
Primer pair used for PCR amplification of rpoB or rho genic region						
Primers to amplify the rpoB regi	on (368 bp)					
1966 Forward	5'-TAA GGT TAC GCC GAA AGG TG-3'					
1966 Reverse	5'-gtt tct ctt cgt cgg tca gg-3'					
Primers to amplify the <i>rho</i> region (373 bp)						
I15 Forward	5'-gac cgt aaa cag gca tgg at-3'					
115 Reverse	5'-gta tca cca gtg cgg agg tt-3'					