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SI Text
In SI Text we analyze in further detail several aspects of the
paper regarding theory and experiments. Concerning the theory
we study in detail a dynamical model describing the experiments
reported in the main text. This model is then used to shed light
on several aspects of the discussion in the main text. In SI Text,
section S1 we introduce the model in the symmetric case. In SI
Text, section S2 we prove that x+ and x− are independent quan-
tities in our model, which is a central result in our discussion. In SI
Text, section S3 we do the same forW+ andW−. These conclusions
are supported by a statistical analysis of the experimental data. In
SI Text, sections S4 and S5 we comment on the definition and
meaning of the hydrodynamic parameters of our model. One of
these parameters is γ+, which was used in estimating the missing
contribution to the total dissipation when using the wrong work
definition W′. We also recall how to measure these parameters
from equilibrium experiments and present measurements on dif-
ferent DNA tethers. In SI Text, section S6 we discuss free-energy
inference in asymmetric setups and in SI Text, section S7 we
present measurements at lower pulling speeds. These measure-
ments show that correct work measurement is important even at
low irreversibility conditions.

S1. A Model for the Experimental Setup
We consider a model for the experimental dual-trap setup shown
in Fig. S1. In this setup two focused laser beams form two optical
traps, which allow us to manipulate a dumbbell formed by two
trapped beads coupled through a molecular tether. The model is
one dimensional: The dynamics take place along the direction of
the tether, the y axis in Fig. S1. Should the tether not be oriented
in the plane perpendicular to the direction of the laser beams,
the analysis is more involved as detailed in ref. 1. In this section
we assume the two traps are identical and harmonic, so that the
total potential energy reads

UTOTðyA; yBÞ= k
2
y2B +

k
2
ðyA − λÞ2 +UmðyA − yBÞ: [S1]

A more general discussion, taking into account asymmetric set-
ups, is deferred to section S6. Note that we choose the center
of trap B (left trap) as the origin of our reference frame and
that λ is the position of trap A relative to trap B. A dynamical
model for our system can be obtained using Langevin equations
subject to a total potential as defined in Eq. S1,

_y=−μ∇UTOTðyA; yB; λtÞ+η; [S2]

where y = (yA, yB), ∇= ð∂yA; ∂yBÞ, η = (ηA, ηB) is a vector formed by
the noise terms affecting the two beads, and μ is the mobility
tensor. We assume the noise to be δ correlated in time and the
fluctuation–dissipation theorem to be fulfilled,�

ηiðsÞηjðtÞ
�
=KBTμi;jδðt− sÞ; [S3]

i.e., that the covariance of the noise is proportional to the mobility
μ. In the above expression KB is the Boltzmann constant and
T the absolute temperature. In the vector Eq. S2 the mobility is
a tensor or matrix. Its diagonal terms describe the friction affect-
ing the motion of the beads, whereas the off-diagonal terms de-
scribe hydrodynamic interactions between the beads:

μ=
�

γ−1A ðyA; yBÞ Γ−1
ABðyA; yBÞ

Γ−1
BAðyA; yBÞ γ−1B ðyA; yBÞ

�
:

The validity of Eq. S3 for hydrodynamic fluctuations in a pull-
ing experiment is a standard assumption, and it is a necessary
hypothesis in the derivation of fluctuation relations (FRs) such
as Jarzynski equality or the Crooks fluctuation relation. The
analysis of this equation is greatly simplified by the following
two features, which can be easily matched in our experimen-
tal setup:

• The setup is fully symmetric, meaning not only kA = kB but also
rA = rB, where rA, rB are the bead radii.

• The hydrodynamic coefficients γ, Γ between the beads do not
significantly change in the force range of a pulling experiment.
In SI Text, section S4 we show that this condition is met for
tethered molecules ranging from 20 nm to 1 μm in contour length
to a 10% accuracy.

This guarantees that the mobility matrix is symmetric and
constant:

μ=
�
γ−1 Γ−1

Γ−1 γ−1

�
:

Under these conditions, the transformation x+ = ðyA + yBÞ=2; x− =
yA − yB, decouples the potential into two separate terms,

UTOTðx−; x+; λÞ=U−ðx−; λÞ+U+ðx+; λÞ:

Moreover, the symmetry requirements cited above have the follow-
ing two important consequences:

• It diagonalizes the mobility tensor μ in the form

μ=
�
γ−1+ 0
0 γ−1−

�
:

• It diagonalizes the noise covariance; i.e., it gives rise to two
statistically independent noise contributions, η+ and η−, which
separately affect the new coordinates x+ and x−:�

η± ðsÞη± ðtÞ
�
=KBTγ± δðt− sÞ; �

η+ðsÞη−ðtÞ
�
= 0: [S4]

In the main text we have shown how the partition functions
for x− and x+ decouple. From previous equations one can eas-
ily see that the full right–left symmetry of the setup guaran-
tees that also the equations of motion for x+ and x− decouple
completely:

γ+ _x
+
t =−∂x+U+�x+t ; λt�+ η+t [S5]

γ− _x
−
t =−∂x−U−�x−t ; λt�+ η−t : [S6]

S2. The Differential X− and Center-Of-Mass X+ Coordinates
Are Statistically Independent
The factorization of the partition function (Eq. 8 in the main text)
plays an important role in the derivation of our results. For sym-
metric systems such factorization is directly related to the sta-
tistical independence of the center-of-mass and differential co-
ordinates. Here we experimentally check this factorization by
showing how we can generally describe the state of our system,
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using a decomposition of the measured forces into two statistically
independent coordinates. For linear systems such decomposition
is always possible whereas for general nonlinear systems such
decomposition is possible only in the symmetric case. Imagine
that the equilibrium distribution of our system is dictated by
a Hamiltonian depending on two coordinates: U(yA, yB), which
takes the form U+(x+) + U−(x−) for a general transformation,
x− = x−(yA, yB) and x+ = x+(yA, yB). In this situation, x+ and x− are
statistically independent,

Pðx+j x−Þ=Pðx+Þ∝ exp
�
−βU+ðx+Þ

�
; [S7]

and in particular have zero covariance:

hx+x−i= hx−ihx−i: [S8]

A further consequence of this decomposition of the Hamiltonian
is the factorization of the partition function discussed in the main
text. For simplicity we consider forces instead of distances, as our
instrument directly measures forces. The independence of the
coordinates x+ and x− directly translates into the independence
of the corresponding forces:

f+ =−∂U+ðx+Þ; f− =−∂U−ðx−Þ: [S9]

Indeed,

�
f+f−

�
=
Z

dx+dx−f+f−e−βU =
Z

dx+f+e−βU+

Z
dx−f−e−βU−

=
�
f+
��

f−
�
:

[S10]

We use the covariance as a measure of linear dependence and a
Pearson’s χ2 test as a measure of dependence in general. The χ2

test is described in SI Text, section S3. The transformations we use
to uncouple the 2 df are rotations of the form

fϕ+ = cosðϕÞfA + sinðϕÞfB [S11]

fϕ− =−sinðϕÞfA + cosðϕÞfB: [S12]

We present measurements of equilibrium force fluctuations ob-
tained using different tethers. In Fig. S2 we describe measure-
ments performed on 1-kb dsDNA tethers stretched at 2 pN.
Experiments were performed using PBS buffer (pH 7.5), 1 M
NaCl at 25 °C just as in the pulling experiments described in
the main text. The force of 2 pN was chosen to fall in the range
explored in the pulling experiments. The first set of measure-
ments was performed using symmetric traps kA ’ kB ’ 0.02 pN/nm.
The second set of experiments was performed with asymmetric
traps, kA = 0.012 pN/nm, kB = 0.003 pN/nm. In both cases it is
possible to find a coordinate system such that the two coordi-
nates are independent and in both cases this coordinate system is
obtained by a rotation of the vector (fA, fB) (Fig. S2 A and C).
The difference is that in the symmetric case the new variables
correspond to the center-of-mass and differential coordinates as
discussed in the main text (Fig. S2B), whereas they have a differ-
ent definition (i.e., they are not generated by a π /4 rotation) in
the asymmetric case (Fig. S2D). In Fig. S3 we report similar
measurements performed on a DNA hairpin (the sequence is the
same as reported in the main text) in a symmetric setup. Equilib-
rium traces were acquired at different forces. From Top to Bottom
in Fig. S3 we can see the hairpin is (i) completely folded, (ii)
preferentially folded, (iii) preferentially unfolded, and (iv) com-
pletely unfolded. Force fluctuations are clearly non-Gaussian,
a characteristic of nonlinear two-state systems. Again, for the

symmetric setup, our data show that the center-of-mass (x+) and
differential (x−) coordinates are independent. We note that in
the more general nonlinear case and for asymmetric setups no
independent coordinates can be defined.

S3. The Differential Work W− and W+ Are Statistically
Independent
An immediate consequence of the decoupling of the equations of
motion is the independence of W+ and W−:

W± =
Z

∂λU± ðx± ; λÞ _λdt:

Now, because W+ depends only on x+ and W− depends only on
x−, we can conclude that the two quantities are independent. Of
course this result holds under specific assumptions and is, in the
end, just a property of the model. From the experimental point of
view one can test the independence of W+ and W− by statistical
analysis, studying their linear (Pearson) correlations or using a
Pearson’s χ2 test for dependence. The first method is sensitive
to linear correlation between two observables, whereas the second,
more stringent test, is sensitive to generic correlations. The χ2 test
goes as follows: To test the independence of two random variables
(A, B) from a finite number of measurements we first define the
empirical marginals, i.e., separate histograms of the two variables:

eaj =

PN
i δ
�
Ai ∈

	
aj; aj+1

�

N

[S13]

ebj =

PN
i δ
�
Bi ∈

	
bj; bj+1

�

N

: [S14]

Here δ(x ∈ C) is 1 if x belongs to the set C and is 0 otherwise.
We then compare the actual 2D histogram, eij to the product
of the marginal,

χ2 =
X
k;l

�
ekl − eake

b
l

�2
eake

b
l

; [S15]

with ejk =
P

iδ
�
Ai ∈ ½aj; aj+iÞ

�
δ
�
Bi ∈ ½bk; bk+iÞ

�
=N. The value ob-

tained through Eq. S15 is then compared with the χ2 distribution.
The two variables are considered independent if the χ2 value
satisfies the 5% significance test. The results of the two statistical
tests are reported in Tables S1 and S2. Tables S1 and S2 com-
pare the results of the tests performed on the pair W, W′ or on
the pair W+, W−, for the forward, the reverse, and the cyclic
protocols. In each case three different pulling speeds are consid-
ered. Table S1 and Table S2 refer to two different dumbbells,
respectively. In most cases the pair W, W′ shows higher covari-
ance than the pair W+, W−. Moreover, the χ2 test detects depen-
dence betweenW,W′ but not betweenW+,W− (in the χ2 column 1
denotes a positive test for dependence and 0 a negative test).

S4. Direct Measurement of the Hydrodynamic Parameters
In the main text we have already shown how, in a symmetric setup,
by switching to the coordinate system defined by the center-of-
mass and differential coordinates x+, x−, the potential decouples
into two terms:

UTOTðx+; x−Þ= k
�
x+ −

λ

2

�2

+
k
4
ðx− − λÞ2 +Umðx−Þ: [S16]

When considering equilibrium fluctuations at constant trap-to-
trap distance λ, a linear approximation of Um in Eq. S16 may
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be used. The energy has a minimum at x+ = λ/2, x− = x0−. The
value of x0− is defined by

∂x−  UTOT

���
x0−
= 0: [S17]

Here x0− is the (mechanical) equilibrium distance between the
centers of the beads. The position of the minimum and the de-
rivative of the potential at the minimum depend on the trap-to-
trap distance, so that x0− is a function of λ. In this approximation
the equations of motion in Eq. S5 become

γ+ _x+ =−2k
�
x+ −

λ

2

�
+ η+; [S18]

γ− _x− =−
�
k
2
+ km

��
x− − x0−

�
+ η−: [S19]

In particular, γ+ is the friction affecting the center of mass of the
dumbbell, whereas γ− affects the dynamics of the differential co-
ordinate. After Batchelor (3), we set

γ−1+ =
γ−1 +Γ−1

2
; γ−1− = 2

�
γ−1 −Γ−1�: [S20]

In brief, γ is the hydrodynamic friction coefficient for a single
bead, whereas Γ is the intensity of hydrodynamic interactions
between the two beads. It is important to bear in mind that in
principle γ and Γ depend on the differential coordinate x−. This
dependence is negligible in pulling experiments that induce a
small change in x−, but it becomes clear and measurable if x−
is changed to a larger extent, e.g., using molecules of different
contour length. The equilibrium probabilities generated by [S18]
and [S19] are given by Boltzmann’s distribution,

Qeqðx+Þ= 1
Z+

exp

 
−βk

�
x+ −

λ

2

�2
!
; [S21]

Peqðx−Þ= 1
Z−

exp
�
−β

k+ 2km
4

�
x− − x0−

�2�
; [S22]

with Z+, Z− normalization factors. The variance of equilibrium
fluctuations in x+ and x− is connected to the elastic properties of
traps and tether by

σ2+ =
KBT
2k

; σ2− =
2KBT
k+ 2km

: [S23]

Information about the hydrodynamic interactions can be obtained
from the time-dependent correlation functions of x+ and x−,

C+ðtÞ=
*�

x+ðtÞ− λ

2

��
x+ð0Þ− λ

2

�+
[S24]

C−ðtÞ=
D�

x−ðtÞ− x0−
��
x−ð0Þ− x0−

�E
; [S25]

which characterizes the decay of fluctuations and allows us to dis-
tinguish the presence of different contributions to the total var-
iance. The computation of the correlation functions yields

βC+ðtÞ= e−kγ
−1
+ t

2k
; [S26]

βC−ðtÞ= 2e−ðk+2kmÞγ
−1
− t

k+ 2km
; [S27]

where β = (KBT)
−1. From Eqs. S24 and S25 the correlation

function at time 0 equals the variances given in Eq. S23:

C+ð0Þ= σ2+; C−ð0Þ= σ2+: [S28]

The hydrodynamic parameters can be retrieved from the corre-
lation functions, as the stiffnesses, k, km, are known from Eq. S23,

1
γ
+
1
Γ
=−

1
2k

d
dt
logðC+Þ

����
t=0

[S29]

1
γ
−
1
Γ
=−

2
k+ 2km

d
dt
logðC−Þ

����
t=0

; [S30]

where we used Eqs. S20, S26, and S27. As discussed in the main
text, γ+ is needed to correct the error committed by using the
force measured in the trap at rest in the Jarzynski equality (Eqs.
17 and 18 in the main text).

S5. A Closer Look at Hydrodynamic Interactions
In the previous section we have shown how the analysis of thermal
fluctuations in a dual-trap setup allows the measurement of the
two scalar parameters entering into the hydrodynamics: γ−1 and
Γ−1. The sum of the two parameters can be obtained through Eq.
S29 from the time correlation function for x+, Eq. S26. The
difference is instead obtained by a similar analysis on the decay
rate of C−(t). Up to now we have neglected the dependence of
the hydrodynamic parameters on the relative distance between
the two beads. This is justified provided this relative distance
does not change too much in the pulling experiment. Conversely,
changing the contour length of the molecule by an order of
magnitude leads to a larger and detectable change in the hy-
drodynamic parameters. This offers the possibility of testing our
measurements against the theoretical prediction obtained using
the Stokes equation and expressed as a power series in the re-
duced distance ρ =〈x−〉/rb with rb the radius of the beads and〈x−〉
the mean of the differential coordinate. (Note that〈x−〉> 2rb and
thus ρ > 2). The two quantities can be computed to arbitrary pre-
cision, taking the first two terms of the series expansion reported in
ref. 4:

γ−1’ 1
6πηrb

�
1−

15
4ρ4

+O
�
ρ−6
��

[S31]

Γ−1 ’ 1
6πηrb

�
3
2ρ

−
1
ρ3

+O
�
ρ−7
��

: [S32]

We measured fluctuations using dsDNA tethers of four different
contour lengths: 8 μm (24 kbp), 1 μm (3 kbp), 300 nm (1.2 kbp),
and 20 nm (58 bp). For each tether fluctuations were measured
at different forces. The different lengths of the tethers used in
the experiments are such that ρ assumes values from above 6
down to 2.03, near the minimum value 2 taken when the beads
are in contact: Hydrodynamic interactions are monitored from
the far-field regime (ρ � 2) to the lubrication limit (ρ ’ 2). The
experimental data for γ and Γ can be confronted with predic-
tions, Eqs. S31 and S32, without free parameters as the buffer
viscosity and the bead radius are known.
This comparison is shown in Fig. S4, Left, where the plot com-

pares the measured values for γ−1 and Γ−1 with Eqs. S31 and S32
(solid lines). For every tether we assumed a single value of ρ and
averaged values obtained at different forces. In the force range
relevant for pulling experiments, changes in γ−1 and Γ−1 were be-
low 10%. Theory and data agree, within the error bars, for the
longer tethers. The data for the shortest tether show a deviation
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from expression [S31] and probably more terms of the expansion
would be needed. Nevertheless in this case the parameters are
very close to the contact value, ρ = 2, γ−1(2)/γ−1(∞) = Γ−1(2)/
γ−1(∞) = 0.775. The precision of these measurements is limited,
in our case, by the error with which the radius of the bead is
known. One can reduce the dependence of the measured value
on the size of the bead by using the ratio between the two pa-
rameters, which does not depend on rb if not through the defi-
nition of ρ. The results are shown in Fig. S4, Right, where the
measured data are compared with those obtained from un-
tethered beads. This allows us to conclude that, at least in our
conditions and within our experimental resolution, the friction
and/or hydrodynamic effect due to the presence of a polymer
between the beads is not distinguishable. In particular, knowing
the value of γ+ allows an estimation of the systematic error on
unidirectional free-energy estimates from single-molecule pull-
ing experiments based on wrong work definitions, as detailed in
the main text.

S6. Free-Energy Inference in Asymmetric Setups
In the case of asymmetric setups P(W) and P(W′) do not have
such a simple relationship as in the presence of symmetry. In
this case a successful inference cannot be based on the FR
alone: Some additional, system-specific, information must be
provided. We focus on asymmetric systems in the Gaussian
approximation and use pulling experiments on dsDNA in an
asymmetric setup to test our predictions. Is it still possible to
infer the full dissipation from partial work measurements?
The answer is positive if we are given some equilibrium in-
formation on the system. In this case it is enough to know the
trap and molecular stiffnesses kB, kA, km, i.e., equilibrium
properties of the system. However, why does direct inference
fail in the asymmetric case? When discussing symmetric sys-
tems we have shown that P(W) and P(W′) are related by a
simple shift:

PðW Þ=P′ðW −ΔÞ: [S33]

Only the mean of the probability distribution had to be
changed, as the variance of the two distributions is the same.
In that case imposing the validity of the Crooks fluctuation
relation (CFR) for P(W) yields the unique value of Δ to be
used in the reconstruction. This is not true anymore in asym-
metric systems. Here both the mean and the variance of the
work distribution must be changed, which can be achieved by
convolution,

PðW ÞΔ;Σ =P′⋆NðΔ;ΣÞ; [S34]

where ⋆ denotes the convolution operator and N (Δ, Σ) is a nor-
mal distribution with mean Δ and SD Σ. Starting from any dis-
tribution P′(W′) there are infinitely many choices of Δ and Σ that
yield a P(W)Δ,Σ satisfying the fluctuations theorem. Indeed, let
us suppose the pair Δ*, Σ* is such that

PΔ* ;Σ*ðW Þ=P′⋆NðΔp;ΣpÞ [S35]

satisfies the CFR. Then it is easy to check that P
Δp+ϕ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΣp2+2ϕ=βÞ

p
will satisfy the FR for any ϕ (β = 1/KBT as always). In Fig. S5 we
show the effect of the convolution of P′(W′) with different
Gaussian distributions. In the rightmost column of that plot we
highlight three different pairs for which the convolved distribu-
tion satisfies the CFR. In this situation the inference cannot rest
on the CFR alone, and additional information about the system
is needed. In the general scheme of a Gaussian approximation,
inference of P(W) is still possible. In the next subsections we

show that P(W) and P′(W′) are related by an asymmetry factor
(AF) given by

AFðkA; km; kBÞ= σ2W − σ2W ′
hW i− hW ′i=

1
β

4kmðkA − kBÞ
kAðkB + 2kmÞ; [S36]

where β = 1/KBT. The AF is an equilibrium quantity: It depends
only on the stiffnesses of traps and tether. Knowing the AF
allows us to select the unique pair (Δ, Σ) such that AF = Σ2/Δ
and that PΔ,Σ(W) satisfies the fluctuation symmetry. These (Δ, Σ)
allow the reconstruction of P(W) and thus allow us to measure
free-energy differences or even dynamical quantities like γ+. The
behavior of the AF factor as a function of x = kB/kA and y = km/kA
is shown in Fig. S6A.

S6.1. Pulling Experiments in Linear Systems. Free-energy inference
in asymmetric setups is not as straightforward as it is in symmetric
setups. To recover the full dissipation from partial work mea-
surements we must complement these nonequilibrium measure-
ments with some equilibrium information about the system. In
this section we consider aGaussian approximation for asymmetric
setups that, as shown in Fig. 6 in the main text, agrees quite well
with the experimental results. The Gaussian case is modeled by
linear asymmetric systems, a class of statistical models for which
inference is possible without symmetry restrictions. This amounts
to choosing UmðxÞ= ð1=2Þkmx2 in Eq. S1 so that the total po-
tential reads

UðyA; yB; λÞ= km
2
ðyB − yAÞ2 + kB

2
y2B +

kA
2
ðλ− yAÞ2: [S37]

To simplify the following discussion we now switch to a vector
notation. From now on we denote XT(t) as the vector containing
the positions of the traps (remember that B is the reference trap
at rest with respect to water whereas trap A moves),

XTðtÞ= ðλt; 0Þ; [S38]

and y as the vector of bead positions: y = (yA, yB). In this vector
notation the potential can be written in its normal form as

U
�
y;XTðtÞ�= 1

2
�
y− y0

�
· k
�
y− y0

�
+
1
2
keffλ2; [S39]

where k is the stiffness tensor,

k=
�
kA + km −km
−km kB + km

�
; [S40]

keff is the effective stiffness of the dumbbell as a whole,

keff =
kAkBkm
det
�
k
� ; [S41]

and y0 is the vector whose components are the equilibrium posi-
tions of the beads,

y0 =

 
λ−

kBkm
det
�
k
� ðλÞ; kAkm

det
�
k
� ðλÞ

!
: [S42]

During a pulling experiment the trap-to-trap distance will be
changed at a constant speed, v:

λt = λ0 + vt: [S43]
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As a consequence the equilibrium positions of the beads will
change in time:

y0ðtÞ=
 
λ0 + vt−

kBkm
det
�
k
� ðλ0 + vtÞ;   kAkm

det
�
k
� ðλ0 + vtÞ

!
: [S44]

During a pulling experiment the free energy of the system changes
in time. FRs can be used to determine the free-energy change in
the system from the distribution of the work performed on the
system. As discussed in the main text, the correct definition of
the work in such an experiment depends on the way in which
the traps are moved. Work is identified as the time derivative
of the total potential U:

W =−v
Z t

0

kA
�
yAðsÞ−XT

A ðsÞ
�
ds: [S45]

Any different definition of work does not yield reliable free-energy
differences. An alternative work definition can be based on the
force measured in the trap at rest (B),

W ′= v
Z t

0

kB
�
yBðsÞ−XT

B ðsÞ
�
ds; [S46]

a choice made by many experimentalists. Is it possible to infer the
distribution of W from the distribution of W′ and thus to reliably
measure free-energy differences? The answer to this is worked
out in detail below.

S6.2. W and W′ As Gaussian Random Variables. To answer the
questions posed in the previous section we need to study the
distributions of W and W′. In this linear model yA and yB are
Gaussian random variables, so that W and W′, being linear in yA
and yB, are themselves Gaussian random variables too. The dis-
tribution of a Gaussian random variable is determined by its
mean and variance. The computation of the mean and vari-
ance of the work requires the solution of a system of linear
differential equations that can be obtained from the Markov
generator for the joint process (y, W) or equivalently from the
corresponding Fokker–Planck equation. Here by y we denote
the usual vector containing the positions of the beads whereas
W= ðvR t0 fAðsÞds; vR t0 fBðsÞdsÞ. We use the vector W from which the
random variables W, W′ are obtained as

W =WA; W ′=−WB: [S47]

Just as we did when discussing the measurement of hydrodynamic
parameters, we use Langevin equations to describe the dynamics of
our system,

_y=−μk
�
y− y0

�
+ η; [S48]

where μ is the mobility tensor, describing both friction and hy-
drodynamic interactions,

μ=
�
γ−1 Γ−1

Γ−1 γ−1

�
; [S49]

and η is a white noise compatible with the fluctuation–dissipation
theorem; i.e., hηtηsi= 2β−1μδðt− sÞ. In this setting the Markov
generator L for the process (y, W) is given by

Lf ðy;WÞ= �−μk�y− y0
�
·∇y + β−1μ ·∇y∇y

− vkD
�
y−XT� ·∇w

�
f ðy;WÞ;

[S50]

where

kD =
�
kA 0
0 kB

�
: [S51]

We recall that the Markov generator is the infinitesimal evolution
operator in the sense that

∂
∂t

D
f
�
yðtÞ;WðtÞ�E

y
=
D
Lf
�
yðtÞ;WðtÞ�E

y
; [S52]

where 〈〉y denotes the average conditioned to initial condition (y, 0).
Applying the Markov generator to y, (y − 〈y〉y) ⊗ (y − 〈y〉y), W,
(W − 〈W〉y) ⊗ (W − 〈W〉y) and then taking the average [i⊗ j
denotes the tensor J such that Jk= ði · kÞj], we obtain the equa-
tions of motion for 〈y〉y, σ2y =

��
y−hyiy

�
⊗ ðy−hyiyÞ

�
y,〈W〉y, C=��

W−hWiyÞ⊗ ðy−hyiy
��

y, and σ2W =
��
W−hWiyÞ⊗ ðW−hWiy

��
y,

d
dt
hyiy =−μk

�
hyiy − y0ðtÞ



[S53]

d
dt
σ2y =−2Sym

�
μkσ2y +

μ

β

�
[S54]

d
dt
hWiy =−kD

�
hyiy −XTðtÞ



[S55]

d
dt
C=−μkC− σ2ykD [S56]

d
dt
σ2W =−2kDC; [S57]

where Sym(·) in [S54] is the operator that gives the symmetric
part of its argument. These equations are explicitly derived in SI
Text, section S6.5 and solved in SI Text, section S6.6, and we now
comment on the results.
The calculations reported in the next sections show that, after

neglecting transients,

�
WðtÞ�=−v

Z t

0

kD
�
y0ðsÞ−XTðsÞ�ds+ kDk

−1
μ−1k

−1
kD _XTvt

[S58]

and

σ2W = 2
kDk

−1
μ−1k

−1
kD

β
v2t: [S59]

The first term on the right-hand side of [S58] is the integral:

vkD

Z t

0

−
�
y0ðsÞ−XTðsÞ�ds

0
@

1
A: [S60]

The difference kDðy0ðsÞ−XTðsÞÞ gives the equilibrium force in
each trap at time s; this is just the force that would be obtained
at the corresponding trap-to-trap distance λ if the pulling were
carried out reversibly. The two components of the vector
kD
�R t

0ðy0ðsÞ−XTðsÞÞds� are of course equal in size but different
in sign:
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vkD

Z t

0

−
�
y0ðsÞ−XTðsÞ�ds

0
@

1
A= v

Z t

0

frevðsÞds; −v
Z t

0

frevðsÞds
0
@

1
A:

[S61]

The above expression is then just the reversible work,

Wrev = keff

�
λ0vt+

1
2
v2t2
�
; [S62]

where we used Eqs. S39 and S43. The second term in [S58] is the
dominant nonequilibrium contribution (by the way, this is the only
term that is linear in time), which arises from the finite pulling
speed of the protocol. A key element in this dissipation term is

Ω= kDk
−1
μ−1k

−1
kD = pTμ−1p: [S63]

To give some insight into the physical meaning of this quantity we
note that p transforms the trap position vector XT into the equi-
librium position vector y0:

y0 = pXT : [S64]

This dissipation term stems from friction ðμ−1Þ, the relevant velocity
being that of the equilibrium positions of the beads. The same ele-
ment Ω appears in the variance. Now, coming toW andW′ we have

hW i=Wrev +ΩAAv2t [S65]

σ2W =
2
β
ΩAAv2t [S66]

�
W ′
�
=Wrev −ΩABv2t [S67]

σ2W ′ =
2
β
ΩBBv2t: [S68]

Based on these expressions we introduce the asymmetry factor:

AF=
σ2W − σ2W ′

hW i− hW ′i: [S69]

This quantity relates the distribution of W to W′ based on equilib-
rium information. The AF does not depend either on the pulling
speed, which is evident from Eqs. S65–S68, or on the hydrodynamic
parameters. An explicit computation gives

AF=
1
β

4kmðkA − kBÞ
kAðkB + 2kmÞ: [S70]

S6.3. The AF Can Be Measured from Equilibrium Force Traces. The AF
can be directly measured from the equilibrium force traces. The
equilibrium distribution for bead positions follows the Boltzmann
distribution with respect to the potential in Eq. S39; i.e.,

PðyÞ=Z−1 exp
�
−
β

2
�
y− y0

�
· k
�
y− y0

��
: [S71]

According to such distribution the variance of y is

varðyÞ= β−1k
−1
: [S72]

Moreover, because forces and bead positions are linearly related,
f = kDðy−XTÞ, we have

βvarðfÞ= kDk
−1
kD

=
1

kAkB + kmkA + kmkB

 
k2AðkB + kmÞ kAkBkm
kAkBkm k2BðkA + kmÞ

!
;

[S73]

where β = (KBT)
−1. Using this formula we get

kA = β varðfÞAA + β varðfÞAB [S74]

kB = β varðfÞBB + β varðfÞAB [S75]

km = kAkB
varðfÞAB

β detðvarðfÞÞ: [S76]

These formulas assume that the dynamics of the dumbbell are strictly
one dimensional and take place in the optical plane, i.e., that plane
perpendicular to the optical axis. If this is not the case, this simplified
treatment is not valid anymore and out-of-plane fluctuations must
be taken into account. A discussion of these effects can be found
in ref. 1. Once kA, kB, and km are known, the AF can be easily
computed by Eq. S70. The present method for measuring rigidities
from equilibrium force traces was applied and discussed in detail,
in a totally different context, in ref. 2. We used it in this study to
extract the values of kA, kB, and km for the asymmetric setup.

S6.4. Derivation of the Expression for the AF.The AF, as given in Eq.
S70, can be obtained once the elements of Ω are known. We
start from the definition of Ω,

Ω= pTμ−1p; [S77]

where

p= k
−1
kD =

1
E
�
kAðkB + kmÞ kBkm

kAkm kBðkA + kmÞ
�
; [S78]

with E = kAkB + kAkm + kBkm. Here it is useful to switch to a
representation in which μ−1 is diagonal. This can be achieved
with a π/4 rotation:

R=
1ffiffiffi
2

p
�
1 −1
1 1

�
: [S79]

Using R we can write

Ω= pTRR
T
μ−1RR

T
p; [S80]

where, as in SI Text, section S1, R
T
μ−1R is diagonal. The non-

trivial contribution that must still be computed is

p′=R
T
p=

1ffiffiffi
2

p E

�
kAðkB + 2kmÞ kBðkA + 2kmÞ

−kAkB kBkA

�

=
1ffiffiffi
2

p E

�
A B

−C C

�
:

[S81]

We can thus conclude that

Ω=
1
2E2

�
A −C
B C

��
γ+A γ+B

−γ−C γ−C

�

=
1
2E2

 
γ+A

2 + γ−C
2 γ+AB− γ−C

2

γ+AB− γ−C
2 γ+B

2 + γ−C
2

!
:

[S82]
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By definition we have

AF=
2
β

ΩAA −ΩBB

ΩAA +ΩAB
=
2
β

A−B
A

=
1
β

4kmðkA − kBÞ
kAðkB + 2kmÞ: [S83]

S6.5. Derivation of the Equations.To derive the equations of motion
[S53]–[S57] we must apply the Markov generator to the proper
quantities, recalling that

d
dt

D
f
�
yðtÞ;WðtÞ�E

y
=
D
Lf
�
yðtÞ;WðtÞ�E

y
: [S84]

We start by deriving Eq. S53. In this case we have that only the
first term in the generator Eq. S50 contributes as the second and
third terms involve higher derivatives or derivatives with respect
to W. We conclude that

d
dt

�
yðtÞ�y = �LyðtÞ�y =−μk

��
yðtÞ�y − y0ðtÞ



: [S85]

In the same way we can derive the equation for σ2y , it is useful to
recall thatD�

y− hyiy


⊗
�
y− hyiy


E
y
= hy⊗ yiy − hyiy ⊗ hyiy; [S86]

so that

d
dt
σ2y =

�
Lðy⊗ yÞ�y − d

dt
hyiy ⊗ hyiy: [S87]

We work out the two terms of the right-hand side of [S87] sep-
arately, starting from the first:

�
Lðy⊗ yÞ�y =D�−μk�y− y0

�
·∇y + β−1μ ·∇y∇y

�
y⊗ y

E
y
: [S88]

The third term in the generator was neglected because it in-
volves a derivative with respect to W. Acting with the deriva-
tives on y ⊗ y〉y gives

�
Lðy⊗ yÞ�y =−

D
μk
�
ðy− y0

�
⊗ y


−
�
y⊗ ðy− y0Þ


�
μk
�TE

y
+ 2β−1μ

=−2Sym
�D

μk
��
y− y0

�
⊗ y
�E

y

�
+ 2β−1μ:

[S89]

The second term in [S87] is just a time derivative, which can be
worked out because of [S85]:

d
dt
hyiy ⊗ hyiy =−μk

��hyiy − y0
�
⊗ hyiy



−
�
hyiy ⊗

�hyiy − y0
�
�

μk
�T

=−2Sym
�
μk
��

hyiy − y0


⊗ y




:

[S90]

An explicit result for the time derivative of σ2y is obtained by
taking the difference of [S89] and [S90]:

d
dt
σ2y =−2Sym

�D
μk
��
y− y0

�
⊗ y

E

y

− μk
��

hyiy − y0


⊗ hyiy




+ 2β−1μ

=−2Sym
��

μkðy⊗ yÞ�y − μk
�
hyiy ⊗ hyiy




+ 2β−1μ

=−2Sym
�
μkσ2y



+ 2β−1μ:

[S91]

In the second step above we used the fact thatD��
y− y0

�
⊗ y

E

y
= hðy⊗ yÞiy −

�
y0 ⊗ hyiy




whereas��
hyiy − y0



⊗ hyiy



=
�
hyiy ⊗ hyiy



−
�
y0 ⊗ hyiy



:

Following the order of Eqs. S53–S57 we should now compute the
average of W. This is again a simple matter, as the computation
proceeds almost exactly as in the case of 〈y〉y, with the only dif-
ference that now only the last term in Eq. S50 for the generator
matters. The result is

d
dt
hWiy = vkD

�
hyiy −XTðtÞ



: [S92]

In the case of C, the cross-correlation of y and W involves some
additional computations. The function C is linear in both W and
y so that only the first and third terms in the generator contribute.
The time derivative of C= ðW− hWiyÞ⊗ ðy− hyiyÞ again yields two
pieces, as in the case of [S87], and we proceed in a similar way:

d
dt
C= hLðW⊗ yÞiy −

d
dt
hW iy ⊗ hyiy: [S93]

Again we compute the two parts separately:

hLðW⊗ yÞiy =
�
−
�
W⊗

�
μk
�
y− y0

���
+
��
vkD
�
y−XT��⊗ y

��
y

=
�
−μk

�
W⊗

�
y− y0

��
+ v
��
y−XT�⊗ y

�
kD
�
y

[S94]

and

d
dt
hWiy ⊗ hyiy =−μk

�
hWiy ⊗

�
hyiy − y0




+ v
��

hyiy − y0


⊗ hyiy



kD:

[S95]

Taking the difference of these two terms and using

��
W⊗

�
y− y0

���
y = hðW⊗ yÞiy −

�
hWiy ⊗ y0




and �
hWiy ⊗

�
hyiy − y0




=
�
hWiy ⊗ hyiy



−
�
hWiy ⊗ y0



;

it is possible to conclude that

d
dt
C=−μk

D�
W− hWiy



⊗
�
y− hyiy


E
y

+
D�

y− hyiy


⊗
�
y− hyiy


E
y
kD

=−μkC+ vσ2ykD:

[S96]

The only equation left to derive is that for σ2W = hðW−hWiyÞ⊗ðW−hWiyÞiy. This computation involves only the last term in the
generator:

d
dt

D�
W− hWiy



⊗
�
W− hWiy


E
y
= hLðW⊗WÞiy

−
d
dt

�
hWiy ⊗ hWiy



:

[S97]
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As usual we evaluate the two terms separately and put them to-
gether as a second step:

hLðW⊗WÞiy = v
�
kD
�
W⊗

�
y−XT��+ ��y−XT�⊗W

�
kD
�
y; [S98]

d
dt

�
hWiy ⊗ hWiy



= vkD

�
W⊗

�
hyiy −XT




+
��

hyiy −XT


⊗W



kD:

[S99]

The last equation of motion is thus

d
dt
σ2W = + vkD

D�
y− hyiy



⊗
�
W− hWiy


E
y

+ v
D�

W− hWiy


⊗
�
y− hyiy


E
y
kD

= +2Sym
�
vkDC

�
:

[S100]

S6.6. Solution of the Equations. In the previous section we in-
troduced an average operation 〈·〉y without specifying with re-
spect to which measure the average is taken. In this section we
suppose that the initial probability distribution for the process is
p(y, 0) = δ(y − y), a deterministic initial condition. The work is by
definition equal to 0 at t = 0, again a deterministic initial con-
dition, and the same is true for the different variances and co-
variances because of the initial conditions. The initial conditions
for the equations of motion will then be

(
hyð0Þiy = y
hWð0Þiy = σ2yð0Þ=Cð0Þ= σ2Wð0Þ= 0:

[S101]

All of the equations we have to solve are linear equations that
can be solved either by variation of constants or by direct in-
tegration. The first equation, that for 〈y〉y, is a case for variation
of constants:

8><
>:
hyð0Þiy = y

d
dt
hyiy =−μk

�
hyiy − y0ðtÞ



:

[S102]

The solution is

hyðtÞiy = e−μkt y+
Z t

0

μkeμksy0ðsÞds
0
@

1
A; [S103]

as it can be directly checked. We recall the definition of y0(t),

y0ðtÞ=
 
λ+ vt−

kAkm
det
�
k
� ðλ0 + vtÞ; kBkm

det
�
k
� ðλ0 + vtÞ

!
: [S104]

In the following it is useful to write y0(t) = ψ + ξt, where

ψ =

 
λ0 −

kAkm
det
�
k
� λ0; kBkm

det
�
k
� λ0
!

[S105]

ξ=

 
v−

kAkm
det
�
k
� v; kBkm

det
�
k
� v
!
: [S106]

In terms of these quantities [S103] reads

hyðtÞiy = e−μkt y+
Z t

0

μkeμksðψ + ξtÞds
0
@

1
A: [S107]

Integrating by parts we get

hyðtÞiy= e−μkt y+
Z t

0

μkeμksðψ + ξtÞds
0
@

1
A

= e−μkt y+eμksðψ+ξsÞ
���t
0
−
Z t

0

eμksξds

0
@

1
A

= e−μkt
�
y+eμktðψ+ξsÞ−ψ−�μk�−1eμksξ���t

0

�

= e−μkt
�
y+ eμktðψ + ξtÞ− �μk�−1�eμkt − 1



ξ



=
�
e−μktðy−ψÞ+ ðψ + ξtÞ− �μk�−1�1− e−μkt



ξ



= e−μktðy−ψÞ+ y0ðtÞ− �μk�−1�1− e−μkt


ξ:

[S108]

The average 〈W〉y is given by

hWiy= kD

Z t

0

hyðsÞiy −XTðsÞds=

= kD

Z t

0

e−μksðy−ψÞ+ y0ðsÞ− �μk�−1�1− e−μks


ξ−XTðsÞds

= kD

 Z t

0

�
y0ðsÞ−XTðsÞds�−�μk�−1e−μksðy−ψÞ

���t
0

−
�
μk
�−1�

s+
�
μk
�−1

e−μks

���t

0
ξ

!

= kD

 Z t

0

�
y0ðsÞ−XTðsÞds�− �μk�−1�e−μks − 1



ðy−ψÞ

+
�
μk
�−1�

t+
�
μk
�−1�

e−μkt − 1




ξ

!
:

[S109]

The equation for the variance σ2y requires some more attention,
and we first prove a useful identity: Let A and B be symmetric
matrices. The product AB is not in general symmetric:

ðABÞT =BA:

As a consequence the exponential of AB, eAB, is not symmetric.
We want now to prove that

�
A−1eAB

�
=
�
A−1eAB

�T
= eBAA−1: [S110]

Using the definition of the matrix exponential we have

A−1eAB =A−1
X∞
k=0

ðABÞk
k!

=A−1 +B+BAB+ . . .

= ð1+BA+BABA+ . . . ÞA−1 =
X∞
i=0

ðBAÞi
i!

A−1 = eBAA−1:

[S111]
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Similarly one can prove

�
AeAB

�
=
�
AeAB

�T
= eBAA: [S112]

These results will prove useful in solving the equation for σ2y . We
first solve 8><

>:
σ2yð0Þ= 0

d
dt
σ2y =−2μkσ2y + 2

μ

β

[S113]

and then prove that the solution of [S113] also solves [S54]. Eq.
S113 can again be solved by variation of the constants:

σ2yðtÞ= e−2μkt
Z t

0

e2μks2
μ

β
ds= e−2μkt

�
e2μks

�
μk
�−1 μ

β

�����t
0

=
�
1− e−2μkt


 k−1
β
:

[S114]

The original equation for σ2y contains Symðμkσ2y Þ. Using [S110]
and [S112] we can prove that

μkσ2yðtÞ= μk
�
1− e−2μkt


 k−1
β

=
k
−1

β

�
1− e−2μkt


T
kμ=

�
μkσ2yðtÞ


T
:

[S115]

In other words,

μkσ2yðtÞ= Sym
�
μkσ2yðtÞ



;

so that if σ2yðtÞ solves [S113], it also solves [S54]. The equation for
C is again solved by variation of constants:8><

>:
Cð0Þ= 0

d
dt
C=−μkC+ vσ2ykD:

[S116]

The solution is

CðtÞ= ve−μkt
Z t

0

eμksσ2yðsÞkDds

= ve−μkt
Z t

0

eμks
�
1− e−2μks


 k−1
kD
β

= ve−μkt
Z t

0

�
eμks − e−μks


 k−1kD
β

= ve−μkt
�
μk
�−1�

eμks+e−μks

���t

0

k
−1
kD
β

= ve−μkt
�
μk
�−1�

eμkt + e−μkt − 2

 k−1kD

β

= v
�
μk
�−1�

1+ e−2μkt − 2e−μkt

 k−1kD

β

= v
�
μk
�−1�

1− e−μkt

2k−1kD

β
:

[S117]

As in the case of 〈W〉y the equation for σ2W is solved by direct
integration:

σ2W=
Z t

0

2v2kDCðsÞds=
Z t

0

vkD
�
μk
�−1�

1− e−μks

2 k−1kD

β

= 2v2
Z t

0

kD
�
μk
�−1�

1− 2e−μks + e−2μks

 k−1kD

β

= 2v2kD
�
μk
�−1 

s+ 2
�
μk
�−1

e−μks−
�
μk
�−1
2

e−2μks
!�����

t

0

k
−1
kD
β

= 2v2kD
�
μk
�−1 

t+ 2
�
μk
�−1�

e−μkt − 1


−
�
μk
�−1
2

�
e−2μks − 1


!

×
k
−1
kD
β

= v2kD
�
μk
�−2�

2μkt+ 2
�
e−μkt − 1



−
�
e−μks − 1


2� k
−1
kD
β

:

[S118]

Keeping terms of order O(t) in Eqs. S108 and S118, we get the
expressions anticipated in Eqs. S58 and S59.

S7. Experiments at Lower Pulling Speed
In themain text we present experiments performed at high pulling
speed, to enhance the dissipation associated with the movement
of the center of mass. This was done to highlight the fact that W′
does not fulfill the CFR. Nevertheless such violation is still evident
at lower pulling speeds. Just for completeness in Fig. S7 we show
the distributions of W−, W, W′, and W+ in a pulling experiment
performed on a dsDNA tether (experimental conditions are
identical to those reported in the main text) at a pulling speed
of 500 nm/s with Δλ = 400 nm.
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Fig. S1. Experimental setup. Two laser beams, oriented along the z direction, are used to create two optical traps. A dumbbell is formed by two optically
trapped beads and a molecular tether. The tether is oriented along the y direction, perpendicular to the optical axis z. We choose the center of one trap (trap
B) as the origin of our coordinate system. λ denotes the trap-to-trap distance and yA and yB denote the positions of the centers of the beads with respect to the
reference trap B.

Fig. S2. Independent coordinates in linear systems. (A) Two-dimensional histograms of the forces measured in a symmetric dual-trap setup. The dashed line
forms a π/4 angle with the coordinate axes and corresponds to the definition of f+. (B) Covariance hfϕ+ fϕ− i as a function of ϕ in a symmetric setup. The red line
denotes 0 covariance (i.e., linear independence). At the bottom of the graph we report the result of a 1% significance χ2 test, with red meaning dependent and
green meaning independent. (C) Two-dimensional histograms of the force measured in an asymmetric dual-trap setup. The dashed line forms a π/4 angle with
the coordinate axes and corresponds to the definition of f+. In this asymmetric case f+, f− do not correspond to the principal axes of the histogram. (D)
Covariance hfϕ+ fϕ− i as a function of ϕ in an asymmetric setup. The red line denotes 0 covariance (i.e., linear independence). It is still possible to define a coordinate
system where the 2 df are uncoupled, but now the definition is different from that given in the main text. At the bottom of the graph we report the result of a 1%
significance χ2 test, with red meaning dependent and green meaning independent. Tests were performed on 3-s data traces with 1-kHz acquisition rate.
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Fig. S3. Independent coordinates in nonlinear systems. (Left) Force fluctuations of a two-state DNA hairpin. Force increases from Top to Bottom and the
hairpin is (i) completely folded, (ii) preferentially folded, (iii) preferentially unfolded, and (iv) completely unfolded. (Right) Covariance hfϕ+ fϕ− i as a function of ϕ.
The red line denotes 0 covariance (i.e., linear independence). At the bottoms of the graphs we report the result of a 1% significance χ2 test, with red meaning
dependent and green meaning independent. Data show that the center of mass (x+) and the differential coordinate (x−) are independent. Tests were per-
formed on 3-s data traces with a 1-kHz acquisition rate.

Fig. S4. Direct measurements γ and Γ. (Left) Hydrodynamic friction (γ, solid symbols) and interaction coefficient (Γ, open symbols) measured from the decay
rate of thermal fluctuations. Each symbol is the average of measurements over five different molecules. Solid lines are the theoretical predictions (Eqs. S31 and
S32). The horizontal dashed line marks the exact theoretical value at contact (ρ = 2). (Right) Ratio between the hydrodynamic coefficients (Γ/γ) as a function of
(ρ − 2)−1. This quantity does not depend directly on rb. Open symbols represent measurements obtained with untethered beads at different separations, and
solid symbols show measurements obtained with tethered beads. The solid line gives the theoretical prediction according to the first two terms in the ex-
pansion as in Eqs. S31 and S32.
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Fig. S5. Convolution and reconstruction of P(W) from the CFR for the asymmetric case. Each row shows the result of a convolution by fixing the value of Σ
and changing Δ. Top, Middle, and Bottom rows correspond to Σ2 = 0, Σ2 = 2.5, and Σ2 = 7.5. In each panel we show PΔ,Σ(W ) (blue solid circles), together with
PΔ,Σ(−W )exp(W) (blue open circles) and the experimentally measured P(W) (green circles). Three different convolutions are found to fulfill the fluctuation
symmetry PΔ,Σ(W) = PΔ,Σ(−W)exp(W ), (Right column), but only one of them (Bottom Right) is compatible with the AF and matches the true P(W ).
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Fig. S6. Asymmetry factor and inference in asymmetric setups. (A) The asymmetry factor as a function of kA/kB and km/kB. Different curves correspond to
different values of km/kB (0.3, 0.5, 1, 2, 3 from bottom to top). The dashed curve corresponds to the limit km =∞. In the symmetric case (kA = kB = 1) the different
curves coincide (Σ2 = 0). The red circle denotes the asymmetric conditions in which experiments were performed. (B) Inference in the asymmetric case. Different
pairs (Δ, Σ2) yield probability distributions satisfying the CFR (blue circles and blue line). The asymmetry factor (red line) selects a narrow range of possible values,
which is compatible with the experimentally measured values Δ = 8.2KBT and Σ2 = 7.2(KBT)

2.

Fig. S7. Work measurements at lower pulling speed. The statistics of W, W′, W+, and W− are shown. The pulling speed v = 500 nm/s is less than half of the
lowest pulling speed presented in the main text, but the effect on the validity of the CFR for the different work quantities (W, W′, W+, W−) is still visible. Five
hundred nanometers per second lies in the typical range of pulling speed used in single-molecule pulling experiments.
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Table S1. Molecule 1

Pulling speed cov(W,W′) χ2 test* cov(W+,W−) χ2 test*

Forward protocol
7.2 μm/s 0.41 1 0.08 0
4.3 μm/s 0.35 1 0.09 0
1.35 μm/s 0.38 1 0.05 0

Reverse protocol
7.2 μm/s 0.17 0 0.018 0
4.3 μm/s −0.05 0 −0.05 0
1.35 μm/s 0.36 1 0.20 0

Cyclic protocol
7.2 μm/s 0.12 1 0.00 0
4.3 μm/s 0.12 1 0.01 0
1.35 μm/s 0.34 1 0.09 0

*1, dependent; 0, independent.

Table S2. Molecule 2

Pulling speed cov(W,W′) χ2 test* cov(W+,W−) χ2 test*

Forward protocol
7.2 μm/s 0.469377 1 −0.12 1
4.3 μm/s 0.6170601 1 −0.14 0
1.35 μm/s 0.5346567 1 0.09 0

Reverse protocol
7.2 μm/s −0.31 1 0.25 0
4.3 μm/s −0.37 1 0.20 0
1.35 μm/s −0.73 1 0.19 0

Cyclic protocol
7.2 μm/s 0.26 1 −0.19 1
4.3 μm/s 0.34 1 −0.18 0
1.35 μm/s 0.42 1 −0.10 0

*1, dependent; 0, independent.
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