Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Clatworthy MR, Watson CJE, Plotnek G, et al. B-cell-depleting induction therapy and acute cellular rejection. N Engl J Med 2009;360:2683-5.

SUPPLEMENTARY TABLE 1: Baseline patient characteristics and adverse

events.

	Daclizumab	Rituximab group
	group	
Total patients	7	6
Male (%)	57	67
Age at transplant (median	42.1(27-58)	44.7(23-64)
years+range)		
Cause of end stage renal failure		
Autosomal dominant polycystic		
kidney disease	0	4
lgA nephropathy	2	0
Henoch-Schönlein purpura	2	0
Sjögren's syndrome	1	0
Unknown	2	2
Dialysis mode		
Pre-dialysis	1	0
PD	4	3
HD	2	3
Time on dialysis (months)	2.3	2.7
Median(range)	(0-76)	(11-108)
Type of transplant		
Living	4	0
Donation after brainstem death	1	6
Donation after cardiac death	2	0
CMV mismatch	3/7	1/6
Cold ischaemic time (median	3hr 48m	10hr 17m
hours,mins+ range)	(1hr56m-11hr49m)	(6hr6m-20h14m)
Infections at 12 months*:		
Minor	14	16
Major (requiring hospitalisation)	3	6
Life-threatening	0	0
Other adverse events at 12 months		
Malignancy	0	0
Cardiovascular	3	2
Neutropaenia	2	3
Post-transplant diabetes	2	2
llrothral stricturo	1	2

Urethral stricture12* Patients received a three month course of valganciclovir as prophylaxis against
cytomegalovirus if the donor was sero-positive and the recipient sero-negative. All
recipients received cotrimoxazole for 6 months and oral amphotericin for 4 weeks
following transplantation.

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURE 1

A. Glomerular filtration rate (GFR) normalised for body surface area, **B.** B cell counts (Normal range (NR) shown by shaded area) **C.** Total lymphocyte count, **D.** T cell counts, **E.** IgM, and **F.** IgG, in daclizumab (open boxes) versus rituximab-treated (grey boxes) patients. Whiskers show minimum and maximum values, and lines show medians. Values in the daclizumab and rituximab groups are compared using a Mann Whitney test. All patients were mildly lymphopaenic prior to transplantation (**C**) a well-recognised phenomenon in patients with end-stage renal disease (Yoon JW *et al.* Kidney Int 2006;70:371-6). There was no significant fall in mean total lymphocyte count or CD3 count in either of the study groups following transplantation (**D**).

SUPPLEMENTARY FIGURE 2

Serum levels of **A.** TNFα, **B.** IL-6, **C.** IL-10, **D.** IL-2 at days 0, 7, 14 and 21 in daclizumab (left hand panel) versus rituximab-treated (right hand panel) patients. The daclizumab- treated patient with rejection is shown in red, whilst the rituximab-treated patient who did not develop rejection is shown in blue. The rise in IL-10 is of interest, since this cytokine is classically considered to play an immunomodulatory role (Ishida H, et al. J Exp Med 1994;179:305-10). However, it is a cytokine with both pro- and anti-inflammatory effects (Moore KW, et al. Annu Rev Immunol 1993;11:165-90). For example, IL-10 can enhance T cell proliferation (MacNeil IA, *et al.* J Immunol 1990;145:4167-73) and IL-10 production by T cells is associated with increased titres of anti-dsDNA antibodies and with increased proteinuria in NZB/W mice (Enghard P, *et al.* Scand J Rheumatol 2006;35:209-16).

Serum levels of **A**. IL-4, and **B**. IFN- γ at days 0, 7,14, 21 in daclizumab (left hand panel) versus rituximab-treated (right hand panel) patients. The daclizumab-treated patient with rejection is shown in red, whilst the rituximab-treated patient who did not develop rejection is shown in blue. Overall, serum IL-4 levels were increased at day 7 and 14 in the daclizumab group compared with baseline(**A**). There was no change in IFN- γ levels post-transplantation in either group (**B**).

Mean serum levels of **A**. BAFF, and **B**. APRIL at days 0, 7 and 14 in daclizumab (open boxes) versus rituximab-treated (black boxes) patients. Error bars show standard error of mean. Serum BAFF and APRIL levels have been shown to increase following B cell depletion (Pers JO, et al. Arthritis Rheum 2007;56:1464-77) and can drive T cell activation (Mackay F and Leung H. Immunol 2006;18:284-9). However, there was no significant change in BAFF and APRIL levels in either rituximab or daclizumab-treated patients in the post-transplant period.