Supplementary Figures Supplementary Figure 1

Supplementary Fig. 1 Chromosome localization of VER2

(a) Fluorescence *in situ* hybridization (FISH) shows *VER2* gene localized on chromosome 2D. Arrows indicate the hybridization signal by *VER2* probe, enlarged chromosome with *VER2* signal is shown in the embedded white box; multicolor (mc)-FISH was used to pattern the individual chromosomes, pAs1 for red, pSc119.2 for green, DAPI staining the chromosomes show blue. Bar = 10 μ m. (b) Sequence screening on the genome to show localization of *VER2* on the long arm of chromosome 2D. The upper numbers show the genetic distance along the chromosome 2, cM (centimorgan); the lower numbers show the bin number, data resource is from recent publication¹.

а	RNA-Recongnition Motif
	TaGRP2 :HAD EVECTVGGL (ATTOC LOAT IN CVID KITTORET BERGTGEVTTA DEN CATE AND COLDGENT TWIEADER - GOOGGE GOOGGE - GOOGGE GOOGGE : 95 gig74605 :HAE TWENTVGL (ATTOC LOAT IN CVID KITTORET BERGTGEVTTA DEN CATE AND COLDGENT TWIEADER - GOOGGE GOOGGE : 95 gig74605 :HAETEVRETVGL (ATTOC LOAT IN CVID KITTORET BERGTGEVTTA DEN CATE AND COLDGENT TWIEADER - GOOGGE GOOGGE : 95 SIGRP :HAD EVECTVGL (ATTOC LOAT COLDEAN COLD AND
Ŀ	TaGRP2 :Correctors CORPE GCorrectors Correctors
D	
	AtGRP7
	TaGRP2
	405 580 TaRBP
	1000 gi 974605
	HvGRP
	1000 ZmGRP2
	396 ZmGRP1
	998 OSGRP1
	Stigre

Supplementary Fig. 2 Conservation of GRP proteins in *Arabidopsis* and cereals

(a) Amino acid sequence similarity of GRP proteins in *Arabidopsis* and cereals. (b) Phylogenetic analysis of GRP proteins in *Arabidopsis* and cereals. The amino acids of AtGRP7 were used as prey for Blast-P analysis against cereals using the NCBI protein database.

Supplementary Fig. 3 Purification of endogenous TaGRP2 and labeling with UDP-GalNAz

(a) Affinity purification of endogenous TaGRP2 from vernalized (V28) wheat plumule using a TaGRP2 specific antibody. "Beads" stands for un-eluted sample after elution.
(b) Schematic diagram indicates the labeling of the GlcNAc side chain with UDP-GalNAz by Gal-T1 (Y289L) enzyme and detection with biotin antibody, modified from Invitrogen manual for Click-iT[™] O-GlcNAc Enzymatic Labeling System.

Supplementary Figure 4

Supplementary Fig. 4 PUGNAc treatment increases total protein *O*-GlcNAc modification level in protoplasts of wheat plumules (a) and tobacco leaves (b).

Supplementary Fig. 5 DEX inducible expression of VER2

(a) Schematic diagram of the Dexamethasone (DEX) inducible expression system. Modified from previous publication². (b) Immunoblot analysis of DEX induced expression of VER2. Total protoplast lysate was used in this analysis, TaGRP2m^{T17A} did not interfere the detection by TaGRP2 antibody.

Supplementary Fig. 6 SELEX screen for the RNA binding preference of TaGRP2 (a) Schematic diagram of the SELEX screening process, modified from online resource of http://www.chem-station.com/chemglossary/images/SELEX.jpg. (b) *In vitro* expression and purification of GST-TaGRP2 protein. GST-CK, a GST-tagged protein served as positive control for the *in vitro* expression and purification. (c) PAGE-gel electrophoresis analysis of the RNA library. SA251, SA252 served as marker for the proper sizing of the RNA pools. (d) Identification of the proper cycle numbers to be used for PCR amplification for next round screening. RT: reverse transcriptase; NTC: no template control.

Supplementary Fig. 7 Total protein level of TaGRP2 in response to vernalization in JH9 (Jinghua 9) and JD1 (Jingdong 1), *VER2*-OE and *VER2*-Ri plants

(a) Total protein level of TaGRP2 and VER2 during the course of vernalization in JH9. Different 4°C cold treatment time (0 day to 30 days) as indicated as V0-V30. (b) Total protein level of TaGRP2 during the course of vernalization in JH9, JD1, *VER2*-Ri and *VER2*-OE plants.

Supplementary Fig. 8 TaGRP2 delays histone modification switch in the first intron of *TaVRN1* during cold exposure.

(a) Schematic diagram of the *TaVRN1* gene structure. PCR amplification fragments for ChIP are indicated. (b,c) Histone modification changes (H3K4me3 and H3K27me3) at *TaVRN1* chromatin loci during the course of vernalization in *TaGRP2-OE*,

TaGRP2-RNAi and JH9. The regions amplified after ChIP are shown in (a). (d) TaVRN1 transcript amount during the course of vernalization in *TaGRP2-OE*, *TaGRP2-RNAi* and JH9. *TaVRN1* expression level was normalized to *Tubulin*. The expression levels of *TaVRN1* in wild type JH9 at V0 (non-vernalized plant, grown in long day condition at 20°C over 5 days) are set as 1, relative fold change in transgenic plants with different cold exposure are shown (V4-35, grown in long day condition at 22°C over 4 days, then transferred to 4°C for 4 to 35 days, aboveground part of 15 seedlings per sample were collected at 4°C for RNA extracting). Two biological replicates were conducted; data are means \pm SD of 3 technical replicates.

Supplementary Fig. 9 Structure of *TaVRN1-AS* identified by RACE and its expression pattern in JD1 and JH9 during the course of vernalization

(a) Schematic diagram of the structure of the alternatively spliced *TaVRN1-AS* transcript, TaVRN1 gene structure is indicated above. red triangles show the TaGRP2 binding sites; Magenta oval indicates the "VRN" box in the promoter; cyan box indicates the CArG box in the promoter; Ex1-8 mean exon1-8; green shade shows the "critical region" in the intron1. (b) 3' RACE and 5' RACE amplification of the *TaVRN1-AS* transcript. Primers used are indicated in the diagram. Orange box shows the 3' adapter, purple box indicates the 5' adapter. The band in the red square was sequenced. (c) Semi-RT-PCR quantification of *TaVRN1-AS* expression level in

response to different cold exposure time, V0: non-vernalized, V3-V28: 4°C treatment

for 3 days to 28 days as vernalization treatment. (d) Sequence information of TaVRN1-AS, highlights are those loci with multiply nucleotides by sequencing with individual clones as indicated.

TaGRP2 α-Cry Fig. 3c GalT1 Anti-FLAG Anti-GFP (M) Fig. 2d 1% inout Anti-Biotin IP:GFP (R) IP:TaGRP2 IB:TaGRP2 Þ Fig. 3d Fig. 3f WGA pull down Anti-FLAG Anti-TaGRP2 Anti-TaGRP2 Input Anti-TaGRP2 Anti-CTD110.6 09 80-60

Supplementary Figure 10

Supplementary Fig. 10 Uncropped immunobloting for main figures (Fig. 2d, 3c, 3d, 3f)

The cropped region of each blot was shown in square frame. M, mouse; R, rabbit.

Supplementary Fig. 11 Uncropped immunobloting for main figures (Fig. 6a, 6b) The cropped region of each blot was shown in square frame.

Supplementary Tables

Supplementary	Table	1.	Heading	times	(days)	in	different	VER2	transgenic
plants									

Flowering time(Day)	V0	V10	V20	V30
JD1	168±4.5	145±4.1	111±3.2	99±4.4
JH9	165±4.2	143±3.2	120±5.3	105±5.4
VER2-0E-L1	134±4.5	117±2.5	107±3.4	97±2.3
riangleHeading time	31	26	13	8
VER2-0E-L2	133±4.2	115±3.6	109±4.2	98±4.3
riangleHeading time	32	28	11	7

Note: \triangle Heading time represents the difference between VER2-OE-L1/L2 and JH9. Data are means ± SD of 30 plants for each line.

Supplementary Table 2. Potential candidates identified by MS for interacting with VER2 during vernalization.

Reference	Annotation	Score	MW	Coverage
VIP1	Phosphoribulokinase	90.22	44.4KD	38.63%
VIP2	Glycine rich RNA binding protein	80.4	16.2KD	33.56%
VIP3	Thioglucoside glucohydrolase	104.3	61.5KD	57.98%
VIP4	Glyceraldehyde-3-phosphat e dehydrogenase B subunit	60.1	47.6KD	22.58%
VIP5	Adenosine kinase	50.9	37.8KD	16.83%
VIP6	Nuclear phosphoglycerate kinase	80.2	50.1KD	32.48%
VIP7	Intron maturase	48.2	62.5KD	21.46%
VIP8	Glucose-6-phosphate isomerase	45.6	62.3KD	20.02%
VIP9	Alpha-glucan phosphorylase	40.2	94.6KD	11.23%

Note: The isolated peptides by Mass Spectrometry (MS) were searched by using Mascot online http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS from NCBInr database (green plants).

Flowering time(Day)	V0	V10	V20	V30
JH9	164±3.6	143±3.5	123±3.3	109±3.4
TaGRP2-OE-L5	169±3.1	153±3.5	137±3.4	115±2.9
riangleHeading time	5	10	14	6
TaGRP2-OE-L16	167±4.2	149±3.8	133±3.2	113±3.3
riangleHeading time	2	6	10	4
TaGRP2-Ri-L2	157±3.2	129±4.1	115±3.6	105±3.4
riangleHeading time	7	14	8	4
TaGRP2-Ri-L15	157±3.5	128±3.4	112±3.7	103±2.8
riangleHeading time	7	15	11	6

Supplementary Table 3. Heading times (days) in different *TaGRP2* transgenic plants

Note: \triangle Heading time represents the difference between *TaGRP2*-OE-L5/L16, *TaGRP2* – Ri- L2/L15 and JH9. Data are mean ± SD of at least 30 plants for each line.

Clone NO.	Sequences	Length	Copies
1	GCUUUGUUUUUCGCUCUUCU	20	U
2	UCCUUCGUUGCUCUUUUUUU	21	U
3	UUCUUGUUUUUUCUGUUUCU	20	U
4,5	UUUUUUUGUGUCGUCGGUG	20	2
6	UUGUUAUCUUCUUGUGAUUU	20	U
7	UCGUCUGUUCGUUCUUCUUU	20	U
8	UUUUUUCGUUCUCUGUUUGU	20	U
9	UGUUUUAUUGUGUCGCCGCG	20	U
10	UCCUUCGUUGCUCUUUUUUUU	21	U
11	UGUGUCUUCGAUUUGGGUUU	20	U
12	UCGUUUUUCUUUGUCCAUGG	20	U
13	UUUAUUCGUUUUCUGUCUCU	20	U
14	UAAUUUUCGUAUGCGGUCGU	20	U
15	UGUGUCUUCGAUUUGGGUUU	20	U
16	UAAUUGGAUGGUCUUUCUCU	20	U
17	UUCGUCUCUUUGUGGUCUGU	20	U
18	UUCGUCUCUUUGUGGUCUGU	20	U
19	UUUUUUUGUGUCGUCGGUG	20	U
20	UCUUGUGUUUGCUUGUCCC	19	U
21,22	UUUUUUCGUUUCUUUUGGU	20	2
23,24	UGGUUUUUUUUUCGUUGUC	20	2
25	CUCGUUUUUUUUUUCGUGGGU	21	U
26	UUCAUGUUUCUUGUGUUCCC	20	2
27	UCCGUUUUGGUUGCCUGGGU	20	U
28	UUCUCCGUUGGGUUUGUUCG	20	U
29	UUUUUUCUCCCUUUUUGUCU	20	U
30	UGGUUUUCGGGUUUUUUACG	20	U
31	UUUUGUUUGUAGGGUUGGGU	20	U
32	GUGUUUUGGGGGUCUUUCUCC	21	U
33	GUUGUCGUCGUCGUUCUUC	19	U

Supplementary Table 4. Sequences of TaGRP2 binding RNA fragments screened by SELEX

Note: U, unique.

Start	End	Motif sequence	Gene structure
1667	1686	TTATTTCTTCCTCCCCATT	Intron1 (Critical
1007	1000	HAITHETHEOTOLOGI	region)
2176	2105	CATGIGITGICGGICTATIA	Intron1 (Critical
2170	2195		region)
2772	2790	TTGTTGTTGGTATGGATCG	Intron1 (Critical
2112	2130		region)
2879	2897	TTIGTTICITIGIGCCICC	Intron1 (Critical
2010	2007		region)
6932	6951	AATGCTTTGTTGTTGTTGTA	Intron 1
8932	8950	AATGGTTGTCGTGTTCGTA	Intron 1
11153	11171	CAATTGTTATTTGCTTGTGC	Intron 2

Supplementary Table 5. Prediction of TaGRP2 binding sites in TaVRN1

Note: The position is counted from ATG of the first exon of TaVRN1 gene.

Description	Name	Sequence
	209	TCAAGAAGGCGCACGAGAT
	269	CCACCAAGGGAAAGCTCTAC
	3'RACE Inner	CGCGGATCCGAATTAATACGACTCACT
	Primer	ATAGG
VRN1-alternative	3'RACE Outer	CCCACCACACAATTAATACCACT
splicing related primers	Primer	GCGAGCACAGAATTAATACGACT
	GSP3	GTTGGAGGCTTGGGGTGTA
	GSP1	GGATGGGCAAAGCTCAAT
	GSP2	GGAAGTCGATAGGATCTGCTTA
	Nested GSP	GATCTCGTGCGCCTTCTT
	VRN1 AS-F	TTTTGGCCTGGCCATCCTCCCTCTC
	VRN1 AS-R	TTGGCATACGATCCATACCAAC
		GCGTCTCTGCAGTAGTTA(N20)AGTCG
	SA251	GCATCTTGGTACCCTATAGTGAGTCGT
		ATTACC
SELEX primoro	SA252	GGTAATACGACTCACTATAGGGTACCA
SELEX primers	3A232	AGATGCCGACT
	SA253	GCGTCTCTGCAGTAGTTA
	VRN1-RIP-3	GUCAUUGUUGUUGGUAUGGAUCGUA
	probe	UG-Biotin
RNA-EMSA related	M1	GUCAUUGUAGUAGAUAUGGAUCGUAU
probes		G-Biotin
	M2	GUCAUUGAUAAUAGAAUGGAUCGUAU
		G-Biotin
	competitor	GUCAUUGUUGUUGGUAUGGAUCGUA
		UG

Supplementary Table 6	. Sequences of	f all the primers	used in this study
-----------------------	----------------	-------------------	--------------------

pUN1301-TaGRP2	TaGRP2-BamH	
construct	I-F	CGGGATCCATGGCGGACGTCGAGT
	TaGRP2-Kpnl-	
	R	GGGGTACCCTCCCTCCAGTTGCC
pTCK303-TaGRP2	TaGRP2-Kpnl-	GGGGTACCACTAGTGCTGCTTCGTCG
construct	Spel-F	GCGGC
	TaGRP2-BamH	CGGGATCCGAGCTCGGAACTCGCCGG
	-Sacl-R	TGAGGT
Point mutation of	TaGRP2-F(A49	TEGEETGGGEEGGEEGAEGAECAG
TaGRP2 (Thr 17 Ala)	G)	
	TaGRP2-R(A49	CTGGTCGTCGGCGGCCCAGGCGA
	G)	
	RNA-5'Adaptor	CGACUGGAGCACGAGGACACUGACAU
		GGACUGAAGGAGUAGAAA
	GeneRacer	GCTGTCAACGATACGCTACGTAACGGC
	dTprimer (SSIII)	ATGACAGTG(T)24C
	GeneRacer	GCACGAGGACACTGACATGGACTGA
	5'primer	
	GeneRacer	GGACACTGACATGGACTGAAGGAGTA
	5'nestprimer	
	GeneRacer	GCTGTCAACGATACGCTACGTAACG
	3'primer	00071007110000170101070
	GeneRacer	CGCTACGTAACGGCATGACAGTG
		TOTTOTOCOCTOTICAT
PIP related aligns		
RIF Telated Oligos		
		CAGATTITACCCCTTCAC
	VRN1-RIP-4-R	
	VRN1-RIP-5-F	GGGCATTTATCTGCTTTGGC
	VRN1-RIP-5-R	CCAACAATAGTTATCTAGGCAAG
	VRN1-RIP-6-F	CTATTTGTAGCATTTCCGTCAT
	VRN1-RIP-6-R	TTGTCTCAACCTTCGCCTTC
	VRN1-RIP-CK-	
	F	CTTACCTTGCCTAGCACAAT
	VRN1-RIP-CK-	
		AGAAAGAGCACGAAACTGAC
	R	
	R VRN1-Q-F	AAGAAGGCGCACGAGATC
	R VRN1-Q-F VRN1-Q-R	AAGAAGGCGCACGAGATC CCATCAGATGCTTTTGACATTT
	R VRN1-Q-F VRN1-Q-R VRN1-AS-Q-F	AAGAAGGCGCACGAGATC CCATCAGATGCTTTTGACATTT CGGTGTTGGAGGCTTGGGGTGTA

Expression level	TaGRP2-Q-F	
analysis		AACGCCTTCTCCAAGTACGG
for realtime PCR	TaGRP2-Q-R TaVER2-Q-F TaVER2-Q-R VRN2-Q-F VRN2-Q-R Tubulin-Q-F Tubulin-Q-R	TCCGACGCGAAGGTGAC CCACGGCTTGGCTACACTATA GCTTGTCTTAGTTTGTGTGTGTGT CCGACACATGGCTCACCTAGTG TTGCTTCATTGCTAATAGTGTTTGT ATCTGGTGCGGGTAACAA AAGTGGAGGCGAGGGAAT
pET28a-TaGRP2,pGE X4T-1-TaGRP2,pGEX 4T-1-TaGRP2(T17A)	TaGRP2-EcoRI- F	CGGAATTCATGGCGGACGTCGAGT
FLAG-OGT construct	TaGRP2-Sall-R OGT-BamHI-F OGT-KpnI-R	GCGTCGACCTCCCTCCAGTTGCC CGGGATCCATGGCGTCTTCCGTGGGC GGGGTACCGGCTGACTCAGTGACTTC
pBI221-TaGRP2, pBI221-TaGRP2m(A4	·	
9G)	TaGRP2-Xbal-F TaGRP2-Kpnl-R	GCTCTAGAATGGCGGACGTCGAGT GGGGTACCCTCCCTCCAGTTGCC
pBI121/221-VER2;pRT 105-3XFLAG-VER2	VER2-Xbal-F	CGGGATCCATGGCCAAATTCCAGATT
construct pBI221-TaGRP2-RRM construct	VER2-KpnI-R TaGRP2-RRM-X bal	GGGGTACCGACCGTGTAAACACCAA GCTCTAGAATGGCGTCCGGTGATGT
	TaGRP2-RRM-K	GGGGTACCCTGAGCCTCGTTAACAGT
pBI221-TaGRP2-GR(Glycine rich) construct	TaGRP2-GR-Xb al	GCTCTAGAATGTCACGAGGAAGCGGT G
	TaGRP2-GR-Kp	GGGGTACCCCATCCTCCACCACCA
8OP-mini 35S::VER2 construct	VER2-BamHI-F	CGGGATCCATGGCCAAATTCCAGATTA CAC
	VER2-Stul-R	CCAGGCCTGACCGTGTAAACACCAAAT GC
In situ hybridyzation	TaGRP2-sense- F	TAATACGACTCACTATAGGGCGACGTC ATCGACTCCA
	TaGRP2-sense- R	TCACTCCCTCCAGTTGCCGCCG
	TaGRP2-antisen se-F	CGACGTCATCGACTCCAAGATCATC
	TaGRP2-antisen se-R	TAATACGACTCACTATAGGGTCACTCC CTCCAGTTGCC
	VRN1-ChIP-I-F	GCTCTGCGACGCCGAG
	VRN1-ChIP-I-R	TTAAAGACAGCGCGTGCTTAATT

	VRN1-ChIP-II-F	ATGCTCCGCCAGCGC
	VRN1-ChIP-II-R	ACCGTCCTAACCTTTCCACTTG
ChIP primers (VRN1)	VRN1-ChIP-III-F	GATTGCTTGGAGATACTGTCTACGG
	VRN1-ChIP-III-R	TCATGCCGGAGTTTCATCG
	VRN1-ChIP-IV-F	CAAAGTTTGATCGGCTTACCTTC
	VRN1-ChIP-IV-R	GATTCTTACGCGTTTTCATCACG
	VRN1-ChIP-V-F	ATGCTCGACAGCGGCTATG
	VRN1-ChIP-V-R	AAACGAGGGTTCCGGCA
VER2 FISH probe fragment	VER2-F	AACGGTGATGTGTTGGAGATTCT
	VER2-R	CCGGGGCATACACATGATTCATGC
pUC-SPYNE-VER2	VER2-Xbal-F	CGGGATCCATGGCCAAATTCCAGATT
	VER2-KpnI-R	GGGGTACCGACCGTGTAAACACCAA
pUC-SPYCE-TaGRP2	GRP2-Xbal-F	GCTCTAGAATGGCGGACGTCGAGT
	GRP2-KpnI-R	GGGGTACCCTCCCTCCAGTTGCC
	VRN1-GSP-outer -F	TCAAGAAGGCGCACGAGAT
	VRN1-GSP-inner -F	CCACCAAGGGAAAGCTCTAC
5'/ 3'-RACE	VRN1-GSP-outer -R	TGGATGGGCAAAGCTCAAT
	VRN1-GSP-inner -R	ATCCTGAGGGCGATTCCAT
	Bar-F	AAGCACGGTCAACTTCCGTA
	Bar-R	GAAGTCCAGCTGCCAGAAAC
	Ubi-F-w	GAGTATTTTGACAACAGGACTCTACAG
	Ubi-R-w	TGTGGAGGGGGGTGTCTATTTATTAC
	Ubi-F	ATTATTTTGATCTTGATATACTTGGATG
	VER2-S-R	CGAAGCTCCCATGTGTTTC
Transgenic wheat		
identification	VER2-AS-R	ACCCTCCAAATTCCCCA
	Ubi-F-Southern	GTTTGTCGGGTCATCTTT
	Ubi-R-Southern	CGTATGAAGGCAGGGCTA
	GUS-P	GCG TCG ACC AAC GCT GAT CAA TTC CACA
	VER2-F	TAG AAT TCC ACA CCC AGC CAC TCA CCC
	VER2-F 3'-3	CGATAGACCACTCACCTGC TTGTTC

Name	Host	Antibody	Company	Dilutio	Description of the usage
		type		n factor	in this paper
anti-H3	Rabbit	Ρ	Millilpore	1:10000	Control for nuclues fraction and histone modification in immunobloting and ChIP assay
anti-H3K4me3	Rabbit	Р	Millilpore	1:5000	histone modification analysis in ChIP assay
anti-H3K27me 3	Rabbit	Р	Millilpore	1:2000	histone modification analysis in ChIP assay
anti-β-Tubulin	Mouse	М	Sigma	1:5000	Marker for cytoplasm fraction in immunobloting
anti-GFP	Rabbit Mouse	P/M	Beyotime	1:2000 1:1000	Analysis GFP tagged protein by immunobloting in CoIP assay
anti-FLAG	Mouse	М	Sigma	1:2000	Analysis FLAG tagged protein by immunobloting in CoIP assay
anti-VER2	Rabbit	Ρ	Ourself	1:1000	Analysis of VER2 protein level by immunobloting Analysis of TaGRP2
anti-TaGRP2	Mouse	Ρ	Ourself	1:5000	protein level by immunobloting; Enrichment of TaGRP2 target RNA in RNA-IP assay
anti-GlcNAc (CTD110.6)	Mouse	М	CST	1:800	Analysis of O-GlcNAcylation protein

Supplementary Table 7. Antibodies used in this study

Note: VER2 and GRP7 antibodies were generated by immuning mouse with purified VER2 (without GST tag) and His-GRP7 protein respectively. The serum after immuning was affinity purified. The specificity of antibodies was tested by using knockdown and overexpression transgenic lines. P: Polyclonal; M: Monoclonal.

Supplementary Methods

DNA Probe Preparation and FISH analysis

The seeds of JD1 and JH9 were germinated on moist filter paper in petri dishes. Actively growing roots were removed from seedlings and placed in gas treatment for 2 hour, fixed in 90% acetic acid and stored in 70% v/v ethanol. Chromosome spread preparation was carried out as previously described³. For FISH analysis, the detected gene (*VER2*) was labeled with Alexa Fluor-488-5-dUTP by a modified version of the nick translation method as previously described⁴. The FISH images were recorded using an epifluorescence Olympus BX61 microscope equipped with a cooled charge-coupled device camera operated with MetaMorph software and processed with Photoshop CS 2.0.

Sequential multicolor FISH analysis

After rinsing the FISH hybridization probes signals, multicolor (mc)-FISH was carried out with two highly repeated DNA sequences pAs1⁵ labeled with Alexa Fluor-594-5-dUTP and pSc119.2⁶ labeled with Alexa Fluor-488-5-dUTP, respectively. Two probes were mixed at the ratio of 1: 1 before hybridization. The slides were counterstained with 4, 6-diamidino-2-phenylindole (DAPI). Detection and visualization were performed as described above. The individual chromes could be recognized by the different patterns of multicolor generated from these two repeated DNA probes.

Selective evolution of ligand by exponential enrichment

Selective evolution of ligand by exponential enrichment SELEX was performed as described^{7,8} with some modification. Briefly, the RNA library was reduced to 20 random nucleotides. The in vitro-transcribed RNA library was incubated with GST–TaGRP2 fusion proteins bound to glutathione Sepharose 4B resin to select for the binding RNA fragments. Then, the selected RNA fragments were reverse transcribed to DNA using adaptor primers. PCR amplification with specific primers was used to determinate the proper number of cycles to distinguish sample and negative controls. After that, PCR products were purified and used as template to generate the next round RNA library by *in vitro* transcription. The selection was repeated 6 times, and the final products were gel-purified, ligated into pGEM-T Easy vector (Promega) and sequenced.

5' Rapid Amplification of cDNA Ends (5' RACE)

8.5 µg total RNA was treated with Turbo DNA-free DNasel (Ambion) in a 10 µl reaction volume. 7 µl RNA sample was mixed with 0.25 µg GeneRacer RNA oligo (Invitrogen), heated at 65°C for 5 min and chilled on ice. Adaptor ligation was performed using T4 RNA ligase (Ambion) at 37°C for 1 hour. The RNA was then extracted by phenol: chloroform, precipitated, and re-suspended in 11 µl H₂O. Reverse transcription was performed using GeneRacer oligo dT primer with Superscript reverse transcriptase (Invitrogen). GeneRacer 5' Primer and *VRN1-AS* specific anti-sense primer (Supplementary table 6) was used for PCR. PCR products were purified and sequenced.

Supplementary References

1. Jia, J. *et al. Aegilops tauschii* draft genome sequence reveals a gene repertoire for wheat adaptation. *Nature* **496**, 91–95 (2013).

2. Schena, M., Lloyd, A. M. & Davis, R. W. A steroid-inducible gene expression system for plant cells. *Proc. Natl. Acad. Sci. USA* **88**, 10421–10425 (1991).

3. Han, F. P., Lamb, J. C. & Birchler, J. A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. *Proc. Natl. Acad. Sci. USA* **103**, 3238–3243 (2006).

4. Kato, A., Lamb, J. C. & Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. *Proc. Natl. Acad. Sci. USA* **101**, 13554–13559 (2004).

5. Rayburn, A. L. & Gill, B. S. Isolation of a D-genome specific repeated DNA sequence from *Aegilops squarrosa*. *Plant Mol. Biol. Rep.* **4**, 102–109 (1986).

6. Mcintyre, C. L., Pereira, S., Moran, L. B. & Appels, R. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. *Genome* **33**, 635–640 (1990).

7. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. *Science* **249**, 505–510 (1990).

8. Kim, J. S. *et al.* Cold shock domain proteins and glycine-rich RNA-binding proteins from *Arabidopsis thaliana* can promote the cold adaptation process in *Escherichia coli*. *Nucleic Acids Res.* **35**, 506–516 (2007).