
Supplementary Information: Superabsorption of light via quantum engineering

I. SUPPLEMENTARY FIGURES

Supplementary Figure 1: Comparison between the full trapping model discussed in Supplementary Method 6
modelled numerically using the technique described in Supplementary Method 5 and the effective two level system
model with adjusted rates. Parameters are: d = 0.1, γ = 10−4, g = 1, and Γtrap = 4g. In the phenomenological case
Γtrap takes the same value, whereas the effective Γloss rate was increased by a factor of five to account for additional
leakage out of the E2LS due to detuned exciton extraction processes (see Supplementary Fig. 2). Note that the
shape of the E2LS curve can be made to look more similar to the full model by adjusting its Γtrap and Γloss rates,
but here we have chosen values giving rise to a similar peak height and enhancement area, indicative of a
comparable collective advantage over one superabsorption lifetime cycle.

Supplementary Figure 2: A trap site is connected to the Dicke ladder. The trap’s transition frequency ideally
matches that of the ‘good’ transition ωtrap ≈ ωgood, and it is coupled to the Dicke transitions via a flip-flop
interaction of strength g. This gives rise to ‘see-saw’ like oscillations between Dicke and trap transitions, but only
the desired transition is resonant, all others are detuned and thus suppressed. To ensure that excitons hopping to
the trap site are irreversibly removed instead of ‘see-sawing’ back and forth indefinitely, the trap is incoherently
emptied at a rate Γtrap. As long as Γtrap is not so large that the trap transition experiences significant lifetime
broadening approaching |ωgood − ωbad|, and also assuming |ωgood − ωbad| > g, the exciton extraction from the ‘bad’
transition in particular can be suppressed. The blue double-headed arrows indicate the (enhanced) optical emission
and absorption processes from the main text.
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Supplementary Figure 3: Comparison of the Effective Two Level System (E2LS) model with numerical results from
Monte Carlo simulations done using the Quantum Optics Toolbox in Python (QuTip)1. Parameters: N = 8,
N(ωgood) = 10, ΓT = 10 ΓE ,γ = 1, trajectories 100,000.

Supplementary Figure 4: Left: The effect of increasing disorder (modelled as a Gaussian distribution with standard
deviation σ) on a superradiant system without interactions (Ω = 0). Right: The effect of increasing disorder (σ) on a
superradiant system with hopping interaction strength Ω = −1. Shared parameters: ωA = 10, d = 1, γ = 0.01, N = 4.
Without interactions, the relevant energy scale characterising the transition from collective to independent emission
is given by σ/γ. By contrast, when interactions are included the system eigenstates are intrinsically delocalised and
the relevant energy scale becomes σ/Ω, leading to a significant increase in robustness against disorder.
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Supplementary Figure 5: This figure shows that modest amounts of disorder will not significantly the
superabsorption effect. Parameters: ωA = 10, d=1, γ = 0.01, N=4, N(ωgood) = 1, κ(ωbad) = 0.1γ.
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II. SUPPLEMENTARY TABLES

Type E (eV) γ−1 (ns) d (D) rij (nm) Ω (eV) σ (meV) λgood − λbad|N=10 (nm)

Quantum Dot (Förster) 1-2 0.1− 1 20-100 10-50 0.001 . 10 < 1

Molecular Ring (B850) 1-2 1 5 . 1 0.05 . 20 ∼ 10

J-aggregate 2-3 0.05− 1 10-15 . 1 0.1-0.2 5− 50 ∼ 45

Supplementary Table I: Materials parameters comparison: Order of magnitude estimates of the relevant parameters
for the superabsorption effect for different systems. Values are taken from the literature, for supporting references
see Supplementary Discussion 1.

Type λ (nm) ∆λ (nm) Q PF (theory) PF (experiment) Γ∗
absorb Γ∗

loss

Optical Microcavity2 637 . 0.1 104 70 20 PF ∼ 1

Photonic Crystal Cavity3–7 900− 1500 . 0.05 103 − 106 102 − 104 5− 147 PF ∼ 1

Photonic Bandgap Crystals8–11 400− 1500 n/a n/a n/a n/a ∼ 1 0.01− 0.1

Concentrated filtered sunlight12 ∼ 650 ∼ 5 n/a n/a n/a ∼ 104 ∼ 1

Supplementary Table II: Materials parameters comparison for proposed control mechanisms. Γ∗absorb and Γ∗loss are
the enhancement or suppression relative to the respective rate in the absence of a cavity or photonic band gap
environment and PF is the Purcell factor defined in Eq. (1).

III. SUPPLEMENTARY DISCUSSION 1: MATERIAL PARAMETERS FOR REAL SYSTEMS

A. System

In this section we consider the parameters for various physical systems that could potentially demonstrate the
superabsorption effect. In Supplementary Table I we summarise key materials parameters for this system. Note that
we use wavelength rather than frequency to characterise the good and bad transitions here, since these are more often
quoted; ω = 2πc/nλ, with n the material refractive index.

Quantum dots are a good candidate for their large transition dipole moments, continually improving spectral
uniformity (low σ) and the recent progress in synthesising highly ordered rings and arrays13. The main challenge
facing this implementation is the relatively weak dipole-dipole interactions (Ω) that have thus far been observed
(≈ 0.01 meV), although an order of magnitude improvement in this should be easily obtainable14. Furthermore, the
interaction need not be of the field-induced character this Article focuses on, chosen largely for the sake of simplicity.
Any physical mechanism leading to an exciton number dependent shift of the Dicke states would suffice. For instance,
in quantum dots the Coulomb interaction is known to be stronger (∼ 10 meV)15. In general, engineering the strength
and the scalability of dot to dot interactions is a key focus for the field, particularly for implementations of quantum
information processing tasks. Progress in this area therefore seems very likely in the near future.

Molecular rings have the obvious advantage of possessing the required symmetry and the very close separation
between sites, leading to large Ω. The values in the table correspond to the natural photosynthetic ring structure
B850. It should be noted that lower disorder would be expected from artificially synthesised rings lacking the protein
manifold found in natural systems. Furthermore, the dipole alignment of B850 (in plane) is least favourable for
interactions with the field (B850 plays a storage and transfer role in photosynthesis) and therefore could be expected
to increase by a factor of two if the dipoles were optimally oriented. Artificial porphyrin rings could alleviate both of
these problems16.

J-aggregates constitute a particularly promising candidate, having both highly delocalised excitations and very
strong interactions between monomers17. Their interactions are sufficiently strong to overcome the typical values for
disorder18. Collective effects such as superradiance and line narrowing have long been demonstrated in these systems.
It is also possible to control geometry of J-aggregates chemically and deposit them on surfaces19. Integrating these
structures with quantum control such as photonic bandgap crystals and optical microcavities is a new and developing
area at the confluence of several fields. The objective of this effort is primarily the the study of exciton transport
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in photosynthesis, but at the same time, these systems provide an extremely promising platform for demonstrating
superabsorption.

B. Control

In the main text we describe three different proposals for implementing the required environmental control over
the system: optical cavities, photonic bandgap crystals and filtered light. In Supplementary Table II we gather
the relevant material parameters from the literature, again using wavelength rather than frequency units; note that
∆ω/ω = ∆λ/λ.

The particular figures of merit are Γ∗absorb and Γ∗loss, which describe the relative suppression or enhancement of
the ‘good’ and ‘bad’ transitions, respectively. In the case of cavities these are given by the Purcell factor20, which
describes enhancement of the rate of emission caused by coupling to a resonant cavity mode:

PF =
3

4π2

(
λc
n

)3
Q

Vm
, (1)

where λc is the wavelength of the cavity, n is its refractive index, Q = ωc/∆ω its quality factor, and Vm its mode
volume. For the results in the main text we allowed either a tenfold enhancement or suppression of Γabsorb or Γloss,
respectively. Supplementary Table II shows that current experimental systems can easily surpass these requirements,
assuming a typical separation of λgood − λbad > 10 nm. Crucially, the structures listed here also remain large enough
to accommodate our proposed absorber. For instance, a molecular ring with N = 15 would have a diameter of only
∼ 5 nm. It is interesting to note that 2D and 3D photonic crystal cavities offer both enhancement of a resonant
transition Γabsorb and suppression of a non-resonant one Γloss

5, making them ideal for the type of control required.

C. Trapping

The trapping process is key for the application of superabsorption to light harvesting. Here the requirement
is that the extraction process is fast enough to beat the rival emission process Γemit, which itself may be enhanced.
Researchers concerned with creating new paradigms for solar cells by connecting quantum dots and J-aggregates (with
their favourable and flexible absorption properties) to nanowires and bulk semiconductor have already been successful
in realising fast and irreversible exciton extraction21,22. The primary mechanism used for this purpose is Förster
transfer, which is well known in both natural molecular structures like photosynthetic antennae and also artificial
systems such as quantum dots. Förster transfer causes extremely fast exciton transitions (fs-ps) between monomers
separated by nanometer distances. This mechanism for exciton extraction has been studied both theoretically and
verified experimentally. Encouragingly, it has been shown to be capable of exceeding the reemission rate by up to
three orders of magnitude23,24.

IV. SUPPLEMENTARY METHODS

V. SUPPLEMENTARY METHOD 1: MASTER EQUATION DERIVATION

In the following we sketch the derivation of the master equation (7) from the main text. Following the general
procedure of Ref.25, we generalise from a vacuum environment to one with a population distribution and structured
spectral density. This allows for the presence of the superabsorption term and introduces some additional complexities.

We consider the interaction picture with respect to ĤS [Eq. (1) of the main text] and the free Hamiltonian of the
electromagnetic field. After performing the standard Born-Markov approximation and tracing over the environment
E , the starting point for our derivation is26 (~ = 1):

d

dt
ρ̃S(t) = −i

∫ ∞
0

dt′TrE [H̃L(t), [H̃L(t− t′), ρ̃S(t)⊗ ρ̃E ] + h.c. , (2)

where ρ̃S(t) is the reduced interaction picture density matrix and H̃L(t) denotes the interaction picture representation

of the system-light-interaction Hamiltonian ĤL = −
∑N
i=1 σ̂

i
− d · Ê(ri) + σ̂i+d

∗ · Ê(ri) , [c.f. Eq. (3) of the main text].
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Here, d is the atomic dipole vector and the electric field operator is given by

Ê(ri) = i

N∑
i=1

∑
k,λ

√
2ωk
V

eλ(k)
(
b̂λ(k)eik·ri − b̂†λ(k)e−ik·ri

)
, (3)

where eλ(k) and b̂
(†)
λ (k) are the polarisation vector of the field and its annihilation (creation) operator, respectively.

The system dynamics is then generically determined by the following master equation26

d

dt
ρS(t) = −i[ĤS + ĤI , ρS(t)] +

∑
ω

∑
i,j

[
Γi,j(ω)(ÂjρS(t)Â†i − Â

†
i ÂjρS(t)) + h.c.

]
, (4)

where h.c. denotes the Hermitian conjugate. The Âi are the Lindblad operators given by σ̂i− and σ̂i+, and Γi,j =∫∞
0
ds eiωs〈d∗ · Ê(ri, s)d · Ê(rj , 0)〉 is the spectral correlation tensor, which will be calculated in the following. We

start by considering the expression

〈d∗ · Ê(ri, s)d · Ê(rj , 0)〉 = TrE [d
∗ · Ê(ri, s)d · Ê(rj , 0)ρE ] , (5)

where ρE is taken as the thermal state of the environment, though allowing filtered thermal light later will not change
the form of the result27,28. Generally, for a thermalised environment it is well known that26

〈b̂λ(k)b̂λ′(k′)〉 = 〈(b̂†λ(k)b̂†λ′(k
′)〉 = 0 , (6)

〈b̂λ(k)b̂†λ′(k
′)〉 = δkk′δλ̂λ̂′ = (1 + n(ωk)) , (7)

〈b̂†λ(k)b̂λ′(k′)〉 = δkk′δλ̂λ̂′ = n(ωk) . (8)

Using these, the spectral correlation tensor can written as:

Γi,j =
2π

V

∑
k,λ

(d · eλ(k))2ωk

(
(1 + n(ωk))eik·rij

∫ ∞
0

ds e−i(ωk−ω)s + e−ik·rijn(ωk)

∫ ∞
0

ds ei(ωk+ω)s

)
, (9)

where ri,j is the vector connecting atoms i and j. Converting the sum over k to an integral (ωk = c|k|) yields

1

V

∑
k

→ 1

(2π)3c3

∫ ∞
0

dωk κ(ωk)ω2
k

∫
dΩ , (10)

where κ(ω) is the spectral density given by the density of states weighted by the coupling strength, κ(ω) =∑
k |gk|

2
δ(ω − ωk) ≡ χ(ω)|g(ω)|2. The angular part of the integration gives a diffraction-type function:

F (ω rij) =
8π

3

(
j0(ω |rij |) +

1

2

(
3 cos2(θd rij )− 1

)
j2(ω |rij |)

)
, (11)

where jn(x) is the nth spherical Bessel function and the angle θd rij between the atomic dipoles and pairwise connection
vectors is

cos2 θd rij
=
|d · r 2

ij |
|d2||rij 2|

. (12)

Considering the geometry in Fig. 1 of the main text, we assume that all dipoles are parallel, and perpendicular to
the plane defined by the ring. In this case, and for only nearest neighbour interactions, θd rij

is independent of i and
j. Thus Eq. (9) becomes

Γi,j =
|d|2

(2π)2c3

∫ ∞
0

dωk κ(ωk)ω3
k F (ωkrij)

(
(1 + n(ωk))

∫ ∞
0

dse−i(ωk−ω)s + n(ωk)

∫ ∞
0

dsei(ωk+ω)s

)
, (13)

which we separate into its real and imaginary parts Γi,j = 1
2γi,j(ω) + iS(ω) with the help of the identity∫ ∞

0

ds e±iεs = πδ(ε)± iP 1

ε
. (14)
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The real terms γi,j(ω) derive from the δ-functions and give rise to the dissipative dynamics, i.e. optical transitions in
this case. In the remaining term, F (ωk rij) is evaluated at ωk = ±ω. We are working in the small sample limit, where
the wavelength of light is far longer than the size of our nanostructure (ω rij ≈ 0), and so F (ω rij) ≈ 8π/3. Hence
γi,j is independent of the atomic indices to a good approximation:

γi,j(ω) ≈ γ(ω) =
4ω3|d|2

3c3
κ(ω)(1 + n(ω)) . (15)

The Planck distribution has the property that n(−ω) = −(1 + n(ω)). Thus we can combine the terms arising from
δ(ωk ± ω) and only run the sum over positive values. The second term on the righthand side of Eq. (4) thus becomes∑

ω>0

∑
i,j

4ω3|d|2

3c3
κ(ω)

(
(1 + n(ω))(σ̂j−ρσ̂

i
+ −

1

2

{
σ̂i+σ̂

j
−, ρ

}
) + n(ω)(σ̂j+ρσ̂

i
− −

1

2

{
σ̂i−σ̂

j
+, ρ

}
)

)
. (16)

By simply assuming all transitions have the same frequency splitting (ω = ωA), a vacuum environment state n(ω) = 0

and switching to the collective operators to express the sums Ĵ− =
∑
i σ̂

i
−, we reproduce the ordinary superradiance

master equation.

We now turn to the imaginary part S(ω) of the spectral correlation tensor, which will be responsible for providing
the detuning between different transitions; this is given by:

S(ω) =
|d|2

(2π)2c3
P

∫ ∞
0

dωk κ(ωk)ω3
k F (ωk rij)

(
1 + n(ωk)

ω − ωk
+

n(ωk)

ωk + ω

)
. (17)

The i = j terms, for which F (0) = 8π/3, correspond to the ordinary Lamb shift of individual atom transitions; these
can be accounted for by a renormalisation of the bare atomic frequency ωA. By contrast, the i 6= j terms correspond
to the dipole-dipole interaction induced by the EM field. Evaluating this integral requires us to choose a specific form
for the spectral density κ(ω). Here we consider two cases: first a flat spectral density, and second one that features
a ‘stop band’ in the spectrum, blocking the ‘bad’ transition at frequency ωbad. We begin with the former case. We
first separate out the term that is independent of n(ω), the Lamb shift SL(ω), and evaluate it. In the small sample
limit (ωrij � 1) we find

SL(ω) =
d2

4πε0r3
ij

[
1− 3 cos2(θdr)

]
. (18)

After separating out the Lamb shift, we are left with the divergent integral corresponding to the Stark shift:

Ss(ω) =
|d|2

(2π)2c3
P

∫ ∞
0

dωk κ(ωk)ω3
k F (ωkrij)

(
n(ωk)

ω − ωk
+

n(ωk)

ω + ωk

)
. (19)

This is seldom evaluated in the literature and is usually assumed negligible. In this work we are primarily concerned
with controlling n(ω) so that it is only significant for one mode, which has frequency ωg. In this case we set
n(ωk) = δ(ωk − ωg) and take the small sample limit:

Ss(ω) = lim
rωg→0

4πω
(
sin(rωg)

(
cos(2θdr)

(
3− r2ω2

g

)
+ r2ω2

g + 1
)
− rωg(3 cos(2θdr) + 1) cos(rωg)

)
r3(ω − ωg)(ω + ωL)

= 0 . (20)

Hence we can neglect the Stark shift and only retain the Lamb shift. Returning to the other spectral density we
consider in the main text, that with the stop band, we can express the stop band with the following, simplistic
spectral density:

κ(ω) = 1− T (ωb, σ) , (21)

where T (ωb, σ) is the ‘top hat’ function centred on ωb with a width σ. The factor of one produces the same result as
for the flat spectral density Ss(ω). The top hat handles the effect of the gap Sgap(ω):

S(ω) = Ss(ω)− Sgap(ω) . (22)

The top hat has the effect of confining the integral to a window around ωb:

Sgap(ω) =
|d|2

(2π)2c3
P

∫ ωb+σ

ωb−σ
dωk ω

3
k F (ωkrij)

(
1 + n(ωk)

ω − ωk
+

n(ωk)

ωk + ω

)
. (23)
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This can be evaluated to yield a lengthly, but straightforward expression. For an ideal gap (σ → 0), Sgap(ω) = 0
and hence can be neglected. Collating these results, we are left with a familiar expression for the strength of the
interaction between two dipoles (18) multiplied by a hopping term introduced via the EM field:

ĤI = SL(ω)

N∑
i6=j

(
σ̂i+σ̂

j
− + σ̂i−σ̂

j
+

)
. (24)

In the main text we consider the nearest neighbour limit of this expression, although this is not a necessity (see
Supplementary Method 3). We know that the EM field operators interact with the system collectively, causing them
to explore the ladder of Dicke states defined by:

|J,M〉 =

√
(J +M)!

N !(J −M)!
Ĵ

(J−M)
− |ee....e〉 . (25)

The highly symmetric geometry of our system means that the hopping interaction (24) does not cause mixing of Dicke
levels, but only shifts their energies (see main text). Thus an effective Hamiltonian for the subspace consisting of only
the fully symmetric states of the Dicke ladder can be written as :

ĤS + ĤI =
EM

2

J∑
M=−J

|J,M〉〈J,M | , (26)

where EM is the energy of the |J,M〉 state now including the shift defined in Eq. (10) of the main text. Instead of

having a generic ladder operator Ĵ± that moves any state |J,M〉 → |J,M ± 1〉, with emission or absorption at ωA,
we now have to break up this operator, because the Dicke transitions are no longer degenerate in energy. The generic
ladder operators are thus replaced by a sum over operators, which take us between specific Dicke states, sampling the
spectral density at the requisite frequency ωβ :

L̂M = |J,M − 1〉〈J,M | , (27)

which yields the result in the main text Eq. (7):

ρ̇ = −i[ĤS + ĤI , ρ]− γ
∑
β

κ(ωβ)
(

(n(ωβ) + 1)D[L̂β ]ρ+ n(ωβ)D[L̂†β ]ρ
)
. (28)

VI. SUPPLEMENTARY METHOD 2: RESOLUTION OF FREQUENCY SHIFTS

The enhanced absorption and emission rate in the middle of the Dicke ladder implies an increased lifetime broaden-
ing. One might thus worry whether the detunings obtained courtesy of the hopping interaction are then still sufficient
to completely resolve adjacent transitions. A simple analysis shows that this is indeed the case25, and the natural
width (N2γ around M = 0) remains smaller than the shift δω provided the wavelength of the light is much greater
than the size of the system. To see this, we shall assume that the transition is indeed well resolved, N2γ < δω,
and show that is essentially equivalent to the ‘small sample’ condition, r � λ, which underlies the phenomenon of
superradiance in the first place.

Using the definition of γ from as the free atom decay rate (see main text), the greatest broadening and smallest
energy shift at M = 0 are, respectively,

N2γ =
8N2π2d2

3ε0~λ3
, (29)

δω = 4
Ω

N − 1
≈ d2

4π~ε0r3
. (30)

Substituting Eqs. (29) and (30), the inequality N2γ < δω becomes

2N3π2d2

3ε0~λ3
<

d2

4π~ε0r3
⇐⇒ 2Nπr < λ , (31)

where the righthand side follows after cancellation of several variables followed by taking the qubic root. This is
equivalent to r � λ, up to moderate numerical factor (when N is not too large), accounted for by relaxing ‘�’ to
‘<’. For the present discussion, r is understood to be the nearest neighbour distance, having assumed energy shifts
appropriate for only nearest neighbour interactions (for other interaction models, the detunings would be larger). We
note that distinct shifted lines have also already been observed — and resolved — experimentally29.
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VII. SUPPLEMENTARY METHOD 3: INTERACTIONS BEYOND THE NEAREST NEIGHBOUR
LIMIT

In the main text we assumed only nearest neighbour interactions are significant. For a symmetric ring geometry
relaxing this condition leads to the same qualitative behaviour, but results in slightly larger detunings between adjacent
transitions in the Dicke ladder. First, let us consider the opposite limit to the nearest neighbour case and allow all
pairwise interactions with equal strength:

〈J,M |ĤH |J,M〉 = 〈J,M |Ω
∑
i 6=j

(σ̂i+σ̂
j
− + σ̂i−σ̂

j
+) |J,M〉 , (32)

δEm = Ω〈J,M |
∑
i6=j

(σ̂i+σ̂
j
− + σ̂i−σ̂

j
+) |J,M〉 , (33)

which can be rewritten using the collective operators as follows

δEm = Ω〈J,M |Ĵ+Ĵ− + Ĵ−Ĵ+ −
∑
i

(σ̂i+σ̂
i
− + σ̂i−σ̂

i
+) |J,M〉 . (34)

The final two terms are added to remove the i = j terms implicit in the Ĵ+Ĵ− terms, which count the number of
excited and unexcited atoms, respectively. Hence,

δEm = Ω(〈J,M |Ĵ+Ĵ− + Ĵ−Ĵ+ |J,M〉 − 2J) . (35)

The remaining two terms are easily calculated from Eq. (4) of the main text, yielding:

δEm = 2Ω(J2 −M2) . (36)

Thus the energy shifts are the same as in the nearest neighbour case Eq. (10) but lack the factor(J−1/2)−1. Therefore,
unlike in the nearest neighbour limit, increasing the number of atoms does not reduce the size of the frequency shift,
which could help in blocking the transition at ωbad and ensuring frequency selectivity of a trapping mechanism.

The actual ring geometry with all pairwise dipole interactions included will fall somewhere in between these two
limits, depending on ring size. The operators involved in the interaction remain the same, but their weights are
altered as the size of the ring changes. The symmetry of the ring dictates that each atom will be subject to the same
set of interactions with the rest of the ring. The condition of interchangeability of atoms is thus met regardless of the
specific interaction model (i.e. nearest neighbour, next nearest neighbour etc.). For all cases, the hopping interaction
only causes shifts of a variable size between the two limits we have discussed above; the size of the shifts given a
particular ring size and interaction model is readily obtained numerically.

VIII. SUPPLEMENTARY METHOD 4: THE IMPLICIT INTERACTION APPROACH

In the main text, the hopping interaction emerged from the derivation of the master equation, as a direct consequence
of embedding the absorbers into a common electromagnetic environment. Alternatively, we could add an interaction
to the Hamiltonian, which may either be mediated by virtual photon exchange or have some other physical origin.
The initial Hamiltonian then reads:

ĤS = ωA

N∑
m=1

σ̂m+ σ̂
m
− + Ω

N∑
i,j

(σ̂i+σ̂
j
− + σ̂j−σ̂

i
+) . (37)

Such a Hamiltonian is a diagonalised using the Jordan-Wigner transformation30. For example, a four atom system
has eigenvalues: {

0, ωA − 2Ω, 2ωA − 2
√

2Ω, 3ωA − 2Ω, 4ωA

}
, (38)

resulting in the following transition frequencies:

ω =
{
ωA − 2Ω, ωA − 2Ω

(
1 +
√

2
)
, ωA + 2Ω

(
−1 +

√
2
)
, ωA + 2Ω

}
. (39)

These differ slightly from those derived using the approach in the main text. Crucially, however, the degeneracy
of the transition frequencies is broken in a similar way as before, so that the discussion of environmental control
for confining the dynamics to a specific transition remains valid. For small length scale linear systems it has been
noted that superradiance dynamics are not significantly altered30, when compared to the traditional field mediated
interaction approach25, used in the main text.
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IX. SUPPLEMENTARY METHOD 5: NUMERICAL MODELS AND THE EFFECT OF DISORDER

In this Section we shall verify the result of the main article using numerical approaches. As a first step, we investigate
the validity of the master equation framework described in the article. This is achieved with a Monte Carlo approach
which allows the system to explore the entire Dicke ladder. In order to study disorder in the system Hamiltonian, we
also present results from a completely independent model, which only builds on the physical Hamiltonian and makes
no assumptions about the Dicke model being a good description of the system.

A. Monte Carlo

The Effective Two Level System (E2LS) model in the main text allowed us to reduce the complexity of the problem
dramatically and made it analytically tractable. In order to verify this approach we here compare it to an independent
numerical model: Supplementary Figure 3 shows excellent agreement between the E2LS model and Monte Carlo
simulations of the master equation (28) [Eq. (7) of the main text] using QuTip1. Monte Carlo simulations of quantum
systems use a time/memory tradeoff to allow large systems to be simulated. They do this by only storing and
propagating the state vector rather than the entire density matrix, by averaging over many trajectories the results
converge toward the dynamics that would have been obtained by numerical integrating the master equation as in
the previous section. The numerical model uses a phenomenological trapping. The agreement with the E2LS can be
made arbitrarily close with increasing numbers of trajectories. The same agreement was also seen for systems with
larger numbers of atoms.

B. Numerical integration of Master Equation

We proceed by exploring the effect of disorder on both superradiance and superabsorption. To capture these effects
we must use a more general, but less analytically informative approach to deriving the master equation than the one
presented in the main text and derived in detail in Supplementary Method 1.

Starting with the implicit interaction model, we now allow the site energies to vary. We aim to simulate the effect
of static energy disorder, which – to some extent – will be present in all physical implementations of superabsorption.
To do this we draw the site frequencies ωm from a Gaussian distribution with a mean given by the atomic frequency
ωA and a standard deviation given by σ. The system Hamiltonian is:

ĤS =

N∑
m=1

ωmσ̂
m
+ σ̂

m
− + Ω

N∑
i,j

(σ̂i+σ̂
j
− + σ̂j−σ̂

i
+) . (40)

If the full trap model is to be used the extra terms (see Supplementary Method 6) are added. The Hamiltonian is
then diagonalised numerically and the eigenoperators determined which project the dipole operator on the eigenspace
of ĤS :

Â(ω) =
∑
e,e′

δ(ω = e− e′)|e〉〈e|(Ĵ− + Ĵ+)|e′〉〈e′| , (41)

where |e〉〈e| is a projector onto the a given eigenstate of the Hamiltonian (37). Âα(ω) is therefore an eigenoperator of

ĤS , which causes a transition between two eigenstates of ĤS sampling the environment at frequency ω. We construct
the new master equation analogously to Eq. (2):

d

dt
ρ̃S(t) = −i

∫ ∞
0

dt′TrE [H̃I(t), [H̃I(t− t′), ρ̃S(t)⊗ ρ̃E ] , (42)

and the standard procedure26 straightforwardly yields

d

dt
ρS(t) =

∑
ω,ω′

∑
α,β

ei(ω−ω
′)tΓα,β(ω)(Âβ(ω)ρS(t)Â†α(ω′)− Â†α(ω′)Âβ(ω)ρS(t)) + h.c. . (43)
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Equation (43) could directly be solved numerically, but this is extremely computationally expensive even for small
disordered systems, due the pathological scaling in the number of terms arising from the summation over ω, ω′, α
and β. To overcome this difficulty, (43) is traditionally simplified using the rotating wave approximation (RWA). This
means neglecting the non-secular terms (where ω 6= ω′), leading to the canonical ’quantum optical master equation’:

d

dt
ρS(t) =

∑
ω

∑
α,β

Γα,β(ω)(Âβ(ω)ρS(t)Â†α(ω)− Â†α(ω)Âβ(ω)ρS(t)) + h.c. . (44)

In the case of ordinary superradiance, with no dipole-dipole interaction and consequent shifts, this step is unprob-
lematic because there is in fact only one transition frequency (ωA). However, for all other cases, care must be taken
to apply the approximation selectively only where it is strictly justified. The RWA assumes that the fast oscillating
terms ei(ω−ω

′)t effectively average to out to zero over the timescale relevant to the system dynamics τR. The fastest
system dynamics timescale is given by the reciprocal of the lowest non-zero transition frequency ω−1

min. However,
there is some subtlety to applying the RWA to collective transitions in disordered systems: Neglecting all non-secular
terms instantly imposes the independent exponential decay type behaviour on the system. Applying no restriction is
extremely computationally expensive, given that disorder calculation must be repeated many times and averaged to
produce meaningful results. Removing too many non-secular terms causes an overestimation of the debilitating effect
of disorder on the system: the dynamics to abruptly change from collective to independent behaviour with even the
smallest amount of disorder. This is true of the commonly used order of magnitude separation between τR and ω−1

min.
Instead the criterion should made steadily more stringent until convergence is attained. By retaining these terms
our model can smoothly interpolate between the limits of collective behaviour (superradiance/superabsorption) and
independent exponential decay, which must emerge for strongly disordered systems. The resulting equation is then
integrated numerically using the QuTip package1. The numerical calculation is then repeated many times in order to
obtain the an ensemble average over different instances of disorder and smooth out the random oscillations introduced
by any given instance.

Supplementary Fig. 4 shows the effect of disorder on superradiance. As expected both plots show a certain robustness
to disorder. This is because the increased transition rates produced by superradiance serve to counterbalance the effect
of disorder: the faster rate broadens the natural linewidth of the transitions, effectively removing the distinguishability
of atoms introduced by the disorder. The model with dipole-dipole interactions shows greater robustness, as might be
expected because its eigenstates are intrinsically delocalised, whereas with no interactions there is less of a barrier to
the localisation introduced by σ. Supplementary Fig. 5 shows the effect of disorder on superabsorption. As expected
from the argument above superabsorption also shows excellent robustness to disorder. It is slightly less robust than
superradiance, because it relies on the Dicke ladder shifts not being too heavily altered by the level of static disorder
characterised by σ. The ratio of static disorder to interaction strength needed for superabsorption, is well met by
current experimental systems as detailed in Supplementary Table 1.

X. SUPPLEMENTARY METHOD 6: TRAPPING

In the main text we describe the trapping process using a Lindblad operator, which takes the system from the
state |J, 0〉 → |J,−1〉 by irreversibly removing one exciton from the system. Numerous microscopic mechanisms can
be conceived of that would produce this effect; all will have to involve a collective coupling of the atoms of the ring,
followed by a process (through coupling to a wider external environment) which prevents the return of exciton to the
primary system, or at least renders it very unlikely.

Here, we give an account of the simplest scenario one can envision: all atoms of the ring are coupled to a ‘trap’ atom
at the centre, whose role is to first localise the energy and then irreversibly remove it. This simple trapping model is
schematically depicted in Supplementary Fig. 2: The trap atom possesses a transition frequency ωtrap ≈ ωgood and
is coupled to the ring by a field mediated hopping interaction of strength g (i.e. the same type of interaction which
couples the ring’s atoms to each other). The Hamiltonian for such a set up is:

ĤT = g(Ĵ+σ̂
T
− + Ĵ−σ̂

T
+) + ωtrapσ̂

T
+σ̂

T
− , (45)

where the superscript T denotes the trap site, g is the strength of the coupling between the ring and the trap, and ωtrap

is the trap’s transition frequency, which ideally matches ωgood. An exciton ‘hopping’ onto the trap site is subjected
to an irreversible decay with rate Γtrap, e.g. by being linked to a chain of exciton sites acting as a wire or lead. In
natural light harvesting systems the trap would be the reaction centre and the decay a photochemical process.
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When the trapping rate Γtrap is sufficiently fast only negligible population exists in the 2LS forming the trap, hence
its effect can, to a good approximation, be considered that of a Lindblad operator acting on the main system. For
a slower rate Γtrap a decaying Rabi oscillation may take place, moving the exciton back and forth between trap and
ring. However, the presence or absence of these oscillations does not significantly affect the superabsorption process.

This simplistic trapping model introduces an extra contribution to the rate of loss from the E2LS: the finite lifetime
1/Γtrap means the energy of the trap is not perfectly sharply defined, reducing the trap’s frequency selectivity. Thus,
it will occasionally also accept energy from the ‘bad’ transition ωbad, which increases the effective loss rate Γloss.
However, one can optimise the parameters (Γtrap , g, ωtrap) to minimise this undesirable side effect, whilst still meeting
the condition that Γtrap > Γemit. With the addition of the trapping terms (45) the master equation is numerically
solved using the method described in Supplementary Method 5. We compare this against the analytical expression
for the trapping rate that can be derived for the E2LS model described in the main text:

ρM=0(t) =
Γabsorb√

Γ2
total − 4Γloss(Γemit + Γtrap)

× (46)

(e−
1
2 t(Γtotal−

√
Γ2
total−4ΓL(Γemit+Γtrap)) − e− 1

2 t(Γtotal+
√

Γ2
total−4ΓL(Γemit+Γtrap))),

Itrap(t) =Γtrap ρM=0(t), (47)

where Γtotal = Γabsorb + Γemit + Γloss + Γtrap and with Γtrap referring to the effective rate of a trapping Lindblad
operator, which is related, but generally not necessarily equal to the decay rate of the trap site in the full model. This
is due to the effect additional parameters such as the coupling strength g. By accounting for this and the additional
contribution to Γloss described above, we can compare the trap site model against the E2LS. Supplementary Fig. 1
shows the results of this comparison. The analytical results for the E2LS can thus provide an adequate and simple
qualitative description of the dynamics that is brought about by a more complex and realistic trapping model.
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