Supplemental Online Material

Supplementary Figure 1: C3aR/C5aR signaling connected with T effector cell activation and

viability.

Supplementary Figure 2: The presence or absence of CD4 * T cell C3aR/C5aR signaling

biases between effector T cell and $\mathrm{i}\mathrm{T}_{\mathrm{reg}}$ polarization.

Supplementary Figure 3: Optimal iT_{reg} induction requires the dual absence of C3aR and C5aR signaling in CD4⁺ cells and iT_{reg} induction is inhibited by C3a + C5a. (a) Sorted WT, $C3ar1^{-/-}$, $C5ar1^{-/-}$, or $C3ar1^{-/-}C5ar1^{-/-}$ Foxp3⁻ CD4⁺ T cells were incubated with WT DCs and Foxp3⁺ CD4⁺ T cells assayed for CD25 and Foxp3 expression (*P<0.001, n=7). (b) Sorted Foxp3⁺ cells were incubated with 10⁶ CellTracker RedTM labeled Foxp3⁻CD25⁻CD4⁺ WT cells in differing T_{eff}/iT_{reg} ratios + anti-CD3 (5 µg/ml) and 2.5x10⁵ CD11c⁺ DCs and relative suppressive capacity determined as in Fig 1. (c) Sorted WT Foxp3⁻ CD4⁺ T cells and WT DCs were incubated with rhTGF-β1 (5 ng/ml) ± C5a (100 ng/ml) after which percent Foxp3⁺CD25⁺ cells was determined. (d) Sorted $C3^{-/-}C5^{-/-}$ CD25⁻ CD4⁺ T cells were cultured for 3 days with WT DCs, and anti-CD3 ± anti-C3a + anti-C5a mAbs (10 µg/ml). The cells were assayed for Foxp3 expression by flow cytometry (*P<0.001; n=6).

Supplementary Figure 4: Changes connected with greater suppressor activity of iT_{regs} induced by C3aR + C5aR antagonism than by exogenous TGF- β 1. Dependence of TGF- β 1 and IL-10 production by C3aR + C5aR antagonized iT_{reg} on auto-inductive TGF- β 1 signaling. (a) Sorted WT or *C3ar1^{-/-}C5ar1^{-/-}* Foxp3⁺ iT_{regs} were induced in the presence of WT DCs after which the DCs were assayed for B7-1,2 and CD40 expression. Mean Fluorescence Intensity (MFI) (*P < 0.01; n=5). (b) iT_{regs} were induced from sorted WT Foxp3⁻ T cells in the presence of anti-CD3, IL-2, DCs, and of TGF- β 1 (5 ng/ml), or from sorted Foxp3⁻ *C3ar1^{-/-}C5ar1^{-/-}* cells in the absence of TGF- β 1. Sorted Foxp3⁺ cells prepared in the two ways were assayed for p-STAT3 by flow cytometry. Anti-C3a + anti-C5a mAbs were added to the Foxp3⁺ cells prepared with TGF- β 1 after which STAT3 phosphorylation was reassessed (representative plots of n=6). (c) WT Foxp3⁻ CD4⁺ T cells were incubated with anti-CD3, rhIL-2 (5 ng/ml) and CD11c⁺ WT DCs in the presence of rhTGF- β 1 (5 ng/ml) or C3aR-A + C5aR-A (10 nM). Foxp3⁺ cells were assayed for IL-6R by flow cytometry (representative plots of n=6). (d) *C3ar1^{-/-}C5ar1^{-/-}* Foxp3⁻ cells were incubated for 3 days with anti-CD3, rhIL-2 (5 ng/ml) and CD11c⁺ WT DCs ± TGF-βR1 inhibitor (10 nM),or Smad3 inhibitor (5 μ M). Sorted CD4⁺ T cells (unfractionated) and sorted DCs were cultured for 24 hr and the supernatants assayed IL-10 by ELISA (n=7). **(e)** Flow sorted CD4⁺ T cells (unfractionated) and DCs from the induction cultures containing TGF-βR1 inhibitor (10 nM), or Smad3 inhibitor (5 μ M) in panel **(e)** were cultured for 24 hr, after which endogenously produced TGF-β1 protein was assessed by ELISA (n=7).

Supplementary Figure 5: Effects of downstream C3aR/C5aR GPCR signaling on CREB activation and PI-3Kγ-AKT-mTOR-p-S6 signaling.

Supplementary Figure 6: Differential effects of TGF- β 1 and IL-6 on local complement production by DCs. (a) Sorted WT Foxp3⁻ CD4⁺ T cells were activated for 1 hr with anti-CD3+CD28 beads plus C5a (100 ng/ml) or TGF- β 1 (5 ng/ml), after which cells were assayed for C3, C5, C3aR, and C5aR mRNA expression by qPCR (*P<0.001, **P<0.02, n=5). (b) CD11c⁺ DCs were stimulated for 1 hr with IL-6 (5 ng/ml) and assayed for complement mRNA transcripts by qPCR (*P<0.001, n=5). (c) Sorted WT Foxp3⁻ cells were activated in the presence DCs for 0.5, 1, 2, 4 hr with TGF- β 1 (5 ng/ml), C3aR-A+C5aR-A (10 nM, Antags), or C3aR-A + C5aR-A (10 nM) plus anti-TGF- β 1 mAb (5 µg/ml). CD4⁺ T cells were then sorted and assayed for TGF- β 1 mRNA levels by qPCR (values are presented as fold increase over time 0 after normalization to β -actin).

Supplementary Figure 7: C5L2 and C5aR expression in IT_{regs} induced by C3aR and C5aR antagonism vs exogenous TGF- β 1, control for C5aR and C5L2 IPs using C3ar1^{-/-} C5ar1^{-/-} CD4⁺ cells, and intracellular staining for C5L2. (a) Sorted Foxp3⁻⁻ CD4⁺ T cells were incubated with WT DCs in the presence TGF- β 1 (5 ng/ml) or with $C3^{-/-}C5^{-/-}DCs$ in the absence of TGF- β 1. DCs (left side) were assayed for C5aR and C5L2 expression by gating on CD11c⁺ cells. Responder T cells (right side) were assayed for C5aR and C5L2 expression by gating on Foxp3⁻⁻ cD4⁺ T cells and on Foxp3⁺ cells. (*P < 0.01; n=5). (b) Sorted Foxp3⁺ iT_{regs} generated from WT Foxp3⁻⁻ CD4⁺ T cells and WT DCs plus TGF- β 1 (5 ng/ml), and sorted conventional Foxp3⁻⁻ CD4⁺ WT cells (Conv T cell) were incubated with anti-CD3+CD28 Dynabeads and assayed at 0, 24, and 48 hr for C5L2 mRNA transcripts by qPCR. (c) <u>Upper blots</u>: Unactivated sorted conventional WT Foxp3⁻⁻CD4⁺ T cells and unactivated *C3ar1^{-/-}C5ar1^{-/-}* Foxp3⁻⁻CD4⁺ T cells were incubated for 30 min with anti-CD3, after which the cells were incubated for 5 min with biotin labeled C5a and chilled to 4°C. Plasma membrane fractions were purified by ultracentrifugation and anti-C5aR IPs prepared. Following elution with alkali, the eluates from the anti-C5aR IPs were loaded on gels and electrophoresed proteins were immunoblotted for biotinylated-C5a with streptavidin-HRP. Lower blots: iT_{regs} prepared sorted Foxp3⁻⁻WT CD4⁺ T cells with anti-CD3, IL-2, WT DCs and TGF- β 1 (5 ng/ml) or from sorted Foxp3⁻ *C3ar1^{-/-}C5ar1^{-/-}* CD4⁺ T cells in the absence of TGF- β 1. The cells were incubated for 30 min with anti-CD3, after which they were incubated for 5 min with biotin labeled C5a, and immunoblots of anti-C5aR IPs analyzed as above. **(d)** WT Foxp3⁻CD4⁺ T cells were incubated for 3 days with anti-CD3, rhIL-2 (5 ng/ml), and WT DCs in the presence of C3aR-A + C5aR-A (10 nM). Foxp3⁺ CD4⁺ T cells were assayed for extracellular C5L2 expression and permeabilized cells assayed for intracellular C5L2 expression (*P < 0.01 for MFI; n=5).

Supplementary Figure 8: iT_{regs} that arise from human CD4⁺ cells in which C3aR and C5aR signaling are blocked are anergic. (ab) Flow sorted CD45RA⁺CD25⁻CD4⁺ human T cells were incubated for 3 days with soluble anti-CD3, IL-2, and autologous DCs in the presence and absence of C3aR-A + C5aR-A after which cells were washed and sorted on CD25. After sorting, CD25⁻ (Effectors) and CD25⁺ (T_{regs}) were CFSE-labeled and incubated for 48 hr in complete RPMI 1640 + 10% FBS. The cells were then stimulated with PMA + lonomycin for 3 days after which (a) culture supernatants were assayed for IL-2 by ELISA, and (b) proliferation was assessed by CFSE dilution.