LABORATORY STOCK SOLUTIONS AND **EQUIPMENT**

Common Stock Solutions and Buffers

This section describes the preparation of buffers and reagents used in this manual. When preparing solutions, use Milli-Q-purified water (or equivalent) and reagents of the highest available grade. Sterilization—by filtration through a 0.22-µm filter or by autoclaving—is recommended for most solutions stored at room temperature. Where storage conditions are not specified, store up to 6 months at room temperature. Discard any solution that shows evidence of contamination, precipitation, or discoloration.

Standardized and reference reagents are sometimes required—e.g., for quality control, positive and negative controls, equipment calibration, and assay validation. Environmental and chemical standards are available from a number of suppliers, including the National Institute of Standards and Technology (NIST), AccuStandard Inc., and Sigma Chemical Co. Consult the LabGuide, published annually by the American Chemical Society (ACS) for other suppliers (e.g., ACS, 1999).

Acid. concentrated stock solutions

See Table A.2A.1.

Ammonium acetate, 10 M

Dissolve 385.4 g ammonium acetate in 150 ml H₂O Add H₂O to 500 ml

Ammonium hydroxide, concentrated stock solution

See Table A.2A.1.

Ammonium sulfate, saturated

76 g ammonium sulfate 100 ml H₂O Heat with stirring to just below boiling point Let stand overnight at room temperature

Acid/base	Molecular weight	% by weight	Molarity (approx.)	Specific gravity	1 M solution (ml/liter)
Acetic acid (glacial)	60.05	99.6	17.4	1.05	57.5
Ammonium hydroxide	35.0	28	14.8	0.90	67.6
Formic acid	46.03	90	23.6	1.205	42.4
		98	25.9	1.22	38.5
Hydrochloric acid	36.46	36	11.6	1.18	85.9
Nitric acid	63.01	70	15.7	1.42	63.7
Perchloric acid	100.46	60	9.2	1.54	108.8
		72	12.2	1.70	82.1
Phosphoric acid	98.00	85	14.7	1.70	67.8
Sulfuric acid	98.07	98	18.3	1.835	54.5

Table A.2A.1 Molarities and Specific Gravities of Concentrated Acids and Bases^a

CAUTION: Handle strong acids and bases carefully

Laboratory Stock Solutions and Equipment

APPENDIX 2A

ATP, 100 mM

1 g ATP (adenosine triphosphate) 12 ml H_2O Adjust pH to 7.0 with 4 M NaOH Adjust volume to 16.7 ml with H_2O Store in aliquots indefinitely at $-20^{\circ}C$

Base, concentrated stock solutions

See Table A.2A.1.

$CaCl_2$, 1 M

147 g CaCl₂·2H₂O H₂O to 1 liter

Carbonate buffer

1.6 g Na₂CO₃ (15 mM final) 2.9 g NaHCO₃ (35 mM final) 0.2 g NaN₃ (3.1 mM final) H_2O to 1 liter Adjust to pH 9.5

CAUTION: Sodium azide is poisonous; follow appropriate precautions for handling, storage, and disposal.

CMF-DPBS (calcium- and magnesium-free Dulbecco's phosphate-buffered saline)

8.00 g NaCl (0.137 M) 0.20 g KCl (2.7 mM) 2.16 g Na₂HPO₄·7H₂O (8.1 mM) 0.20 g KH₂PO₄ (1.1 mM) H₂O to 1 liter

DPBS (Dulbecco's phosphate-buffered saline)

8.00 g NaCl (0.137 M) 0.20 g KCl (2.7 mM) 0.20 g KH₂PO₄ (1.1 mM) 0.10 g MgCl₂·6H₂O (0.5 mM) 2.16 g Na₂HPO₄·7H₂O (8.1 mM) 0.10 g anhydrous CaCl₂ (0.9 mM) H₂O to 1 liter

DTT (dithiothreitol), 1 M

Dissolve 1.55 g DTT in 10 ml water and filter sterilize. Store in aliquots at -20° C.

EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0)

Dissolve 186.1 g disodium EDTA dihydrate in 700 ml water. Adjust pH to 8.0 with 10 M NaOH (~50 ml; add slowly). Add water to 1 liter and filter sterilize.

Begin titrating before the sample is completely dissolved. EDTA, even the disodium salt, is difficult to dissolve at this concentration unless the pH is increased to between 7 and 8.

HBSS (Hanks' balanced salt solution)

0.40 g KCl (5.4 mM final) 0.09 g Na₂HPO₄·7H₂O (0.3 mM final) 0.06 g KH₂PO₄ (0.4 mM final) 0.25 c NaUCO (4.2 mM final)

0.35 g NaHCO₃ (4.2 mM final)

0.14 g CaCl₂ (1.3 mM final)

0.10 g MgCl₂·6H₂O (0.5 mM final)

Common Stock Solutions and Buffers

continued

0.10 g MgSO₄·7H₂O (0.6 mM final) 8.0 g NaCl (137 mM final) 1.0 g D-glucose (5.6 mM final) 0.2 g phenol red (0.02%; optional) Add H₂O to l liter and adjust pH to 7.4 with 1 M HCl or 1 M NaOH Filter sterilize and store up to 1 month at 4°C

HBSS may be made or purchased without Ca^{2+} and Mg^{2+} (CMF-HBSS). These components are optional and usually have no effect on an experiment; in a few cases, however, their presence may be detrimental. Consult individual protocols to see if the presence or absence of these components is recommended.

Bottles should be kept tightly closed to prevent CO_2 loss and subsequent alkalinization.

HCl, 1 M

Mix in the following order: 913.8 ml H₂O 86.2 ml concentrated HCl

KCl, 1 M

74.6 g KCl H_2O to 1 liter

$MgCl_2, 1 M$

20.3 g MgCl₂·6H₂O H₂O to 100 ml

$MgSO_4, 1 M$

24.6 g MgSO₄·7H₂O H₂O to 100 ml

NaCl, 5 M

292 g NaCl H_2O to 1 liter

NaCl (*saline*), 0.9% (*w*/*v*)

9 g NaCl (154 mM final) H₂O to 1 liter

NaOH, 10 M

Dissolve 400 g NaOH in 450 ml H₂O H₂O to 1 liter

PBS (phosphate-buffered saline)

8.00 g NaCl (0.137 M) 0.20 g KCl (2.7 mM) 0.24 g KH₂PO₄ (1.4 mM) 1.44 g Na₂HPO₄ (0.01 M) H₂O to 1 liter

Potassium acetate buffer, 0.1 M

Solution A: 11.55 ml glacial acetic acid per liter (0.2 M) in water. Solution B: 19.6 g potassium acetate $(\text{KC}_2\text{H}_3\text{O}_2)$ per liter (0.2 M) in water. Referring to Table A.2A.2 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 100 ml. Filter sterilize if necessary. Store up to 3 months at room temperature.

> Laboratory Stock Solutions and Equipment

continued

This may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium acetate in the same volume. Acetate buffers show concentration-dependent pH changes, so check the pH by diluting an aliquot of concentrate to the final concentration.

To prepare buffers with pH intermediate between the points listed in Table A.2A.2, prepare closest higher pH, then titrate with solution A.

Potassium phosphate buffer, 0.1 M

Solution A: 27.2 g KH₂PO₄ per liter (0.2 M final) in water.

Solution B: 34.8 g K₂HPO₄ per liter (0.2 M final) in water.

Referring to Table A.2A.3 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 200 ml. Filter sterilize if necessary. Store up to 3 months at room temperature.

This buffer may be made as a 5- or 10-fold concentrate simply by scaling up the amount of potassium phosphate in the same final volume. Phosphate buffers show concentration-dependent changes in pH, so check the pH of the concentrate by diluting an aliquot to the final concentration.

To prepare buffers with pH intermediate between the points listed in Table A.2A.3, prepare closest higher pH, then titrate with solution A.

Desired pH	Solution A (ml)	Solution B (ml)
3.6	46.3	3.7
3.8	44.0	6.0
4.0	41.0	9.0
4.2	36.8	13.2
4.4	30.5	19.5
4.6	25.5	24.5
4.8	20.0	30.0
5.0	14.8	35.2
5.2	10.5	39.5
5.4	8.8	41.2
5.6	4.8	45.2

Table A.2A.2Preparation of 0.1 M Sodiumand Potassium Acetate Buffers^a

^{*a*}Adapted by permission from CRC (1975).

Table A.2A.3 Preparation of 0.1 M Sodium and Potassium Phosphate Buffers^a

Desired pH	Solution A (ml)	Solution B (ml)	Desired pH	Solution A (ml)	Solution B (ml)
5.7	93.5	6.5	6.9	45.0	55.0
5.8	92.0	8.0	7.0	39.0	61.0
5.9	90.0	10.0	7.1	33.0	67.0
6.0	87.7	12.3	7.2	28.0	72.0
6.1	85.0	15.0	7.3	23.0	77.0
6.2	81.5	18.5	7.4	19.0	81.0
6.3	77.5	22.5	7.5	16.0	84.0
6.4	73.5	26.5	7.6	13.0	87.0
6.5	68.5	31.5	7.7	10.5	90.5
6.6	62.5	37.5	7.8	8.5	91.5
6.7	56.5	43.5	7.9	7.0	93.0
6.8	51.0	49.0	8.0	5.3	94.7

Common Stock Solutions and Buffers

^{*a*}Adapted by permission from CRC (1975).

Table A.2A.4 Preparation of SDS Sample Buffer

Ingredient	2×	4×	Final conc. in 1× buffer
0.5 M Tris·Cl, pH 6.8 ^a	2.5 ml	5.0 ml	62.5 mM
SDS	0.4 g	0.8 g	2% (w/v)
Glycerol	2.0 ml	4.0 ml	10% (v/v)
Bromphenol blue	20 mg	40 mg	0.1% (w/v)
2-Mercaptoethanol ^{b,c}	400 µl	800 µl	~300 mM
H ₂ O	to 10 ml	to 10 ml	—

^aSee recipe below.

^bAlternatively, dithiothreitol (DTT), at a final concentration of 100 mM, can be substituted for 2-mercaptoethanol.

^cAdd just before use.

SDS, 20% (w/v)

Dissolve 20 g SDS (sodium dodecyl sulfate or sodium lauryl sulfate) in H_2O to 100 ml total volume with stirring. Filter sterilize using a 0.45- μ m filter.

It may be necessary to heat the solution slightly to fully dissolve the powder.

SDS electrophoresis buffer, $5 \times$

15.1 g Tris base 72.0 g glycine 5.0 g SDS Distilled, deionized H_2O to 1 liter Store up to 1 month at 0° to 4°C Dilute to 1× before use

Do not adjust the pH of the stock solution; the pH is 8.3 when diluted to $1 \times .$

Use purified SDS if appropriate.

SDS sample buffer

See Table A.2A.4.

Sodium acetate, 3 M

Dissolve 408 g sodium acetate trihydrate $(NaC_2H_3O_2 \cdot 3H_2O)$ in 800 ml H₂O Adjust pH to 4.8, 5.0, or 5.2 (as desired) with 3 M acetic acid (see Table A.2A.1) Add H₂O to 1 liter Filter sterilize

Sodium acetate buffer, 0.1 M

Solution A: 11.55 ml glacial acetic acid per liter (0.2 M) in water.

Solution B: 27.2 g sodium acetate (NaC₂H₃O₂·3H₂O) per liter (0.2 M) in water.

Referring to Table A.2A.2 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 100 ml. Filter sterilize if necessary. Store up to 3 months at room temperature.

This may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium acetate in the same volume. Acetate buffers show concentration-dependent pH changes, so check the pH by diluting an aliquot of concentrate to the final concentration.

To prepare buffers with pH intermediate between the points listed in Table A.2A.2, prepare closest higher pH, then titrate with solution A.

Laboratory Stock Solutions and Equipment Sodium phosphate buffer, 0.1 M

Solution A: 27.6 g NaH₂PO₄·H₂O per liter (0.2 M final) in water.

Solution B: 53.65 g Na₂HPO₄·7H₂O per liter (0.2 M) in water.

Referring to Table A.2A.3 for desired pH, mix the indicated volumes of solutions A and B, then dilute with water to 200 ml. Filter sterilize if necessary. Store up to 3 months at room temperature.

This buffer may be made as a 5- or 10-fold concentrate by scaling up the amount of sodium phosphate in the same final volume. Phosphate buffers show concentration-dependent changes in pH, so check the pH by diluting an aliquot of the concentrate to the final concentration.

To prepare buffers with pH intermediate between the points listed in Table A.2A.3, prepare closest higher pH, then titrate with solution A.

TBS (Tris-buffered saline)

100 mM Tris·Cl, pH 7.5 (see recipe below) 0.9% (w/v) NaCl Store up to several months at 4°C

Tris-Cl, 1 M

Dissolve 121 g Tris base in 800 ml H_2O Adjust to desired pH with concentrated HCl Adjust volume to 1 liter with H_2O Filter sterilize if necessary Store up to 6 months at 4°C or room temperature

Approximately 70 ml HCl is needed to achieve a pH 7.4 solution, and ~42 ml for a solution that is pH 8.0.

IMPORTANT NOTE: The pH of Tris buffers changes significantly with temperature, decreasing approximately 0.028 pH units per 1°C. Tris-buffered solutions should be adjusted to the desired pH at the temperature at which they will be used. Because the pK_a of Tris is 8.08, Tris should not be used as a buffer below pH ~7.2 or above pH ~9.0.

LITERATURE CITED

American Chemical Society (ACS). 1999. LabGuide 98-99. ACS, Washington, D.C. [also available online at http://pubs.acs.org./labguide].

Chemical Rubber Company (CRC). 1975. CRC Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data, 3d ed., Vol. 1. CRC Press, Boca Raton, Fla.

Common Stock Solutions and Buffers

A.2A.6