

Supplemental Figure 1. Schematic overview of canonical miRNA biosynthesis (modified from Rogers and Chen, 2013).

Supplemental Figure 2. Skotomorphogenesis and photomorphogenesis are defective in miRNA biogenesis mutants

The *hyl1-2*, *hen1-1*, *hst-3* and *hst-6* mutants show defects in hypocotyl elongation in the dark and light (A). However, the mutants are hypersensitive to continuous blue light (Bc)(B). Data are mean \pm SD. *, significantly different from the corresponding wild type (Col-0 and Ler)(p < 0.05, Student's t test; n = 16-32).

Supplemental Figure 3. The transcript level of *HEN1* is light-upregulated

Expression of miRNA biosyntheic genes *HEN1*, *DCL1*, *HYL1*, *SE*, *HST* and *AGO1* in etiolated seedlings under dark and light treatments at the indicated times from Genevestigator sample AT-00003 (repository name: PZ051203_02). Gene expression for the times indicated was normalized to time 0.

Supplemental Figure 4. Molecular characterization of *hen1-5* and *hen1-6* mutants

(A) SALK_049197 (*hen1-5*) and SALK_090960 (*hen1-6*) lines carried the T-DNA insertion in intron 5 and exon 3, respectively, of *HEN1*. The locations of the T-DNA and transcription start/end are marked on the *HEN1* gene model. (B) RNA gel blot analysis with a DNA probe spanning 1 to 500 bp of the *HEN1* coding region for profiling *HEN1* expression in the wild type (Col-0), *hen1-5* and *hen1-6*. Ethidium-bromide–stained rRNA is shown as a loading control.

Supplemental Figure 5. The *hen1* mutants are hypersensitive to blue (B), far-red (FR), and red (R) light

Representative seedlings of 4-d-old seedlings of Col-0, Ler, *hen1-5, hen1-6, phyA, phyB* and *cry1* seedlings grown under continuous blue light (Bc) (A), FRc (B), Rc (C) or dark (D). Bar = 2 mm.

Supplemental Figure 6. Functional complementation of *hen1* light-hypersensitive phenotype

A genomic fragment harboring *HEN1* (-2,135 to +4,492 of *HEN1* locus) was generated by PCR with specific primers (Supplemental Table 1 online) and subcloned into the *SalI-PmlI* sites of the binary vector pCAMBIA1390 and introduced into *hen1-6*. Hypocotyl lengths of Col-0, *hen1-6*, and 2 representative complementation lines, *hen1-6/HEN1* 1-3 and *hen1-6/HEN1* 19-3, grown under dark (D), Rc (5 μ mol m⁻² s⁻¹) or FRc (0.125 Wm⁻²). Data are mean \pm SD. Bar = 2 mm.

Supplemental Figure 7. Effect of FR fluence rate on hypocotyl extension in wild-type and *sgs3-11* mutant seedlings Hypocotyl lengths of wild-type and *sgs3-11* seedlings grown under different FRc fluence rates for 4 days. Data are mean \pm SD.

Supplemental Figure 8. The levels of miR157 and miR159/319 are increased accompanied with increased level of HA-HEN1 protein.

Three biological replicates of small RNA analyses of miR157 and miR159/319 expression levels. The replicate Bio_1 was shown in Figure 5C. The numbers below the blots showed 5S rRNA- and tRNA-normalized miRNA fold increase in HA-HEN1-induced seedlings.

Supplemental Figure 9. The expressions of miR157d and miR319 are compromised in *hen1-1* mutant

Four-day-old etiolated wild-type (Ler) and hen1-1 seedlings were treated with W (50 μ mol m⁻² s⁻¹) for 24 h, and then RNA gel blot analysis was carried out with 1 μ g total RNA. DNA oligos used for each blot are indicated to the left of each blot. Despite the clear detection of miR156/157 and miR319/159 in Ler, only traces of uridylated miR156/157 and miR319/159 were detected in hen1-1. Ethidium-bromide-stained rRNA/tRNA is shown as loading control.

Supplemental Figure 10. HY5 is increased in the *hen1-1* mutant during photomorphogenesis

Protein levels of HY5 in 4-d-old de-etiolating seedlings of wild type (Ler) and hen1-1 under W (100 μ mol m⁻² s⁻¹) at the indicated times. HY5 was not detected in the hy5-1 mutant. TUB was used as a loading control.

Supplemental Figure 11. Over-accumulation of miR157d detected in the *MIR157dox* line

RNA gel blot analysis of the miR157d levels in 4-d-old Wc (100 μ mol m⁻² s⁻¹)-grown seedlings of the wild type (Col-0) and *MIR157d* overexpression line (*MIR157dox*). DNA oligos used for each blot are indicated to the left of each blot. Each sample contained 1 µg total RNA.

Supplemental Figure 12. The *HY5* transcript levels are decreased in the *MIR157dox* transgenic line

Three biological replicates of RNA gel blot analyses on *HY5* transcript levels in *MIR157dox* transgenic line during the deetiolation. The replicate Bio_1 was shown in Figure 8A. The etiolated seedlings on the time 0 point were collected in the dark except those on Bio_3 time 0, which were collected under the light. The bar graphs show the *HY5* signals normalized to ribosomal RNA using Image J on each biological replicate.

Primer	Sequence (5' to 3')	
Quantitative RT-PCR	1	
analycis		
HEN1-F	CAACGTCAAATCTGCTACACTTT	
HEN1-R	AAGTGCCGATGTCAACGTCAT	
HY5-F	ATGTTAAAATTATATGGGATGTGAGAGCTAA	
HY5-R	TTCAATTAAGAGAAATCTAAGACTACAATAAGAGA	
TCP2-F	GGTGGCTTCAGTGGTTTCAAC	
<i>TCP2</i> -R	CCTCTGTAGATTAGCGAGGAATGAC	
TCP3-F	CCGGAGGATTTGTGTTTGCT	
TCP3-R	CCCCTCTGTGATAAAAGCTGACTT	
TCP4-F	CAAAGCCAACAGCTTTATTCTCAGA	
TCP4-R	GATGATGGTGAGGATCAAACCA	
<i>ТСР10</i> -F	TGTTTCTTGGTGGCCAACAA	
<i>TCP10</i> -R	TGATCCCAAGAACGAAACGAAT	
<i>ТСР24-</i> F	ACCCATTCTCCTTTGTACCTGATT	
TCP24-R	AAGAGAGATTGTGAATTGGACTGAAG	
UBQ10-F (Col-0)	AGAAGTTCAATGTTTCGTTTCATGTAA	
<i>UBQ10</i> -R (Col-0)	GAACGGAAACATAGTAGAACACTTATTCA	
UBQ10-F (Ler)	ACAGCTAGAGGATGGCCGTA	
UBQ10-R (Ler)	GTTGGTCTGGCGGGATAC	
GFP-F	GATGGCCCTGTCCTTTTACCA	
GFP-R	GGCAGATTGTGTGGACAGGTAAT	
<i>UBI3</i> -F (N.b.)	GCCGACTACAACATCCAGAAGG	
UBI3-R (N.b.)	TGCAACACAGCGAGCTTAACC	
Northern blot probe		
HEN1-F	TCTCCATGGATTTCAGGGGTATGCACATTT	
HENT-R	CGCTCTAAGGTGAGCTCCCA	
HY5-F	GTAGTCGACCAGAGATCTGACGGCGGTAG	
HY5-R	GTAGGATCCCCTCCGCCGGTGTCCTCCCT	
miR157d-probe	GAGTGCTCTCTATCTTCTGTCATCAAAGAGAATCAATGA	
miR156a-probe	GTGCTCACTCTTCTGTCA	
miR319a-probe	AGGGAGCTCCCTTCAGTCCAA	
MIR gene amplification		
<i>MIR156a</i> -F	GTATCTAGACTCTTATCTTCTTCTCATCAG	
MIR156a-R	GTACCCGGGAACAAGAACAAGCCAGAGTT	
<i>MIR157d</i> -F	GTATCTAGACCATTTACTCTTCACCGCCC	
<i>MIR157d</i> -R	GTACCCGGGTATAACATGAACTGATGAACCT	
HEN1 gene amplification		
HEN1genomic-F	CGAGGTACCATGGCCGGTGGTGGGGAAGCA	
HEN1genomic-R	TGTCCTAGGTCAAAGATCAGTCTTTTTC	
HEN1 complementation		
HEN1-gDNA-Sall-S1	AGCGTCGACTGTTATGTGGTATGTATA	
HEN1-gDNA-S1642	CATGAAAGTCCGCTGAACTCTTTAGGTTCGTTGTCG	
HEN1-gDNA-S3266	GATGTTTGGCAAAGCTTCCTGTGGCTCTGAGTGTAG	
HEN1-gDNA-S4862	CAAAGTTATGTAAGAACCTCACGTAAAGTCTTCTGG	
HEN1-gDNA-AS1678	TCGACAACGAACCTAAAGAGTTCAGCGGACTTTCAT	
HEN1-gDNA-AS3302	TCTACACTCAGAGCCACAGGAAGCTTTGCCAAACAT	
HEN1-gDNA-AS4897	CAGAAGACTTTACGTGAGGTTCTTACATAACTTTGC	
HEN1-gDNA-PmlI-AS6627	AGCACGTGTTAAACTTCAACGGACCA	

Supplemental Table 1. Primers and oligos used in this study

HY5 5'UTR amplification	
HY5-5'UTR-F	TCTAGAGTCCCGCTCTTTTCCTCTTTATC
<i>HY5-5 'UTR</i> -R	CTCGAGTTTTCTTACTCTTTGAAGATCGAT
<i>HY5-5 'UTRm-</i> F	TTCCTCCAATACCTTTTCACCAG
<i>HY5-5 'UTRm</i> -R	GCTGGTGAAAAGGTATTGGA
mHY5 cDNA	
HY5-5'UTRm-XbaI-F	GACTCTAGATCCCGCTCTTTTCCTCCAATACCTTTTCACCA
HY5stop-EcoRI-R	TCGGAATTCTCAAAGGCTTGCATCAGCAT
5' D A CE	
J-RACE	
HYJ-K	ICCICCCICGCIICCIIIGACIIIC
TCP24-R	TCTCCTTTCCTTTGCCTTGTCAT