

Supplemental Figure 1. Complementation of the *cep1* Mutant by *CEP1* Genomic DNA.

(A) Pollen germination rate of 55 independent complementation transgenic lines. Bars represent standard deviations. (B) Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of *CEP1* expression in buds tissues at stages 7–10 in T₁ transgenic plants. The *ACTIN1* gene (AT2G37620) was used as a reference for normalization. (C) and (D) Cracking anthers and released pollen grains in the complementation transgenic lines (C) and the *cep1* mutant (D); Bars = 50 µm. (E) and (F) Pollen germination of the complementation transgenic lines (E) and *cep1* mutant (F); Bars = 50 µm. (G–L) Transmission electron micrographs of the tapetum and microspore development in the complementation transgenic lines at stage 8 [(G) and (H)], stage 10 [(I) and (J)], and early stage 11[(K) and (L)]. Bars = 2 µm [(G–L)].

AT	GA	AG	CG	ATT	гта	TT	GTT	CT	TG	CG	СТТ	TG	CA'	rgc	TT	ATC	GT	TC	гтg	AA	ACC	CAC	AA	AGO	GT	TT7	AGA	TT?	TCC	AT.	AAC	CAA	AG	ATC	TG	GAA	TC	AG/	GA	AT	AGC	TT	GTG	GGI	AGCT	110
Μ	1	Κ	R	H	7	Ι	V	L	1	A	L	С	1	1	L	М	V		L	Е	Т	Т	1	К	G	L	D]	F	Н	Ν	K	1	D	V	Ε	S	E	;	Ν	S	L	W	I F	E L	
	-	-				-	-					-	-	-	-			-	-	-				-	-																					
AT	AC	GA	AC	GGI	rgg	AG	GAC	TC	AC	CAC	CAC	TG	TT	ЗCТ	AG	GAC	SCC	TT	GAA	GA	GAA	AG	CT.	AAC	GAG	GTI	FCA	AC	GTO	TT	CAF	AGC	AC	AAC	CGT	GAA	GC	AC7	TC	CA'	rga	GA	CCA	AC/	AGA	220
	Y	E		R	W	R	5	5	H	Н	Т		V	A	R	02	5	L	Ε	Е	P	ς .	A	Κ	R	F	7	N	V	F	P	(H	Ν	V	K		H	I	Η	E		Т	N	K	
AG	GA	TA	AA	TCT	гта	CA	AGC	CTC	AA	GC?	TAA	AC	AA	GTT	TG	GTO	SAC	AT	GAC	TA	GTO	GAA	GA	ATT	TA	GGI	AGA	AC	ATA	CG	СТС	GT	TC	AAA	CA	TCA	AA	CAI	CA	TA	GGA	TG	TTT	CA	AGGC	330
K	D)	K	S	Y		K	L	K]	L	Ν	K	F		G	D	М	Т	1	S	Ε	Ε	E	7	R	R	Т	У		A	G	S	1	1	Ι	K	Н	Η	1	R	М	F	Q	G	
GA	AA	AA	AA	GGC	CCA	CA	AAG	AG	CT?	TC	ATG	TA	TG	CAA	AT	GTZ	AA	TA	стс	TC	CCF	AC	CT	cco	TT	GAT	TG	GA	GAA	AG	AAT	GGG	AG	cco	TC	ACT	CC	r G1	CA	AA	AAC	CA	AGG	CCI	ATG	440
E	;	K	K	7	Ą	Т	K	S	1	F	М	Y	1	1	N	V	N		г	L	Ρ	T		S	V	D	W	1	R	K	N	G	; ;	A	V	Т	Ρ	1	1	K	Ν	0) G	; ;	2 C	
CG	GC	AG	тт	GTT	rgg	GC	GTT	тт	CA	ACI	AGT	TG	тта	scie	GT	GGZ	AG	GG	ATC	AA	CCZ	AA	TA	AGZ	AC	тал		AG	сто	AC	АТС	AC	TC	TCZ	GA	GCA	AG	AGO	та	GT	AGA		GTC	AT		550
	G	S	(0	W	A	F	7	S	Т	V		v	A	V	E	3	G	I	N	ç	2	I	R	Т	ł	< :	K	L	Т	5	3	L	S	Е	Q	2 1	Е	L	V	D)	С	D	Т	
AC	CA	GA	AC	CAZ	AGG	ат	GCZ	AT	GG	AGO	GTC	TA	ATO	GA	CC	тта	ст	тт	TGA	GT'	TCP	ATC	AA	GGZ	GA	AAG	GA	GGI	ACT	CA	CAZ	GT	GA	GCI	AG	TGT	AC	CCI	אדי	CA	AGG	CT	тст	'GA'	rgaa	660
N	ç	2	N	Q	G	;	c	N	G	(G	L	М	D		L	A	F	Е	1	F	I	K	E		K	G	G	I		Т	S	Е	I		v	Y	P	Y]	К	A	S	D	Е	
AC	тт	GT	GA	CAC	CAR	AC	A A7	GA	AA	АТО	GCT	cc	GG'	PAG	тт	TCZ	AT	CG	ATG	GA	CAC	GA	AG	ATC	TT	cc	TAA	GA	ACA	GC	GAG	GA	TG	ATC	TA	ATG		AGO	TG	тт	GCT	'AA'	тса	GCC	TGT	770
Т		С	D	1	Г	N	К	E	1	N	A	Р	1	7	V	S	I		D	G	Н	Е		D	V	Р	K	1	N	S	Е	D)]	D	L	М	K	7		V	A	Ν	Q) 1	? V	
тт	CT	GT	TG	СТИ	۳ ۳	GA	TGC	TG	GA	GG	сто	AG	AC	гтт	CA	רידא	ст	AC	TCC	GA	GGC	AG	TG	ттт	AC	CGO	GA	GA	TGC	GG	A A(AG	AG	CTZ		CCA	TG	SAC	тт	GC	GGT	AG	TAC	GG	PATG	880
	S	v	-	A	Ι	D	Į	1	G	G	S	5	D	F	Q	F		Y	S	E	000	3	v	F	Т	(3	R	С	G	1	1	E	L	N	Ē)	G	v	A	V	10	V	G	Y	000
GA	AC	ממי	CG	AT7	AGA	CG	GAZ	CA	A A	GTT2	АТТ	GG	ידא	гGT	אדי	AGZ	דא	тс	ATG	GG	GAG	AG	GA	ATC	CC	GAG	TAG		AGO	та	ACZ	אדא	AG	רא	rac		GA	360	:АТ	тс	3TC	יאי		GAI	AGGA	990
G	Ί	2	Т	Ι	D)	G	Т	K	3	Y	W	I	V		к (N	S	W	(G	Е	Е	V	1	G	Е	K	0	;	Y	I	R	N	1	Q	R	G	I	1	R	Н	K	Е	G	
СТ	тт	GT	GG	TAT	гтG	CA	ATO	GA	AG	CT	гст	TA	TC	стс	TC	AAG	AA	CT	CCA	AC	ACT	raa	cc	СТТ	ст	AGZ	ACT	тт	CCI	TG	GAC	тс	GC	гтя	AG	GAT	GA	ACT	CT	АА	10	86				
L	,	С	G]	E I	А	М	E	1	A	S	Y	1	P	L	K	N		S	N	Т	N		P	S	R	L	-	S	L	D	S		L	K	D	Е	I		*	2.0					

Supplemental Figure 2. Nucleotide and Deduced Amino Acid Sequence of *At5g50260*.

The signal peptide (M1-G20) is shown as a dashed underline. The catalytic triad Cys, His, and A sn, and t he Glu active site residue are circled. The GCNGG motif is double-underlined. The ERFNIN motif (E53-N72) is shown in a rectangular box, and the KDEL (K358-L361) motif is underlined. The arrow indicates the self-hydrolysis site. Numbers in the right margins represent nucleotide sequences.

Supplemental Figure 3. A Phylogenetic Tree of Papain-like Cysteine Proteases in *Arabidopsis.*

A phylogenetic analysis was conducted using MEGA 5.0. All 51 papain-like cysteine proteases in *Arabidopsis* were selected to establish an unrooted maximum likelihood tree. Numbers at the nodes represent percentage bootstrap values based on 1000 r eplications. Bootstrap values are shown as percentages. The rectangular box shows the position of At5g50260.

Supplemental Figure 4. Purified Recombinant CEP1.

Purified recombinant CEP1 enzyme (lanes 1–3); self-hydrolysis occurred within 12 min at pH 3.0 (lane 4).

9

G

(A–F) GO terms that are significantly enriched (P-value < 0.01) in cluster 1 (A), cluster 2 (B), cluster 3 (C), cluster 4 (D), cluster 5 (E), cluster 6 (F). GO terms were sorted based on the P-value. (G) and (H) GO enrichment of the significantly upregulated (G) and downregulated (H) genes (*cep1* mutant vs. the wild type; P < 0.005, fold-change >2 or <–2) in at least one of the three stages (stages 5–6, stages 7–9, and stages 10–11). GO terms were sorted based on the P-value.

Supplemental Figure 6. *CEP1* Overexpression Phenotype Using the CaMV35S and *ProCEP1* Promoters.

(A) and (B) Immunogold localization of CEP1 in the anther layers of the 35S:CEP1-positive transgenic line at stages 5 (A) and 9 (B). E, epidermis; En, endothecium; ML, middle layer; MMC, microspore mother cell; T, tapetum. Bars = 5 µm (A), 2 µm (B). (C) *CEP1* spatial and t emporal expression analyses by reverse transcription-polymerase chain reaction (RT-PCR) in the 35S:CEP1 transgenic lines. ro, roots; st, stems; le, leaves; and fl, flower. (D) and (E). Comparison of the 35S:CEP1 overexpressing transgenic plants (D) and a wild-type plant (E) at the vegetative stage. (F) and (G) Comparison of 35S:CEP1 overexpressing transgenic lines (F) and wild-type plants (G) at the seedling stage. (H) and (I) The *ProCEP1:CEP1* overexpressing transgenic line pollen grains. Bars = 50 µm (H) and 2 µm (I).

Supplemental Figure 7 Specificity Analysis of the CEP1 antibodies by immunoblot

CK, the negative control, the rabbit serum without immunity hybridized with the protein extracted from the buds of *Arabidopsis*.; Lane1, The protein extracted from the buds of wild-type *Arabidopsis*.

Supplemental Table 1. Quantitative Reverse Transcription-Polymerase Chain

Gene ID	Fold-chai	nge
	Transcriptomic data	q-RT-PCR
Stage 5-6		
At1G01280.1	2.62	2.92
At1G20130.1	4.74	4.29
At1G50310.1	3.64	3.48
At3G11980.1	2.04	2.16
At3G20670.1	-1.10	-0.93
At3G26125.1	3.32	4.15
At4G33790.1	1.41	1.44
At3G45930.1	-1.12	-0.82
At5G07430.1	4.77	5.01
At5G14980.1	2.02	2.13
Stage7-9		
At1G01280.1	2.54	2.52
At1G20130.1	4.03	4.01
At1G50310.1	3.71	3.68
At4G13230.1	2.89	2.87
At3G05610.1	-1.13	-1.03
At3G05960.1	4.50	4.55
At3G11980.1	1.87	1.74
At3G20670.1	-1.13	-1.47
At3G26125.1	2.38	3.19
At3G45930.1	-1.19	-0.85
At4G33790.1	1.09	1.03
At5G14980.1	3.02	3.11
At5G48140.1	-1.53	-1.02
Stage10-11		
At1G01280.1	5.59	3.68
At1G20130.1	5.06	2.64
At1G26820.1	3.32	2.03
At1G50310.1	3.07	2.23
At3G05960.1	4.45	2.13
At3G11980.1	3.11	2.07
At3G20670.1	-1.05	-2.28
At3G45930.1	-1.16	-2.12
At4G13230.1	3.11	3.11
At4G33790.1	1.94	1.32
At5G07430.1	0.62	1.68
At5G45890.1	7.42	5.57
Pearson correlation		
coefficient	0.9	3

Fold-change: Log₂ (*cep1*/wild type).

Supplemental	Table 2. Pa	tial List o	f Genes	Differentially	Expressed in	the
cep1 Mutant						

	Log₂F	Ratio (cep	1/WT)	_	
Gene ID	Stage	Stage	Stage	Gene Name	Cluster
	5-6	7-9	10-11		
Chloroplast o	r plastids	formation			
ATCG00020	-2.34	-1.67	0	PSBA (photosystem II reaction center protein	4
				A)	
ATCG00070	0	-2.03	0	PSBK (photosystem II reaction center protein	4
				K precursor)	
ATCG00300	0	-2.31	0	YCF9 (photosystem II reaction center protein	4
				Ζ)	
ATCG00680	0	-1.41	0	PSBB (photosystem II reaction center protein	4
				В)	
ATCG00220	-1.80	-1.35	-1.31	PSBM (photosystem II reaction center protein	4
				М)	
AT1G30380	-0.53	-1.00	-0.51	PSAK (photosystem I reaction center subunit	4
				К)	
ATCG00340	-1.41	-1.65	0	PSAB (photosystem I reaction center subunit	4
				D1)	
ATCG01050	-1.67	-2.29	0	NDHD (NADH dehydrogenase)	4
ATCG00150	-1.91	-2.24	-1.62	ATPI (ATPase complex CF0 subunit)	4
ATCG00160	-1.54	-2.23	-2.52	RPS2 (chloroplast ribosomal protein S2)	4
ATCG00380	-1.86	-2.07	-1.75	RPS4 (chloroplast ribosomal protein S4)	4
ATCG00650	-2.04	-2.10	-2.45	RPS18 (chloroplast ribosomal protein S18)	4
ATCG00330	-2.62	-2.66	-2.07	RPS14 (chloroplast ribosomal protein S14)	4
Cell wall					
AT1G21310	0.62	1.32	0.78	EXT3 (extensin 3)	2
AT5G25550	0	3.53	2.96	leucine-rich repeat extensin-like protein 7	1
AT2G43150	1.08	1.39	0	Proline-rich extensin-like family protein	5
AT4G38770	3.37	2.58	2.98	PRP4 (proline-rich protein 4)	1
AT1G33590	1.07	0.88	1.47	Leucine-rich repeat (LRR) family protein	2
AT3G25050	3.42	2.38	2.85	XTH3 (xyloglucan endotransglucosylase	1
				/hydrolase 3)	
AT2G38080	3.82	2.89	2.89	LAC4 (laccase-like multicopper oxidase 4)	1
AT4G33220	1.15	0.97	1.33	PME44 (pectin methylesterase 44)	2
Pollen / Polle	n wall ass	embly			
AT2G13680	0	2.24	2.62	CALS5 (callose synthase 5)	6
AT1G62940	1.42	2.29	0	ACOS5 (acyl-CoA synthetase 5)	6
AT1G01280	2.62	2.54	5.58	CYP703A2 (cytochrome P450, family 703,	1
				subfamily A, polypeptide 2)	
AT1G69500	1.39	1.42	3.52	CYP704B1(cytochrome P450, family 704,	6
				subfamily B, polypeptide 1)	
AT1G02050	1.57	1.66	0	PKSA (polyketide synthase A)	5

Supplemental Data. Zhang et al. (2014). Plant Cell 10.1105/tpc.114.127282

AT4G34850	1.42	2.20	4.32	PSKB (polyketide synthase B)	6
AT4G35420	1.06	1.31	0	TKPR1 (tetraketide alpha-pyrone reductase	5
				1)	
AT3G13220	1.44	2.08	0	ABCG26 (ATP-binding cassette transporter	6
				G26)	
AT3G11980	2.04	1.87	3.11	MS2 (fatty acyl-CoA reductase 2)	6
Fatty acid and	l lipid bio	synthetic	process		
AT1G01120	1,23	1.32	1.68	KCS1 (3-ketoacyl-CoA synthase 1)	2
AT1G01610	0.81	0.72	1.10	GPAT4 (Bifunctional sn-glycerol-3-phosphate	2
				2-O-acyltransferase/phosphatase)	
AT1G17420	1.26	1.21	1.56	LOX3 (Lipoxygenase)	2
AT1G49430	1.03	0.59	1.16	LACS2 (long chain acyl-CoA synthetase)	2
AT1G55020	1.31	0	1.35	LOX1 (lipoxygenase)	2
AT1G67560	0	0	1.39	LOX6 (lipoxygenase family protein)	2
AT2G38110	1.00	1.01	2.03	GPAT6 (Bifunctional sn-glycerol-3-phosphate	2
				2-O-acyltransferase/phosphatase)	
AT3G45140	1.39	1.1	1.49	LOX2 (Chloroplast lipoxygenase)	2
AT4G33790	1.41	0	1.94	CER4 (alcohol-forming fatty acyl-CoA	2
				reductase)	
AT4G34510	0	0	2.05	KCS17 (3-ketoacyl-CoA synthase family)	2
AT4G37760	1.13	0	1.38	SQE3 (squalene epoxidase 3)	2
AT5G37300	0.91	0	1.09	WSD1 (wax ester synthase (WS) and	2
				diacylglycerol acyltransferase (DGAT))	
AT5G57800	1.13	0.72	1.36	CER3 (similarity to the sterol desaturase	2
				family)	
Cell death, Se	nescence	-associate	ed genes		
AT5G45890	0	0	7.34	SAG12 (senescence-associated protein 12)	1
AT1G06260	3.91	3.75	0	Cysteine proteinases superfamily protein	1
AT1G20850	2.26	1.79	1.32	XCP2 (xylem cysteine peptidase 2)	5
AT4G30040	3.61	0	0	aspartyl protease family protein	1
AT4G04460	0	4.56	0	Saposin-like aspartyl protease family protein	1
AT3G52500	0.83	1.14	1.43	aspartyl protease family protein	2

Supplemental Table 3. Primer Information Used for Molecular Cloning and

Plasmid Construction.

Primer name	Sequence(5'-3')
CEP1M3-F	CAAAATCTTAGTTTCGACGATGG
CEP1M3-R	GATTGGAGAA AGAATGGAGCC
CEP1M4-F	GCTTACCTTTCGCTGTTGCTA
CEP1M4-R	AAGCTGTTGCTAATCAGCCTG
CEP1M3/ M4-B	ATTTTGCCGATTTCGGAAC
CEP1-C-F	TACCCGGGATGAAGCGATTTATTG
CEP1-C-R	AGGAGCTCAATTTAGAGTTCATCCT
CEP1-CM-F	GGCGGTACCTTAGATTTCCATAAC
CEP1-CM-R	GGGGAGCTCTTAGAGTTCATCCTTA
CEP1-SH-F	GGCCTGCAGCAGAAAGCTAAGA
CEP1-SH-R	GGGGAGCTCTAAATTCTTCACTA
ProCEP1-F	GCTCTAGAATTTTTCTGATTTTGGAG
ProCEP1-R	GCCCCCGGGATTTTACTTTTCTTATTC
Pro-CEP1-F	CGCGAGCTCATTTTCTGATTTTG
Pro-CEP1-R	CGCCTCGAGACATAAAACCATT
35SOEx-F	GGCCCCGGGAATATGAAGCGATTTA
35SOEx-R	GGGGAGCTCGGGAATTTAGAG
An-CEP1-F	GTGGATCCGAGCTAGTGTACCCTT
An-CEP1-R	GTGAATTCTTAGAGTTCATCCTTA
GFP-F	GCTCTAGAATGAGTAAAGGAGA
GFP-R	GCCCCGGGTTTGTATAGTTCAT

Primer name	Sequence(5'-3')
RT-CEP1-F	TATACGAACGGTGGAGGAGTCACC
RT-CEP1-R	TCCGCATCTCCCGGTAAACACTCC
tubulin-F	GCGGACGACCAACACTACATAC
tubulin-R	GAGACTATCGCTTCCATCTGCTT
qRT-CEP1-F	CTATTGATGCTGGAGGCTCAGACT
qRT-CEP1-R	GAATCCCTCTCTGCATTCTTATGT
qRT-Actin-F	CGTATGAGCAAGGAGATCAC
qRT-Actin-R	CACATCTGTTGGAAGGTGCT
AT5G45890F	CAACGTCGAACGCATTGA
AT5G45890R	GTTTGGCTTTGGCTAGATAA
AT1G26820F	TTACGGGTTTCTGATCTGAT
AT1G26820R	GCATGAAGGAGATTAGCTTT
AT4G33790F	CTCAATGTCTTGAACTTTGCC
AT4G33790R	TCAAGTTTCTCCTGAACCAAT
AT4G13230F	CACAGCCAAGACCGTTGAGA
AT4G13230R	CATATCATAACCCGATTT
AT3G11980F	GTGAATGGACAAAGACAAG
AT3G11980R	CCTTTTCTAGCAGCTTCAA
AT3G26125F	GCTTAAGGACCAAGGAACATT
AT3G26125R	GGGTGTTTTGTTATCAACCAG
AT1G20130F	TGCAACTGGTAGATTCAGCAA
AT1G20130R	CTGCTTCGGATGTAGTAGGAT
AT1G01280F	GAACAATGTGACTAGGATGCT
AT1G01280R	CACGTCCCTCATTTCTTCTC
AT5G48140F	TCATCAATTCATTTATCTCCA
AT5G48140R	GATGCCACTAACGTTTTCCTC
AT1G50310F	GAAGTACGGACGCAAAATCTC
AT1G50310R	ACCCGATGTTAAGTGCTCCTC
AT3G05960F	ATCATCGGAATGCTTCTCCAG
AT3G05960R	ACGAGGTAAATCCCAACGAAC
AT3G05610F	CGGCAACAAAAATTACAAGGA
AT3G05610R	TGTAGAGCGTGTCTTGGTAGC
AT5G07430F	GACAAGCTCTAGCAATGAGGA
AT5G07430R	GTGCAATTGCGTATTCAAGTA
AT3G20670F	GTGAGAAACGATGAGGAGCTG
AT3G20670R	ACAACCACAACACAAATCCCT
AT3G45930F	GTAGAGGTGGAGTCAAGCGTA
AT3G45930R	CCGAATCCGTAGAGAGTTCTT
AT5G14980F	TCAGTCCTCTTCGCAAAATCC
AT5G14980R	GGAGAAAGGAGGAAGCGTGAC

Supplemental Table 4. Primer Information Used for Reverse Transcription-Polymerase Chain Reaction (RT-PCR)/Quantitative RT-PCR.