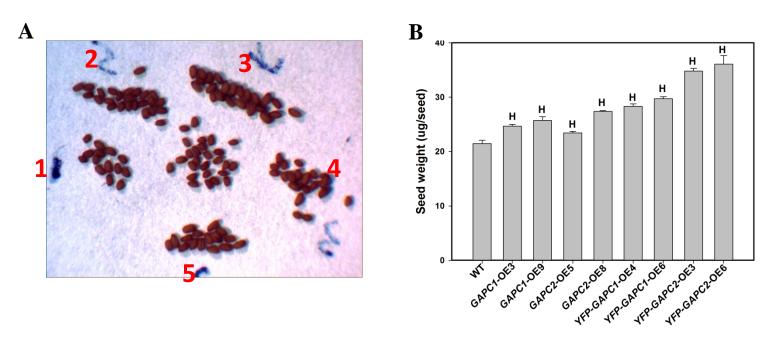


Supplemental Figure 1. Fatty acid composition of *GAPC* double knockouts compared to WT. Fatty acid composition was calculated as mol%. Values are means \pm SD (n = 3). H and L indicate significantly higher and lower than WT (Student's *t*-test, P < 0.05).

1

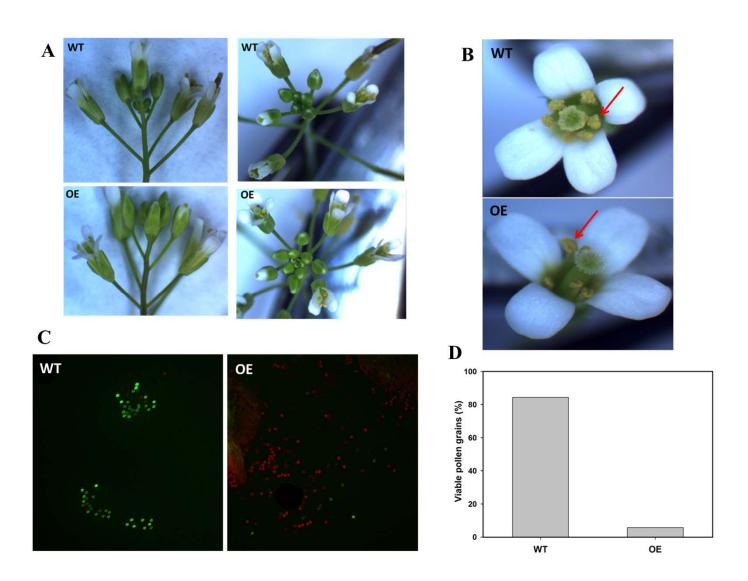
1



Supplemental Figure 2. Subcellular localization of GAPC.

(A) Expression of YFP-GAPC in Arabidopsis leaves. YFP-GAPC1 and YFP-GAPC2 were highly expressed in leaves. YFP was used as control and indicated nucleus localization in some cells while YFP-GAPCs did not have significant nucleus accumulation (indicated by red arrow). Green color represents YFP fluorescence.

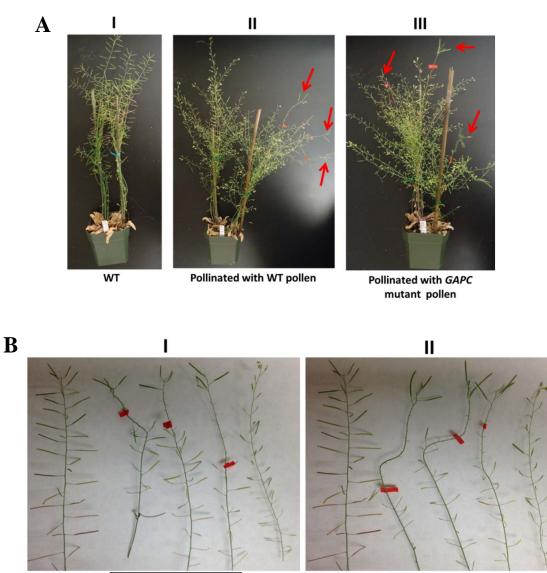
(B) YFP-GAPC1 and YFP-GAPC2 both mainly localized in cytosol in leaves. Green color represents YFP fluorescence and red color marks chloroplasts as a reference.


(C) Expression of YFP-GAPC1 and YFP-GAPC2 in developing seeds (4 DAF). Seeds were stained by 4`,6-diamidino-2-phenylindole (DAPI, blue) to show nucleus (indicated by red arrow).

Supplemental Figure 3. Overexpression (OE) of GAPCs under the control of 35S promoter resulted in bigger and heavier seeds.

(A) Photo of seeds was taken under microscope. WT seeds are in the middle. 1, YFP-GAPC1-OE4; 2, YFP-GAPC2-OE6; 3, YFP-GAPC2-OE2; 4, YFP-GAPC2-OE3; 5, YFP-GAPC2-OE6.

(B) Seed weight of WT and 35S promoter-driven *GAPC* OE seeds. Seed weight was average weight based on calculation of the total weight (~3 mg) and total number of seeds. Values are means \pm SD (n = 3). H indicates significantly higher than WT (student *t*-test, P < 0.05).

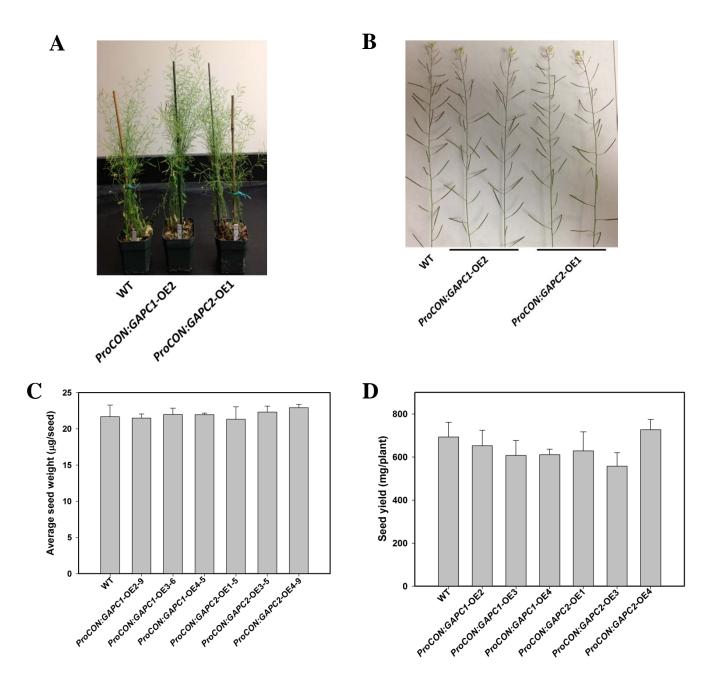

Supplemental Figure 4. OE of GAPCs under the control of 35S promoter causes male sterility.

(A) Morphology of WT and OE flowers under microscope.

(B) Flowers of WT and OE under microscope. Pollen could be observed on the WT anther after dehiscence (2 days after flowering). Anther of OE did not dehisce and no pollen were on the anther after flowering.

(C) Pollen viability staining by fluorescein diacetate (green) and propidium iodide (red). Green indicated viable pollen and red indicated dead pollen. Pollen from OE flower was obtained by manually disruption of the anther locules.

(D) Percentage of viable pollen in WT and OE.

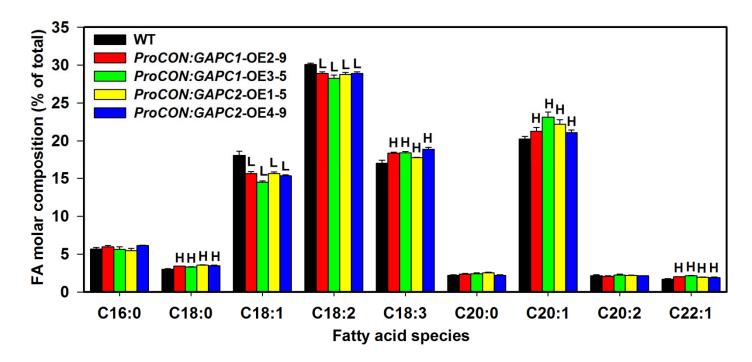


Supplemental Figure 5. Both WT and *gapc1-1 gapc2-1* pollen rescued silique development of 35S promoter-driven OE plants.

(A) Fertilize stigma of OE flower (anther removed before opening) with WT pollen or *gapc1-1 gapc2-1* pollen rescued silique development of OE plants. I, WT; II, *YFP-GAPC2* OE, red arrow indicates formation of normal siliques after flower pollinated with WT pollen; III, *YFP-GAPC2* OE, red arrow indicates formation of normal siliques after flower pollinated with *gapc1-1 gapc2-1* pollen.

(B) Comparison of siliques between WT, rescued OE and *YFP-GAPC2* OE. In I and II, only the top 3 siliques on each stem were normally formed because of fertilization by WT or *gapc1-1 gapc2-1* pollen, indicates the pollen of OE plants can't fertilize the stigma.

Supplemental Figure 6. Siliques develop normally on plants of seed-specific OE of GAPC.


(A) Plants were 7 weeks old growing under 16 h light/ 8 h night.

(B) Silique development of GAPC seed-specific OE plants was as normal as WT.

(C) Seed weight of WT and seed-specific OE seeds. Seed weight was average weight based on calculation of the total weight (\sim 3 mg) and total number of seeds. Values are means ± SD (n = 3).

(D) Seed yield per plant of WT and OE plants. Values are means \pm SE (n = 8).

6

Supplemental Figure 7. Seed-specific OE of *GAPCs* alters fatty acid composition in the seeds. Fatty acid composition was calculated as mol%. Values are means \pm SD (n = 3). H and L indicate significantly higher and lower than WT (Student's *t*-test, P < 0.05).

7

Supplemental Table 1. Metabolites involved in the pentose phosphate pathway and starch biosynthesis pathway

Metabolite	WT	gapc1-1gapc2-1	GAPC1-OE#2	GAPC2-OE#1		
Ribose-5-phosphate	$13.77 \pm 1.05^{\texttt{a}}$	$13.63\pm0.63^{\mathtt{a}}$	$10.89 \pm 1.23^{\texttt{a,b}}$	$10.94\pm0.89^{\text{b}}$		
Ribulose-5-phosphate	$9.91 \pm 1.24^{\mathtt{a}}$	$10.49\pm0.90^{\mathtt{a}}$	$6.98 \pm 1.09^{\mathtt{a}}$	$7.52\pm1.01^{\mathtt{a}}$		
Xylulose-5-phosphate	$22.95\pm0.89^{\mathtt{a}}$	24.67 ± 1.82^{a}	$18.48\pm2.32^{\mathtt{a}}$	$20.71\pm2.94^{\mathtt{a}}$		
Sedoheptulose-7-phosphate	$80.4\pm6.37^{\mathtt{a}}$	$57.13\pm9.17^{\text{b}}$	$65.54\pm6.57^{\text{a,b}}$	$71.80\pm6.87^{\text{a,b}}$		
Ribulose-1,5-bisphosphate	$17.67\pm2.22^{\mathtt{a}}$	$12.11\pm1.21^{\rm b}$	$10.28\pm1.66^{\text{b,c}}$	$7.64\pm0.71^{\circ}$		
UDP	$14.68 \pm 1.65^{\texttt{a,b}}$	$11.46\pm0.53^{\text{b}}$	$16.49 \pm 1.56^{\mathtt{a}}$	$18.10\pm0.79^{\mathtt{a}}$		
UDP-glucose	$506.88\pm15.07^{\text{b}}$	$415.98\pm10.29^{\texttt{c}}$	$567.17\pm56.69^{\mathtt{a,b}}$	$673.87\pm64.97^{\mathtt{a}}$		
Values are means \pm SE (n = 4). One-way ANOVA was performed and different lower case						
letters mark significant difference between means ($P < 0.05$).						

Supplemental	Table 2.	Primer list
--------------	----------	-------------

Purpose	Gene	ID	Primer name	Sequence	
Gene cloning	GAPC1	At3g04120	GAPC1-F	GCGTTAATTAACATGGCTGACAAGAAGATTAGG	
	UAPCI		GAPC1-R	GCG GTCGACTTAGGCCTTTGACATGTGGACGAT	
Gene cloning GAPC2	CADCO	A+1-12440	GAPC2-F	GCGTTAATTAACATGGCTGACAAGAAGATCAGA	
	GAPC2	At1g13440	GAPC2-R	GCG GTCGACTTAGGCCTTTGACATGTGA	
Gene cloning GAPC1	CADC1	1 At3g04120	ConGAPC1-F	GCGCGGCCGCACCATGGCTGACAAGAAGATTAGG	
	GAPCI		ConGAPC1-R	GCGCGGCCGCTTATTTGTCGTCGTCGTCCTTGTAGTCCATGGCCTT	
Gene cloning GA		At1g13440	BetaConGAPC2-F	GCGCGGCCGCACCATGGCTGACAAGAAGATCAGA	
	GAPC2		BetaConGAPC2-R	GCGCGGCCGCTTATTTGTCGTCGTCGTCGTCCTTGTAGTCCATGGCCTT TGACATGTGA	
Real-time PCR	1.54.4.771	At4g30580	AT1G15080.1_F	TGGTCAAAGAGGGACACAAGAGC	
	LPAAT1		AT1G15080.1_R	TCCTAGACCAGCAAACGACCAAG	
Real-time PCR L	LDAATO	At3g57650	AT3G57650.1_F	TCAAAGGACAACCTTCAGTGGTG	
	LPAAT2		AT3G57650.1_R	ACCACTGTGCAATTGCGTCATC	
Real-time PCR L	LPAAT3	At1g51260	AT1G51260.1_F	GGCTCATCGTCAACATCATTCAGC	
	LPAA13		AT1G51260.1_R	CAAGCCCACCAATCAAACAACC	
	LPAAT4	A +1 ~75020	AT1G75020.1_F	TCCCTGAAGGAACCGATTTCACTG	
Real-time PCR	LPAA14	4 At1g75020	AT1G75020.1_R	ACGTTTGATAGTGCTGGAAGACC	
Real-time PCR LPAAT	LPAAT5	Γ5 At3g18850	AT3G18850.1_F	AGGAGATGGGAAGTCGATGAAGC	
Keal-tille FCK	LFAAIS	Al3g18850	AT3G18850.1_R	TCCTTTGGCATTTAGCCTCTGTG	
Real-time PCR	I DD1	LPP1 At2g01180	AT2G01180.1_F	ATTCTGGCGCAATTCTCAGGAC	
Real-unite PCK LPP1			AT2G01180.1_R	CGTGCTTGTGTTTAGAAGCGACTC	
Real-time PCR	LPP2	PP2 At1g15080	AT4G30580.1_F	GGTCGCATTTCTAATGGCATGACG	
Keal-unite PCK			AT4G30580.1_R	TTCACTCGGGACAGCATGAAGG	
Real-time PCR	LPP3	At3g02600	AT3G02600.1_F	TTCCAAGTGGACACACGTCATGG	
Real-time I CR	LFF5		AT3G02600.1_R	GCTTTGCAACGTGGCCTTTACC	
Real-time PCR	DGAT1	At2g19450	AT2G19450.1_F	TCGCTCCCACATTGTGTTATCAGC	
Keal-time I CK			AT2G19450.1_R	AAATTGACGAGCCACCCAACCC	
Real-time PCR	DGAT2	At3g51520	AT3G51520.1_F	TCCAGCCTAATCGTGCCTATGTC	
Real time I CR			AT3G51520.1_R	AGCAACAACTCCAATCGGTAGCAC	
Real-time PCR	PDAT1	At5g13640	AT5G13640.1_F	AAAGGATGTTGCAGTTGCCAGAG	
Keal-tille I CK			AT5G13640.1_R	TGTTGAGTCCCATGTGCGTGTC	
Real-time PCR PD.	PDAT2	At3g44830	AT3G44830.1_F	AGATGATGAGACGAGCCGAAGC	
	TDITTE	magnioso	AT3G44830.1_R	TCTCTGGTGCCTCCGGTAATTTG	
Real-time PCR	CCT1	At2g32260	AT2G32260.1_F	AGGAGTTTCTTGACAAGCACCAG	
		1112g32200	AT2G32260.1_R	AGCTCCGCTTGAATCAGCATAGG	
Real-time PCR	CCT2	At4g15130	AT4G15130.1_F	TCCAGATGCACCATGGGTTCTTAC	
Real time I ere			AT4G15130.1_R	AGCTCCACTAGTATCCGCATAGGG	
Real-time PCR	AAPT1	At1g13560	AT1G13560.1_F	AGTTGGGTGCCATTTGTGAATGAG	
			AT1G13560.1_R	TGCTCCCGTTTCTTGATCGAACG	
Real-time PCR	AAPT2	At3g25585	AT3G25585.1_F	TCCTCTGCTGATTCTTCGCTGAC	
			AT3G25585.1_R	TTGGGTCTCTCTCAAATCAACGAC	
Real-time PCR	UBQ10	At4g05320	AT4G05320.1_F	CACACTCCACTTGGTCTTGCGT	
			AT4G05320.1_R	TGGTCTTTCCGGTGAGACTCTTCA	