Supplemental Table 1 : PCR primers used to build the different genetic constructs

Primer name

Primer sequence

UserPIP2;7Fw

5'-GGCTTAAXATGTCGAAAGAAGTGAGCGAA-3’

UserPIP2;7Rv

5'—-GGTTTAAXTTAATTGGTTGCGTTGCTTCGGA-3

UserSYP61Fw 5'-GGCTTAAXATGTCTTCAGCTCAAGATCCAT-3'
UserSYP61Rv 5 -GGTTTAAXGGTCAAGAAGACAAGAACGAAT-3'
UserSYP61SP2Rv 5'—~GGTTTAAXTTATCCAGCTTTCTTCATTACCAT-3'
UserSYP121Fw 5'—~GGCTTAAXATGAACGATTTGTTTTCCAGCTC-3'
UserSYP121Rv 5'-GGTTTAAXTCAACGCAATAGACGCCTTGC-3'
DtopoSYP121SP2Rv 5'-ACATGTCCATTTTCGCGTGTTCTT-3'
DtopoSYP121SP2Fw 5'—~CACCATGAACGATTTGTTTTCCAGCTC-3'

DtopoPIP2;7Fw

5'-CACCATGTCGAAAGAAGTGAGCGAA-3’

DtopoPIP2;7Rv

5'-TAATGTCGAAAGAAGTGAGCGAA-3’

attB3AtSYP121Fw

5'-GGGGACAACTTTGTATAATAAAGTTGTAATGAACGATTTGTTTTCCAGC-3’

attB2AtSYP121Rv

5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAACGCAATAGACGCCTTGC-3’

attB1AtPIP27Fw

5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCGAAAGAAGTGAGCGAA-3'

attB4AtPIP27Rv

5'-GGGGACAACTTTGTATAGAAAAGTTGGGTGTTAATTGGTTGCGTTGCTTCG-3’

attB4AtSYP121Rv 5 -GGGGACAACTTTGTATAGAAAAGTTGGGTGTCAACGCAATAGACGCCTTGC-3’
attB1AtSYP121Fw 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAACGATTTGTTTTCCAGC-3'
attB3AtSYP61Fw 5'-GGGGACAACTTTGTATAATAAAGTTGTAATGTCTTCAGCTCAAGATCCA-3’
attB2AtSYP61Rv 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTTTAGGTCAAGAAGACAAGAAC-3’

attB1AtPIP2;7ANtFw

5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTTCTACAGAGCTCTCATCGCT-3’

attB2AtPIP27ACtRv

5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTTATGTATTGGTGGTAAGCTGC-3'

attB2AtPIP27W/sRv

5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTATTGGTTGCGTTGCTTCG-3’

attB1AtSYP61Fw

5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTTCAGCTCAAGATCCA-3!

pDONRP4-PIP2;7pro-P1RFw

5'-GGGGACAACTTTGTATAGAAAAGTTGGATGAAATCTTATTGATTACTACTAG-3'

pDONRP4-PIP2;7pro-P1RRv

5 -GGGGACTGCTTTTTTGTACAAACTTGAGACGACGACAGTGTATCTCTTCTG-3'

pDONRP2R-PIP2;7-P3Fw

5'-GGGGACAGCTTTCTTGTACAAAGTGGGGATGTCGAAAGAAGTGAGCGAAGAAG-3'

pDONRP2R-PIP2;7-P3Rv

5'-GGGGACAACTTTGTATAATAAAGTTGGTTAATTGGTTGCGTTGCTTCGGAAC-3'
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Supplemental Figure 1. Identification of ZmSYP61 as putative interactor of ZmPIP2;6

by affinity chromatography coupled to Maldi/TOF-TOF analysis.

The two peptides found in the elution fraction that could be unambiguously attributed to

ZmSYP61 are shown. Given the quality of their MS-MS dissociation spectra, both peptides

were identified with over 99% confidence.
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Supplemental Figure 2. Colocalization of SYP121 and PIP27.

(A-B) Colocalization of SYPI121 and PIP2;7 expressed from p35S:Venus-SYPI21 and
p35S8:CFP-PIP2;7 constructs in cotyledon epidermal cells. In control conditions, SYP121
and PIP2;7 colocalized in the plasma membrane. Images are maximum projections of three-
dimensional reconstructions. (C) Venus-SYP121 and CFP-PIP2;7 reporters in cotyledon
epidermal cells after 300 mM mannitol treatment for 3 min. This treatment triggered
plasmolysis of the cells. Note that SYP121 still colocalizes with Venus-PIP2;7 in the

plasmolyzed plasma membrane. Bars= 15 um (A and C), 3 um (B)
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Supplemental Figure 3. Mating-based split-ubiquitin assays demonstrating PIP2;7 and
SYP121 interaction.

Yeast coexpressing the PIP2;7-Cub-PLV/NubG-SYP121 grows similarly to the strain
coexpressing the PIP2;7-Cub-PLV/NubG-PIP2;7 pair while no growth was observed for the
negative control (see Methods for details). These experiments were repeated three times with

independent biological replicates. Yeast growth on a single representative plate is shown.



Supplemental Figure 4. Colocalization of SYP61 and SYP121 expressed from
pSYP61:SYP6I-CFP and p35S:Venus-SYPI21 constructs in elongated primary root
cells.

SYP61 and SYP121 colocalized in the plasma membrane and in an endomembrane
compartments (TGN). Merged images show a partial overlap of Venus-SYP121 and SYP61-
CFP proteins at the TGN level and a weak colocalization in the plasma membrane. Images
are maximum projections of three-dimensional reconstructions. Insets: close-up views of the
fluorescently tagged TGN/EE structures. A partial overlap of SYP61-CFP and Venus-
SYPI121 within individual endosomes and colocalization in the middle of the endosomal

structure are visible. Bars = 10 um (main panels), 1 pm (insets).



GFP-PIP2;7ANACter

Supplemental Figure 5. Subcellular localization of transiently expressed GFP-

AtPIP2;7ANACTter in tobacco epidermal cells 48 h after leaf infiltration. Bar = 10 pm.



Supplemental Figure 6. Mistargeting of overexpressed Venus-AtPIP2;7 in osml
compared to WT backgrounds and phenotype complementation.

(A-C) Localization at the plasma membrane of Venus-PIP2;7 in a wild-type (C24)
background in the epidermis (A), hypocotyl (B), and root tip (C) in 7-day-old seedlings.
(D-F) Localization in the plasma membrane and OSER structures of Venus-PIP2;7 in the
osml line in the epidermis (D), hypocotyl (E), and root tip (F) in 7-day-old seedlings.

(G-I) The pSYP61:SYP61-CFP construct rescues the OSER-inducing phenotype. Venus-
PIP2;7-trapping in OSER structures is no longer observed in osm/ upon coexpression of
SYP61-CFP (in red) in the epidermis (G), hypocotyl (H), and root tip (I) of 7-day-old
seedlings. Bars = 12 um (A, B, D, E, G and H) and 15 pm (C, F and I).



Venus-PIP2;7 PIN2

Supplemental Figure 7. Immunolocalization of Venus-PIP2;7 and PIN2 proteins in the
osml1 background.

Whole-mount in situ immunolocalization of Venus-PIP2;7 proteins in osm/. Venus-PIP2;7
accumulated in OSER structures (white arrowheads). Coimmunolocalization of PIN2 proteins
in this background revealed that PIN2 still displayed a polar plasma membrane localization

and did not occur in OSER structures. Bars = 5 pm.
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Supplemental Figure 8. Effect of the SYP121-Sp2 fragment on the subcellular
localization of PIP fusion proteins.

(A) Venus-PIP2;7 in primary roots upon coexpression with a CFP-SYP121-Sp2-dominant
negative fragment. Note the intracellular accumulation of Venus-PIP2;7 due to the
coexpression with the SP2 fragment.

(B) Close-up showing ER retention of Venus-PIP2;7 upon coexpression with the CFP-
SYP121-Sp2 fragment.

(C) Same as in A and B, but without induction of the CFP-SYP121-Sp2 expression (no f-
estradiol treatment). In this case, Venus-PIP2;7 traffics properly to the plasma membrane and
does not accumulate intracellularly.

(D) Relative Venus-PIP2;7 fluorescence intensity measurement in the plasma membrane
(mean + S.D.) without (n= 47 cells) or after induction of CFP-SYP121-Sp2 (n=70 cells).
Coexpression of Venus-PIP2;7 and CFP-SYP121-Sp2 resulted in a 60% decrease in the
Venus fluorescence at the plasma membrane.

(E) RFP-PIP2;1 labeling in the plasma membrane of the mature root zone.

(F) The subcellular localization and abundance of RFP-PIP2;1 is altered by coexpression of
RFP-PIP2;1 and CFP-SYP121-Sp2 fragments.

(G) YFP-PIP1;4 labelling in the plasma membrane of the mature root zone.

(H) Alteration of the the subcellular localization and abundance of YFP-PIP1;4 proteins upon
coexpression with CFP-SYP121-Sp2 fragments.

Bars =20 um (A and C), 15 um (E, F, G and H) and 5 um (B).
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Supplemental Figure 9. Effect of SYP121-Sp2 fragments on PIN2 and BRI1 subcellular
localization.

(A) BRII-GFP localization under control conditions (no [B-estradiol treatment). Both the
plasma membrane and intracellular vesicles are labeled.

(B) Detection of BRI1-GFP upon coexpression with a CFP-SYP121-Sp2 dominant-negative
fragment taken with the same confocal settings as in (A). The BRI1-GFP signal intensity is
reduced.

(C) Relative BRI1-GFP fluorescence intensity measurement in the plasma membrane (mean
+ S.D.) without (n=47) or after induction of CFP-SYP121-Sp2 (n=60). Coexpression of
BRII-GFP and CFP-SYPI121-Sp2 resulted in a ~60% decrease in Venus fluorescence
intensity in the plasma membrane.

(D) PIN2-GFP polar localization under control conditions (no B-estradiol treatment).

(E) PIN2-GFP upon coexpression with a CFP-SYP121-Sp2 dominant-negative fragment.
Same confocal settings as in (D). Neither the polar localization, nor the signal intensity of
PIN2-GFP were affected by the SYP121-Sp2 fragment.

(F) Relative PIN2-GFP fluorescence intensity measurement in the plasma membrane (mean +
S.D.) without (n=63 cells) or after induction of CFP-SYP121-Sp2 (n=83 cells). Coexpression
with SYP121-Sp2 did not trigger a significant alteration in PIN2-GFP trafficking. Bars = 5

pm.



Supplemental Methods

Identification of proteins interacting with ZmPIP2: 6

A Maize Black Mexican Sweet suspension cell linpressing 6His-cmyc-ZmPIP2;6 (Cavez et
al., 2009) was used to identify interacting progeillicrosomal proteins extracted from 14 day-
old cells were solubilized using 1% octyl glucopywaide and the 6His-cmyc-ZmPIP2;6
proteins were purified by Ni-affinity chromatograpt high number of contaminants were still
present in the elution fraction after this affinitghromatography. Therefore, an
immunoprecipitation with purified ZmPIP2;6 antibediwas performed that removed most of
the contaminant©ne hundregu of purified anti-ZmPIP2;6 antibodies were addedhe sample
before overnight incubation at 4°C on a rotatingeelh Then 10Ql of Protein A Sepharose CL-
4B resin (GE Healthcare Life Sciences, Piscatavy) were added to a Micro Bio-Spin
Chromatography column (Bio-Rad), washed with phasplouffer saline (PBS) and incubated
with the sample for 1 h at RT on a rotating whe&fter eight washes with 40@l of
solubilisation buffer and four washes with 400of PBS, proteins were eluted in 1 ml elution
buffer (15 mM glycine, 150 mM NacCl, pH 2,3 (HCIPrecipitation with chloroform/methanol
was then performed and the resulting pellet resudgedin 40ul Triethylammonium bicarbonate
50 mM + 0.5 % (w/v) RapiGest (acid-cleavable sudatused to enhance enzymatic digestion
of proteins, Waters) by vortexing for 1 h. The sénmas reduced with 25 mM Tris(2-
carboxyethyl)phosphine for 1 h at 60°C, alkylateithwv200 mM Methyl methanethiosulfonate
(MMTS) for 15 min in the dark and digested withud trypsin O/N at 37°C. To pellet the
RapiGest, the sample was incubated with 1 % Tniflaoetic acid (TFA) for 45 min at 37°C and
centrifuged at 130,000 g for 15 min at 4°C. Finatlye supernatant was dried in a speed-vac,
resuspended in 0.1 % (w/v) TFA and analyzed by MAIDF-TOF.

Proteins were identified with the MASCOT (Matrixi&nce, London, UK) searching
algorithms using the monoisotopic peptide massesaapeptide mass tolerance of + 200 ppm.
Searching was performed on thea mays B73 database. Identified protein sequences hawing
confidence interval higher than 95 % were seletted first BLAST analysis performed on the
Unirefl00 database (Uniprot) and a second BLASTIyama performed on the nr database
(NCBI) using the Blast2GO software (Conesa et28105).



Construction and transient expression of GFP-PIP2:ZANACter in tobacco epidermal cells.

The mutated version of PIP2;7 (PIPRNACter, where amino acid residues 1-39 (cytosolic N
terminus) and 263-280 (cytosolic C terminus) wezkeéd) was obtained by PCR amplification
of the PIP2;7 cDNA template with D-TOPO cloning-compatible prirmePCR fragments were
recombined into a pENTR vector with the pENTR Dii@tal TOPO Cloning Kit (Invitrogen)
and further recombined into the pMDC43 destinatientor (Curtis and Grossniklaus, 2003) by
LR cloning (Invitrogen). The GFP-PIPZARACter construct was introduced Agrobacterium
tumefaciens AGL1 strain and tobacco leaves were transfectedinijtration. Subcellular
localization of GFP-PIP2/WNACter proteins was visualized by confocal microscdgyh after

leaf infiltration.

Whole-mount in situ protein localization

Whole-mount in situ immunolocalizations were catrieut on 5-day-old seedlings with an
automated procedure exactly as described (Sauadr, &@006). This experiment was performed

twice on independent samples originating from #aes homozygous line.
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