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ABSTRACT We present a controlled image smoothing
and enhancement method based on a curvature flow inter-
pretation of the geometric heat equation. Compared to exist-
ing techniques, the model has several distinct advantages. (i)
It contains just one enhancement parameter. (ii) The scheme
naturally inherits a stopping criterion from the image; con-
tinued application of the scheme produces no further change.
(iii) The method is one of the fastest possible schemes based
on a curvature-controlled approach.

The essential idea in image smoothing is to filter random noise
present in the image signal without sacrificing the useful detail.
In contrast, image enhancement focuses on preferentially
highlighting certain image features. Together, they are pre-
cursors to many low-level vision procedures such as edge
finding (1, 2), shape segmentation, and shape representation
(3-6). In this paper, we present a method for image smoothing
and enhancement that is a variant of the geometric heat
equation that has several key advantages. (i) It contains just
one enhancement parameter. (ii) The scheme naturally inher-
its a stopping criterion from the image; continued application
of the scheme produces no further change. (iii) The method is
one of the fastest possible schemes based on a curvature-
controlled approach. The scheme is implemented using the
level set curvature flow mechanism of Osher and Sethian (7,
8), which grew out of the earlier work in Sethian (9).

Traditionally, both one-dimensional and two-dimensional
signals are smoothed by convolving them with a Gaussian
kernel; the degree of blurring is controlled by the characteristic
width of the Gaussian filter. Since the Gaussian kernel is an
isotropic operator, it smooths across the region boundaries,
thereby compromising their spatial position. As an alternative,
Perona and Malik (10) have used an anisotropic diffusion
process that performs intraregion smoothing in preference to
interregion smoothing. A significant advancement was made
by Alvarez, Lions, and Morel (ALM) (11), who presented a
comprehensive model for image smoothing that includes the
other models as special cases.
The ALM model consists of solving an equation of the form

It= g(VG * II)KIVII, with I(x,y, t = 0) = I0(x,y), [1]

where G * I denotes the image convolved with a Gaussian
filter. The geometric interpretation of the above diffusion
equation is that the isointensity contours of the image move
with speed g(IVG * II)K, where K = div VI/IVII is the local
curvature. One variation of this scheme comes from replacing
the curvature term with its affine invariant version [see Sapiro
and Tannenbaum (12)]. By flowing the isointensity contours
normal to themselves, smoothing is performed perpendicular
to edges, thereby retaining edge definition. At the core of both
numerical techniques is the Osher-Sethian level set algorithm
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for flowing the isointensity contours; this technique was also
used in related work by Osher and Rudin (13).

In this work, we return to the original curvature flow
equation and level set algorithm and build a numerical scheme
for image enhancement based on an automatic switch function
that controls the motion of the level sets in the following way.
Diffusion is controlled by flowing under max(K, 0) and min (K,
0). The selection between these two types of flows is based on
local gradient and curvature. The resulting technique is an
automatic, extremely robust, computationally efficient, and
straightforward scheme.
To motivate this approach, we begin by discussing curvature

motion, namely,

It = F(K)IVII. [2]

We then develop the complete model that includes image
enhancement as well.

Curvature Flow

We first consider the problem of moving a closed noninter-
secting curve in two dimensions along its gradient field with
curvature-dependent speed. Following the arguments in Osher
and Sethian (7), this curve can be embedded as the zero level
set of a higher dimensional function qi and its motion can be
approximated by solving an equivalent equation of motion
written for the function qi. Specifically, the governing equation
is given by

Pt = F(K)IVqjI, [3]
where K iS the curvature and the function q+(x, y, t = 0) is set
to the signed-distance function computed from the initial
curve; distances are negative inside the curve and positive
outside.
As an example, consider the curve motion in Fig. 1. We show

the motion of the same initial curve under the influence of
different speed functions. In Fig. 1A the speed F = K and the
curve position is plotted after every 0.001 sec. We continue this
in Fig. 1B, where the curve position is displayed once every
0.0025 sec. Note that under plain curvature motion, the curve
both smooths and shrinks and, hence, eventually disappears.
Our goal is a diffusion process that retains the curve. One way
to accomplish this is to use geometric smoothing without
shrinkage, an approach described by Sapiro and Tannenbaum
(14). They present schemes that perform area- and length-
preserving smoothing of plane curves.

Consider now the modifications to straight curvature flow.
Begin with a speed function F = max(K, 0), which has been
used in other applications such as grid generation (15) and
shape recognition (6). This flow shrinks the curve as shown in
Fig. 1C. On the other hand, consider the flow F = min(K, 0).
This motion diffuses the curve until it approaches the convex
hull of the enclosed points (see Fig. 1D); the motion then halts.
Note that if the signs in the signed-distance function are
reversed (see Eq. 3), the curvature at every point also changes
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A F=

C F= inax(K, I)

B F =K (cont..)

D F = iiiin (Ot;,O)

FIG. 1. Motion of a curve with curvature-dependent speed. (A and B) The initial curve moving under its curvature. (C) Its movement under
max(K, 0.0). (D) If a curve moves under min(K, 0.0), diffusion stops at the convex hull of the initial curve.

sign, thereby reversing the effects produced by max(K, 0) and
min (K, 0) flow rules.
We can now apply these flows to the context of image

smoothing. We solve the following anisotropic diffusion equa-
tion:

It = F(K)IVII. [4]

As mentioned previously, the geometric interpretation of this
equation is the movement of isointensity contours in the
normal direction with speed F(K). If diffusion is carried out
with plain curvature motion-i.e., F = K-then various isoin-
tensity contours shrink with time and disappear. This causes
considerable loss in the image intensity detail.
Our approach is to use a combination of speed max(K, 0) and

min(K, 0) in Eq. 4 to control the diffusion process. The idea is
to select between the two types of flows based on local image
properties. Specifically, let the speed be defined as:

F(K) = fmax(K, 0) if a(x,y) < G(x,y)
lmin(K, 0) otherwise, [S]

where a(x, y) is the average value of image intensity I(x, y) in
a small neighborhood around the point (x, y), and G(x, y) is
defined as the average intensity evaluated in the direction
perpendicular to the gradient direction. Note that since the
direction perpendicular to the gradient is the tangent direction
to the isointensity contour through (x, y), the two points used
to compute G(x, y) lie on the same side of the region enclosed

by it unless the point is an inflection point and the curvature
vanishes. Choosing the speed according to the above equation
controls the diffusion process. In addition, ifwe set a threshold
on the local gradient magnitude by

fK if VII <T
F(K) = min/max flow otherwise, [6]

where T is some threshold value, enhancement of selected
regions is performed. Thus, points at which the gradient
magnitude is greater than T are preferred and are diffused
using the min/max flow (Eq. 5) and the remaining points are
diffused using the plain curvature flow.

Experimental Results

In this section, we apply our scheme to smooth some synthe-
sized and real images. First, consider the image shown in Fig.
2A, which consists of 16 cells, each with a shape drawn with a
random intensity against a random intensity background. The
image in Fig. 2B shows the original image diffused using
isotropic heat equation It = VI, which is the same as smoothing
with a Gaussian kernel. We then apply our scheme to the
image. The result of running our scheme to a comparable
"scale," which in this case amounts to solving the equations for
the same number of time steps, is shown in Fig. 2C. The
original image is noiseless and consists of very clearly defined
regions. Our scheme smooths some sharp corners and stops,
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A Original image B CGlaussian smoothed C Min/Max scheme

it locally. One such example is the set of images in Fig. 4. Here
the original image consists of black characters written on white
background. The left column shows the original image cor-
rupted with different amounts of noise and the corresponding
restored images are shown in the right column. In all cases the
min/max scheme has been used with the G function set to 128,
which is the average of black (0) and white (255) pixel values.

Next, we apply our scheme to some real images. First,
consider the noisy digital subtraction angiogram in Fig. 5A.
Different levels of enhancement can be achieved by chang-
ing the value of T in Eq. 6. Fig. 5 B-F show the results of
solving the min/max scheme for 100 time steps but with
different values of T. In the next set of figures we compare
our image smoothing scheme with that of the Gaussian
filtering method. In order to make the comparison, the
images in Fig. 6 have been generated by solving the isotropic
heat equation and the min/max scheme for exactly the same
number of time steps.

1) 15.0% noise

F 30.0% nioise

FIG. 2. min/max scheme as a method for image restoration. (B and
C) Results of smoothing the original image (A) using the Gaussian
filter and our scheme. (D and F) Original image corrupted with 15%
and 30% noise. (E and G) The corresponding restored images
obtained by our scheme.

thereby retaining all the detail. Note that we could run the
scheme for another 100 time steps without any change. On the
other hand, in Figs. 2D, 2F, and 3A we add different amounts
of noise to the image. This is done by randomly choosing an
image location and setting the intensity value at that location
to a random value in the range [O..255]. These corrupted
images can be restored by using our min/max scheme as
shown in Figs. 2E, 2G, and 3B. These images have been
produced by running our scheme for 100, 200, and 350 time
steps with an enhancement factor of 1.0, 5.0, and 7.5,
respectively. The image size is 256 x 256. We would like to
emphasize that our scheme eliminates noise without sacri-
ficing edge definition.
For some images, it is possible to exploit the prior

knowledge of the foreground and background intensity to
globally fix the value of the function G(x,y) instead of computing

A 60.0% noise B Restored irnage

FIG. 3. Image restoration continued. (A) Image corrupted with
60% noise. (B) Restored image.

A 25.0%; rnoise

C 50.0% noise

E 65.0% nioise

G 8o.o'0 nioise

B estored imnage

D tfhston(Ic imrage

RetiI

FIG. 4. Image restoration by setting G(x, y) value globally.
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A Original angiogramn B T=O.o C T=3.5

D T=5. E T=7.O F T=8.5

FIG. 5. Results of applying the min/max scheme with different values of enhancement threshold T to a digital subtraction angiogram.

A Oriioinal irmage.-:

I) Orlic(inal imi-iaGe

B Gaussiawi smiioothecd

E Gaussianll smiiootlhedi

C Mini/Max schem11e

F Mlim/Max schem11e

(J Oriinall miiae H GauLssiilan simoothedi I Miii /Max schemiie

FIG. 6. Comparison of min/max scheme for image smoothing with that of Gaussian smoothing.
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Conclusion

In this paper, we present an image-processing scheme that is
based on a variant of the geometric heat equation. The scheme
relies on applying appropriate speed laws on the isointensity
contours of an image. The scheme is automatic with just one
enhancement parameter and does not require a stopping
criterion. The scheme is extremely fast. The curvature K in Eqs.
5 and 6 can be replaced by K113, its affine invariant version (12).
An extension to color image enhancement is straightforward
(to be presented elsewhere).
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