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An inducible phosphoenolpyruvate-dependent sucrose phosphotransferase sys-
tem has been demonstrated in decryptified cell suspensions of the various common
serotypes of the cariogenic microorganism Streptococcus mutans.

The group of oral microorganisms currently
described as Streptococcus mutans represents a
genetically (2), biochemically (9), and antigeni-
cally (1, 5) heterogeneous group. However, with
respect to the ability of these organisms to col-
onize teeth and induce carious lesions, the disac-
charide sucrose appears to play a pivotal role
(7). Previous studies in our laboratories demon-
strated that one mode of sucrose transport in
the serotype c representative strain S. mutans
NCTC 10449 is that mediated via an inducible
phosphoenolpyruvate (PEP)-dependent sucrose
phosphotransferase system (PTS) (6). Thus, it
became of interest to survey other common se-
rotypes for sucrose PTS activity because one
may consider this to represent a key enzyme
system in the virulence-associated sucrose me-
tabolism of this group of cariogenic microorga-
nisms.

All strains studied were grown, after adapta-
tion, to early stationary phase in a defined chem-
ical medium (FMC) (10) supplemented with 5
mM carbohydrate. A modification (6) of the
scheme of Kornberg and Reeves (4) was em-
ployed to detect PTS activity in toluene-ace-
tone-decryptified cells. Suspensions of the var-
ious serotypes of S. mutans incubated in the
presence of exogenous PEP and sucrose and
enzyme-couple reagents (4, 6) all exhibited a
decrease in optical density at 340 nm which was
linear both with time and with the number of
cocci incubated. In the absence of exogenous
PEP or of sucrose or after heat treatment (80°C
for 15 min), no decrease in optical density was
observed.

The primary energy source for this presump-
tive sucrose PTS was PEP. Of other potential
phosphate donors (6) examined, only 2-phos-
phoglyceric acid, the immediate glycolytic pre-
cursor of PEP, could stimulate sucrose PTS
activity and then only in the absence of NaF.
Such a result is predicted because of the well-
known inhibition of enolase of S. mutans by
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NaF (3).

The absolute requirement for PEP, the ability
of 2-phosphoglyceric acid to partially substitute
for PEP in the absence of NaF, and the absence
of a fluoride effect on the observed decrease in
the optical density at 340 nm in the presence of
exogenous PEP are all consistent with the hy-
pothesis that at least one mode of sucrose per-
meation of diverse S. mutans serotypes is group
translocation mediated by a PEP-dependent
PTS (4, 6).

Table 1 shows that sucrose-adapted strains
exhibited strong sucrose PTS activity but no
glucose PTS activity; by contrast, glucose-
adapted strains exhibited glucose PTS activity
but no sucrose PTS activity. Therefore, these
two transport systems appear to be separate and
under separate genetic control. These data can-
not be explained as due to the action of invertase
(EC 3.2.1.26; B-p-fructofuranoside fructohydro-
lase), resulting in the conversion of sucrose to
glucose and fructose and subsequent transport
by PEP-dependent PTSs. The invertase activity
of S. mutans is not classically inducible, thus
being produced by glucose-adapted and sucrose-
adapted cocci (8). Were invertase activity re-
sponsible for the generation of fructose and glu-
cose for subsequent hexose PTS activity, then
sucrose-challenged, glucose-adapted cocci would
demonstrate PTS activity for sucrose, and they
do not.

Kinetic studies for each strain indicated that
the sucrose PTS in sucrose-adapted, sucrose-
challenged cells exhibited classical saturation
kinetics. Arrangement of such data into the
Lineweaver-Burk format permitted determina-
tions of apparent K,.’s for each serotype (Table
2). In general, for each substrate, each serotype
representative possessed similar specific activi-
ties and apparent K.,’s, but these values were
markedly different between the substrates.
These data do not preclude the possibility that
there may be differences in the regulatory mech-
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F1G6. 1. Lineweaver-Burk plots of sucrose PTS activities for sucrose-grown serotypes of S. mutans chal-
lenged with either sucrose, sucrose plus raffinose, or sucrose plus lactose. Curves were plotted by linear-
regression analysis. Symbols: @, sucrose challenged; O, sucrose plus 0.5 mM raffinose challenged; O, sucrose
plus 0.5 mM lactose challenged. NADH, Reduced nicotinamide adenine dinucleotide.

cells in their peculiar ecological niche which is
characterized by fluctuations of exogenous car-
bohydrate supply.
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