Simulation of monoclonal antibody pharmacokinetics in humans using a minimal
physiologically-based model — supplementary materials

a, a b a
Linzhong Li , lain Gardner , Miroslav Dostalek , Masoud Jamei

aSimcyp Limited, A Certara Company, Blades Enterprise Centre, John Street, Sheffield S2

b
4SU, U.K. F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development,
Non-Clinical Safety, Grenzacherstrasse, Basel, Switzerland

*Address for correspondence:
Linzhong Li, Simcyp Limited, A Certara Company, Blades Enterprise Centre, John Street,
Sheffield S2 4SU, U.K. Tel: 01142 922341, Fax: 01142 922333; E-mail: Lli@simcyp.com

Keywords: PBPK, Monoclonal antibody, Pharmacokinetics, Simulation

Suggested Short Title: Minimal PBPK model for monoclonal antibodies



Appendix A: The competitive binding of endogenous and exogenous IgGs to FCRn

We consider two species, endogenous IgG and exogenous IgG, competing for the
same binding site on FcRn. A binding stoichiometry of one to one is assumed. In reality 1gG
is known to bind to FcRn predominantly with a 1:2 stoichiometry (1), a 1:1 stoichiometry has
been used in the current and other PBPK models for mAbs (2).

To simplify the notation R is used to represent FcRn and G to represent IgG, and
brackets represent molar concentrations. Only equilibrium binding is considered, defined by

equilibrium dissociation constants Kg' and Kg' for endogenous and exogenous IgG binding to
FcRn, respectively.
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where conservation relations (A 4) of endogenous IgG and exogenous IgG have been applied.
[G™] =[G™"1+[RG™], [G™]; =[G™]+[RG™]. (Ad)

From (A 2) and (A 3) the fractions of bound IgG can be represented by (A 5),
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The conservation of FCRn species gives
[Rly =[R]+[RG™']+[RG*] (A7)
from which the following can be derived
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with
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Substituting (A 5) into (A 8), the equation for x (A 10) is derived.
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The equation (A 10) can be converted into a cubic equation and it can be proved that
the cubic equation has only one positive root, see (3). Here we prefer a numerical approach,
i.e., employing Newton-Raphson method to find the root. Let
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then
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Therefore Newton-Raphson method can be implemented as

F(x®
(k1) _ (k) _ _
D= - k=012,... (A 13)

Once x is obtained f and f® can be calculated by (A 5), and the fractions of
unbound IgG in the endosome are thus given by

£ =1-f" and f*=1-f (A 14)
which, combined with (A 5), lead to (13) in the main text.

This formulation is a generalization of the binding of two partners without
consideration of competition as being used widely in different context, such as IgG and FcRn
binding in (4), TMDD in (5) and drug protein binding in (6), etc., just name a few of them.

This can be seen by letting Kg' — oo, meaning that the endogenous IgG has no affinity to
FcRn and thus the endogenous and exogenous IgG are totally separated. Then «, — oo,
£ =0, f =1, and equation (A 10) collapses to

1= x(l + Lj (A 15)
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which has only one positive root, i.e.,
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Using (A 5) and (A 14), the fraction of unbound IgG is simplified to
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Substituting (A 16) into (A 17), the well-known formula (A 18) can be eventually derived.
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Appendix B: The steady-state solution of the endogenous 1gG

For each subject in a population, a value for the serum concentration CZ'ican be
assigned from the pre-defined distribution with a mean of 12.1 mg/ml and CV 12.6%. The
objective here is to find the steady-state concentrations in vascular space C;s, endothelial

space Crf g, interstitial space C/s, and lymph node C' so that the initial conditions in

the differential equations for endogenous IgG can be determined. This can be done by solving
the algebraic equations obtained by setting the LHS of differential equations 1-5 to zero, i.e.,

QCHs +FRKS (1=, )Crt s Ve | KV, H1-0, ) L( Q—L] s =0 (B1)
KOGV, +K ATV —[fuCI§:t+Ke” (1-f, Ve [Cit ss= (B2)
(1-0, )LCs +H1-FR)KT (1~ , )CS (Ve —[(1—ai)|_+a<j;v, Jcr=0 (B3)
(- Gi)LCF,”ss —LCls =0 (B4)

Here f, is the fraction of unbound IgG in the endosome (in the absence of exogenous 1gG)

and is a constant. This is in contrast to f," and f,;*, which are the fractions of unbound

endogenous and exogenous 1gGs, respectively, used in the minimum PBPK model and
change dynamically as the concentration of 1gG and mAb vary.

In addition, the synthesis rate K, is also defined by

Ko +(Q_ L) er,]ss + LCITSS _chjss =0 (B5)



By adding equations (B 1-5) together we can derive the relation between the synthesis rate
K, and the intrinsic catabolic clearance CLZ,

Ko=ClGCre ss (B6)

cat

that is, at the steady state, the amount of IgG being cleared in the endosome is equal to that
being produced in the plasma.

From (B 1), we have
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and substituting (B 7) into (B 2), we can derive
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By substituting (B 7) and (B 9) into (B 3), we finally reach an equation defining the
relationship between the total concentration in the endosome Crz s and its unbound fraction
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Because there is no exogenous IgG present, f, is also governed by the binding of
endogenous 1gG to FcRn in the endosome. Here we assumed a one-to-one binding between
these two species characterized by the equilibrium dissociation constant Kg', i.e.,

IgG + FcRn «—& 19G — FcRn (B 14)

By definition
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from which we can derive
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Here, the conservation of receptor species, i.e., [FcRn], =[FcRn]+[1gG — FcRn], has been
applied. From (B 16), we can express f,in terms of the total 19G in the endosome [IgG];,

the fraction of unbound IgG in the endosome f, =[19G]/[I9G]; , and K7',
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Using the conservation relationship
[19G]; =[1gG]+[1gG — FcRn] (B 18)

we finally derive another equation governing the relation between the total IgG in the
endosome and its unbound fraction f,
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Let X,=Crt =[19G]; and x,=f,Ci{ «, then the equations (B 11) and (B 19) form the
following set of nonlinear equations
Fl(xl’ Xz): X =X —Ry + i KDen =0
X, +Kp (B 20)
FZ(Xl’ Xz): do + dlxl - dzxz =0

where R;=[FcRn]; . Using the standard notation for nonlinear equations
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(B 20) becomes
F(Y)=0 (B22)

whose Jacobian matrix and the inverse of the Jacobian matrix are given by
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Therefore, using the Newton-Raphson method

Y(i+l)=Y(i) (Zij F(Y(i)), =012, (B 24)

with the initial value
YO = (co0f (B 25)

This initial condition provides a robust guess for the iteration and over the range of C;'

values we are interested all the iterations performed achieved the convergences.

After x,=Cif cand X,=f ,C i are obtained by Newton-Raphson method, we can
calculate fu(zleCﬁ,';SS) and thus using (B 7), (B 9), and (B 4), we can find (s, C',

and C's; .

For a given set of parameters we may also calculate the fold reduction of plasma
concentration level when FcRn is knocked out. Specifically, setting f,=1 in equations (B 1),

(B 2), and (B 3), we can deduce the steady-state equations when FcRn is absent, i.e.
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From (B 28), we have
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Substituting (B 29) into (B 27), we can derive
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Here we can employ equation (B 6), i.e., K,=CI&Cf <, implying the assumption we made
here that the synthesis rate of endogenous IgG is same for both healthy and deficient subject



in FcRn expression. Therefore, combining (B 30) and (B 26), gives a formula to calculate the
steady-state endogenous IgG level when FcRn is absent,

o Ko[ KV, +(1-0, )LH(Q-L)]
i &V, (1-0,)L ]
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p
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Therefore, for any given plasma IgG level C;" after solving for steady-state solution and thus
K,is available, the fold reduction compared with a subject with FcRn knock-out can be
calculated as

en
cs

RD ™ ~en
CP,O

F (B 32)

When Kg' — oo, from (B 19), we have f, —1, thus C:"tends to C7'yand F,, tends

to 1. This is another way to study FcRn knock-out effect in the simulation, in addition to
letting [FcRn], — 0 in the algorithm.
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