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Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 BINS AND EFFECTIVE LENGTHS
We defined in section 2.1 of the main paper a bin as an ordered set
of exons that can contain a read with a given length L. We also
defined the effective length li of a bin i as the number of available
positions in the bin where a read can start and be assigned to the bin
(a read is assigned to a bin if it overlaps all the exons of the bin and
is contained by it).

Figure S1 helps to understand this definition. We schematize a bin
with two exons of lengths lleft and lright, and such that lleft+lright ≥ L
(hence the two exons can indeed contain a read and the bin is valid).
The red marks correspond to the positions where a read can start and
be assigned to the bin. There are four possible cases depending of
the relative order of the lengths lleft, lright and L: when both lleft and
lright are bigger than L, the effective length only depends of the read
length (li = L − 1), when only one of the exons is strictly smaller
than the read length then the effective length equal the length of that
exon (li = lleft or li = lright), and when both exons are strictly
smaller than L, the effective length is equal to lleft + lright − L+ 1.
These four cases for a multi-exons bin can be written in a single
formula: li = min(lleft, L− 1) +min(lright, L− 1)− L+ 1. Note
that when a bin is composed of more than two exons, the reasoning
is the same by replacing the read length L by L − lint where lint is
the total length of the internal exons of the bin.

2 SPARSITY OF THE `1-PENALIZED ESTIMATOR
We illustrate here the fact that the flow decomposition returns a
solution of the `1-penalized estimator (problem 3 in the main paper)
which is sparse in the number of transcripts. Figure S2 shows the
final number of predicted transcripts after flow decomposition and
model selection for genes with a particular number of expressed
transcripts.

3 GENE SIZE INFLUENCE ON ISOFORM
RECOVERY

In the main paper we stratified precision and recall for isoform
recovery by the number of expressed transcripts for each gene
(Figure 3) . The number of exons of a gene is also a parameter
that affects greatly the difficulty of the problem. Indeed, the more

exons the bigger the set of candidate transcripts. Figure S3 shows
similar experiments as the ones presented in Figure 3 of the main
paper with the only difference being the exon stratification instead
of the transcript stratification. The number of exons varies from 2 to
116 and we compare FlipFlop, Cufflinks and IsoLasso.

For both single-end and paired-end reads, FlipFlop performance
increases greatly compared to Cufflinks and IsoLasso when the read
length increases (Figure S3(a) and Figure S3(b)). For 300bp read
length FlipFlop outperforms Cufflinks and IsoLasso for all genes
with between 2 and 20 exons. Similarly to what we observed on
simulations by transcript levels, and because FlipFlop predicts its
transcripts by using both read alignment positions and read density
without any filtering, an increase in coverage leads to better results
for all exon levels (Figure S3(c)).

4 STABILITY STUDY
We study in detail the stability of the proposed approach, i.e.,
how a solution is affected by some small perturbations of the
input data. We first emphasize that, in some cases, several set of
isoforms of the same size might explain equally well a set of RNA-
Seq reads. Consider for instance a three exons gene A-B-C with
twice more reads mapping into exon B that in exons A and C.
In that case solutions (A-B, B-C) and (A-B-C, B) explain equally
well the mapped reads. This non-unicity problem is important
but can not be solved by the `1-criteria, nor the `0, which will
both return one of the two solutions. We check empirically in
what extend the solutions at a given locus might be ambiguous.
For a given coverage we simulated independently two sets of
reads from UCSC annotated human transcripts. This corresponds
to simulate biological replicates. We then performed the isoform
deconvolution for the two sets and defined the stability as the
percentage of common isoforms between the two solutions. This
procedure was repeated ten times for each coverage. Results are
shown in Figure S4 for Cufflinks and FlipFlop. For both methods
the stability decreases with the number of expressed transcripts and
increases with coverage. Overall Cufflinks becomes approximately
10% more stable than FlipFlop for high coverage for genes with
multiple transcripts. The stability results should be of course put in
perspective with the accuracy of the isoform deconvolution.
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Fig. S1. Computation of the effective length li. Here the bin is composed of two exons of lengths lleft and lright, drawn in solid black line. Red lines represent
the reads of length L. The red squares correspond to the position where a read can start and be assigned to the bin.
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Fig. S2. Number of predicted transcripts for human RNA-Seq simulations with 150bp long single-end reads and 1 million reads by expressed transcript levels.

5 TUNING PARAMETERS
The simulations presented in section 3.1 of the main paper
correspond to an ideal situation without sequencing error or bias.
Because Cufflinks has a lot of parameters that are designed for
real RNA-Seq experiments, we check that the conclusions drawn
in section 3.1 are not too much influenced by this situation.

For that purpose we trained the methods on a first RNA-
Seq data set before to run it on an independent test set with
optimized parameters. In practice the training sets correspond to
1 million single-end or paired-end 150bp long reads simulated
with the RNASeqReadSimulator software from 589 UCSC human
transcripts on chromosome 18. The test sets are the ones described
in section 3.1. Parameters of the simulator are unchanged between
training and test data simulations.

We picked 10 parameters for Cufflinks denoted as advanced
assembly options and tried 7 values for each of them (while other
parameters fixed to their default values) equally distributed in log-
space from default value divided by five to default value times five.
This procedure is similar to the one explained in Behr et al. (2013).
For FlipFlop we only optimized 2 parameters for the single-end
experiments and 3 parameters for the paired-end ones. We kept for
testing the parameters that optimized the F-score.

Figure S5 shows the best F-score obtained on the training sets
for each parameter. Figure S6 shows precision and recall on the
test sets when using either the parameter default values or the F-
score optimized values. Cufflinks and FlipFlop performances are
very similar when considering the F-score optimized case. However
FlipFlop still shows quite better performances for 300bp long reads,

suggesting that FlipFlop would be more appropriate for a real RNA-
Seq experiment with such long reads, where it would not be possible
to extensively tune parameters.

6 REALISTIC SIMULATIONS
We also performed more realistic simulations than the ones
presented in section 3.1 of the main paper using the Flux-
Simulator (Griebel et al., 2012), which is a software designed
to mimic a real RNA-Seq experiment workflow (fragmentation,
reverse transcription, PCR amplification, filtering and sequencing).
We generated 2 million 150bp long single-end reads from the 4140
UCSC human transcripts of multi-exons genes of chromosome 1.
Note that we gave here to Cufflinks the fragment length mean and
standard deviation, while FlipFlop does not need that information
for single-end experiments. Moreover we performed two kinds of
simulations, with or without GC bias during the PCR amplification
step.

Precision and recall for Cufflinks and FlipFlop for the two
experiments are shown in Figure S7. For both methods the inclusion
of a GC bias affects the performance, but proportionally less for
FlipFlop than for Cufflinks. Results with default parameters are
shown in red, and for this particular set of experiments FlipFlop
clearly outperforms Cufflinks both in precision and recall.

We also show FlipFlop’s results when applying a GC correction
during the isoform recovery process. It simply corresponds to
multiplying each Poisson parameter of each bin by the GC content
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(b) Paired-end-end reads with different lengths (100, 125, 150, 175bp), 400bp mean fragment length and 1 million read pairs by exon level
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(c) Single-end reads with a fixed 150bp length and an increasing amount of material (1, 5, 10 million)

Fig. S3. Precision and recall on simulated reads from UCSC annotated human transcripts with an exon stratification.

of the bin. Using this correction slightly increases the accuracy of
FlipFlop.

Finally we add FlipFlop’s precision-recall curves, obtained when
varying the BIC constant used for model selection (see section 2.6 of
the main paper for more details about the model selection strategy).
Surprisingly these curves have a bell shape: the recall increases first
when the BIC constant decreases (light blue to dark blue colors)
before to fall down for very small BIC constants. Using a small
BIC constant corresponds to using a small regularization parameter
λ in equation (2), and finally selecting a complex model with many
isoforms. If the model is allowed to be very complex, several small
isoforms are preferred to fewer long ones, and it might happen
than some correct long isoforms are discarded from the solution.
One way to deal with that problem in future work would be to

penalize short isoforms by giving appropriate costs on the edges of
the splicing graph.

7 REAL RNA-SEQ DATA
Section 3.2 of the main paper gives precision and recall on two
human embryonic stem cell data sets. Figure S8 shows the running
time of IsoLasso, Cufflinks and FlipFlop for these two experiments.
Cufflinks and FlipFlop have similar running times on the paired-end
experiment, while FlipFlop is a little bit faster on the single-end
one and IsoLasso is much faster in both cases. While Figure 5
of the main paper shows precision and recall for different FPKM
levels, Figure S9 consider all abundances and shows FlipFlop’s
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Fig. S4. Stability versus million of simulated 150bp long single-end reads from UCSC annotated human transcripts. Cufflinks corresponds to the solid line
and FlipFlop to the dotted line.
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(a) Best F-score on the single-end reads training set
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(b) Best F-score on the paired-end reads trainings set

Fig. S5. Best F-score obtained when varying parameters on the simulated training sets. F-score obtained with default parameters are in red.
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(a) Single-end reads with different lengths (100, 200, 300bp) and 1 million reads by transcript level
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(b) Paired-end-end reads with different lengths (100, 125, 150, 175bp), 400bp mean fragment length and 1 million read pairs by transcript level
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Fig. S6. Precision and recall on test sets for Cufflinks and FlipFlop with default or F-score optimized parameter values.

precision-recall curves obtained when varying the model selection
rule. When using default parameters, IsoLasso and FlipFlop have
similar precisions while FlipFlop has a 4% and 6% better recall in
respectively the paired and single-end experiments. FlipFlop has
a 9% higher precision than Cufflinks in both experiments while
Cufflinks has a 5% and 2% better recall. In both cases, IsoLasso
point is under the precision-recall curves, while Cufflinks point is

above the curve on the paired-end case and on the curve on the
single-end case. We also plan to try real RNA-Seq data with longer
reads than 75bp.
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Fig. S7. Precision and recall on simulated reads with FluxSimulator from 4140 UCSC human transcripts. Results obtained with default parameters are in red.
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Fig. S8. Speed in minutes on a logarithmic scale of compared methods on human embryonic stem cells data.
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Fig. S9. Precision and recall on human embryonic stem cells. Results obtained with default parameters are in red.
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