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S1 CHOOSING THE K-MER RANGE
To determine, the best value for kmin, we extend a technique proposed by the authors of HiTEC (Ilie et al., 2011), and modify it to account for
heterogeneous read lengths by weighting the reads contribution by their individual lengths. Briefly, given the error rate ε and the distribution
of read lengths (`i)mi=1, we compute for each possible value of k the two quantities Uk and Dk.

The first, Uk, denotes the expected number of positions where errors are distributed in such a way that they cover all possible seeds of
length k (termed uncorrectible in (Ilie et al., 2011)).

Uk =

m∑
i=1

`i ·
`i∑

e=1

fk(e, `i) ε
e (1− ε)(li−e) , (1)

where fk(e, `) is the number of sequences with e errors in a read of length ` such that any interval of length k contains at least one error.
This value can easily be computed using a recurrence formula (Ilie et al., 2011).

The second, Dk, denotes the expected number of positions where a sequencing error in the seed misdirects the genomic location it should
be corrected to (termed destructible in (Ilie et al., 2011)).

Dk =

m∑
i=1

`i · (1− (1− qk)`i−k) · (1− ε)`i , (2)

and qk = (1− (1− ε)k)(1− ε)(1− (1− 1/4k)n) · 3/4. We then select kmin such that Uk +Dk is minimal. The maximum value kmax is set
to kmin +10 to provide a sufficiently large interval to detect erroneous k-mers. In order to save computation time we do not use every k value
in each round (see Section S2.5).

S2 IMPLEMENTATION DETAILS
Our implementation represents tree nodes by their intervals, where the root corresponds to the whole suffix array. To simulate the top-down
traversal we have to determine the children of node’s interval which are subintervals. To this end, we conduct binary searches for each
character A,C,G,T,N following the interval’s LCP and determine the LCP of each subinterval. For more details on the suffix tree traversal
using the suffix array only, we refer the reader to (Navarro & Baeza-Yates, 2000).

In Fiona the top-down traversal does not exceed a string depth of kmax. Hence it suffices to lexicographically sort the suffixes in the suffix
array by only their kmax-prefixes. Such a partial suffix array also called h-order suffix array (Larsson & Sadakane, 2007) was also used in
(Zhao et al., 2011) and (Siragusa et al., 2013a) as an efficient generalized suffix tree implementation for NGS reads.

We discard suffixes of length less than kmin and construct the kmax-order suffix array in 2 steps. First, we use a hash table to group the
suffixes into buckets by their q-prefix for a given q < kmin. We then refine the sorting from a prefix of length q to kmax using quick sort on
each bucket and start the top-down search as described previously. As the refinement and traversal steps are data-independent among the
buckets, we parallelized them using OpenMP. For load balancing each thread executes jobs of approximately the same number of suffixes.
To further reduce the physical memory consumption of Fiona, we omit to store all suffixes in the hash table at once. Instead, we repeat the
construction and traversal m times and in the ith round consider only suffixes with a hash value h of the q-prefix in the interval [hi−1, hi)
(0 = h0 < h1 < . . . < hm = 5q). Despite an increase in the running time of a factor m, we can decrease the dominating size of the hash
table by roughly the same factor by doing so.

S2.1 Seed extension
To efficiently compute the right extensionE(a, b) of two strings a and bwe use a banded variant of Myers’ bitvector algorithm (Myers, 1999)
as first used in (Weese et al., 2012) and specialized for seed extension in (Siragusa et al., 2013a,b). To extend a seed with minimal errors
one typically uses dynamic programming (DP). For seed extension with an upper bound of errors it suffices to compute cells within a band
(parallelogram) instead of the whole DP matrix. Our banded bitvector approach exploits bit-parallelism of logical and arithmetic operations
to compute whole columns of the DP parallelogram which is practically faster than computing the column cells seperately. For more details
on the implementation we refer to (Siragusa et al., 2013b).
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S2.2 Storing potential corrections
Whenever an erroneous node is detected in a traversal, the children of the node are divided into potentially erroneous and correcting nodes
according to the number of suffixes in the subtrees. For each erroneous suffix, different possible corrections for reads with this suffix are
examined as explained above and shown in Figure 2. A linked list with corrections for each read is kept during the tree traversal. For each read
position the best supporting correction is stored in the list. This list can be accessed by all threads, but is locked for other threads whenever
one thread is modifying an entry in the list.

S2.3 Parallelized computation of optimal read corrections
After all subtrees have been traversed and potential corrections have been stored in the linked list, the list of correcting operations for each
read and each position is iterated in parallel. For each read position in an erroneous read r the optimal set of corrections is computed as
explained above.

S2.4 Handling of repeats and Ns
Reads that are produced by the sequencer may contain the ambiguous base N. All previous suffix tree based methods omit reads that contain
one or more N’s. In Fiona each base position with an N is considered erroneous and is attempted to be corrected. In addition, anchors
containing N’s are neglected for the suffix tree traversal. When computing the overlap error rate to determine the set of correcting reads, N’s
occurring in correcting reads as counted as errors, while N’s in the erroneous read are not.

To reduce false positive error candidates from small variations in repeat regions, we also ignore anchors that are tandem repeats of 1–6
nucleotides with at least 2 repetitions. As a second measure against repeats, we completely neglect mononucleotide q-gram buckets, e.g.
CCCCCC, and also the most abundant q-gram buckets that in total contain a fraction of ρ of all q-grams, where ρ is the assumed repeat rate
(ρ = 0.01 by default).

S2.5 Seed sampling
As another means for improving on running time, we implemented a seed sampling heuristic. Instead of examining all branching nodes in
every round, we examine only every third node on a tree branch depending on the correction round. More precisely, we considered only
seeds of length `, where ` ≡ kmin + u− 1 mod s. u denotes the number of the current round and s is the sampling rate. By default, Fiona
uses a sampling rate of s = 3.

S2.6 Complexity
The asymptotic running time of Fiona is dominated by the search for errors and their corrections in a traversal of the suffix tree. The pseudo-
code of this search is outlined in Algorithm 1 (notations are the same as in the main text). We omitted some details in the pseudo-code like
counting votes, detecting which e acquires the most votes and insertion of the correction in the correction list as they have no influence on
the asymptotic running time which is dominated by innermost computation, the seed extension.

Algorithm 1: Fiona(R, n, ε)
input :R, the set of m reads of length `
input : n, the genome length
input : ε, the expected read error rate

1 foreach suffix tree node αz do
2 if |α|+ 1 ∈ [kmin, kmax] and |S(αz)| < cutoff(|α|+ 1) then
3 foreach sibling αx of αz do
4 if |S(αx)| ≥ cutoff(|α|+ 1) then
5 foreach (r, i) ∈ S(αz) do
6 foreach (s, j) ∈ S(αx) do
7 foreach e ∈ {( 1

1 ) , (
1
0 ) , (

0
1 )} do

8 compute right extension E
(
r
[
i+ e′1, |r|

]
, s
[
j + e′2, |s|

])
with Myers algorithm

9 . . .
10 . . .

Worst-case running time. Assume a fixed string depth k and child nodes αx and their siblings αy of parent nodes α with |α| = k. Then let
Nerr(k) denote the number of pairs (r, i) iterated by lines 3 and 5 and let Nfor(k) denote the number of pairs (s, j) iterated by lines 4 and 6.
As the spectrum of a node is the set of leaves below it and all nodes at a fixed depth k have disjoint sets of leaves, we can derive the following
loose upper bounds Nerr(k) < m · ` and Ncor(k) < m · `. The inner loop over the 3 possible error types (line 7) is executed for the product
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of suffixes Nerr(k) ·Ncor(k) < m2 · `2. We traverse only nodes at depth k ∈ [kmin, kmax] and as we chose kmax := kmin +10 there are not more
than 10 different depths to examine.

The innermost seed extension in line 8 aligns to suffixes of at most `−kmin characters. As we limit the number of tolerated errors by bε · `c
the extension can be computed by a banded DP algorithm that computes only a band of bε · `+1c diagonals and at most `− kmin columns of
the DP matrix. We use a banded variant of Myers bit-vector algorithm which computes 64 column cells at once and hence needsO(` · b ε·`

64
c)

time.
Thus the overall worst-case running time of one round of Fiona is:

O
(
10 ·m2 · `2 · 3 · ` ·

⌊
ε · `
64

⌋)
⊂ O

(
ε ·m2 · `4

)
.

This time already includes the partial suffix array constructing which requires O (m · ` · log (m · `) · kmax) time to sort all suffixes by their
prefix of length kmax.

Expected running time. However this worst case bound does not reflect the complexity of Fiona in practice. So we give the expected running
time as well for which we can make some more stringent assumptions. At one string depth k the number of seeds of erroneous reads can be
expected to be a ε-fraction of all seeds at one level k, i.e. Nerr(k) < ε ·m · `. For each erroneous seed we expect to find λk correct seeds,
where λk = m · `−k

n
is the expected seed coverage. Hence, the loop in line 7 will be executed ≈ ε·m2·`2

n
times.

The expected running time of one round of Fiona is:

O
(
10 · ε ·m

2 · `2

n
· 3 · ` ·

⌊
ε · `
64

⌋
+ m · ` · log (m · `) · kmax

)
⊂ O

(
ε2 ·m2 · `4

n
+ m · `2 · log (m · `)

)
.

We can then rewrite the expected running time as a function of genome length and coverage λ = λ1:

O
(
n · ε2 · λ2 · `2 + n · λ · ` · log (n · λ)

)
which is linear on genome length and quadratic with coverage. The worst-case and expected case running times were given for one round
only. However, the total running time has the same complexity as the automatic round selection will stop after at most a constant number of
6 rounds.

Memory consumption. The data structures required by Fiona are the reads which have m · ` characters in total, the suffix array with
m · (` − kmin + 1) entries and the correction list with O ((kmax − kmin) · ε ·m · `) entries in expectation if all errors would be found at each
string depth k. Hence, the overall memory consumption is linear in the total length of reads

O(m · `) .
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S3 DETAILS OF EVALUATION SETUP
All experiments presented in this manuscript were run on a computer with an 8-core Intel Xeon X5550 @2.67Ghz processor and 72 GB of
RAM running Debian Linux 6.0.6.

S3.1 Data sets and genomes used

Table S1. Identifiers and sources of the used reference sequences

organism accession genome length

B. pertussis 18323 NC 018518.1 4 043 846
E. coli K-21 NC 000913.2 4 639 675
E. coli O104:H4 NC 018658.1 5 273 097
H. sapiens GRCh37 2 861 343 787
P. syringae NC 007005.1 6 093 698
P. falciparum 3D7 ASM276v1 23 264 338
S. cerevisae NCBI release 54 12 156 676
S. aureus LGA251 NC 017348, NC 017349 2 799 725
C. elegans ENSEMBL release 60 100 286 070
D. melanogaster flybase r5.29 120 381 546

Table S2. The experimental read data sets used for the evaluation

organism accession avg. length read count coverage Gbp

B.pertussis ERR1615412 142 bp 2 464 690 85x 0.3

C. elegans SRR443373I 100 bp 29 657 035 30x 3
D. melanogaster SRR492060I 76 bp 51 727 822 28x 3.4
D. melanogaster SRX0162101 544 bp 4 692 486 18x 2.2

E. coli K-12 ERR022075I 100 bp 22 720 100 490x 2.3
E. coli K-12 ERR022075I 100 bp 1 378 122 30x 0.14
E. coli K-12 SRR0008681 253 bp 230 517 13x 0.06
E. coli K-12 ERR0394772 92 bp 390 976 8x 0.04
E. coli K-12 SRR6111402 162 bp 4 669 065 163x 0.8
E. coli K-12 SRR6204252 170 bp 4 237 734 156x 0.7
E. coli O104:H4 SRR2542092 178 bp 977 971 32x 0.2

H. sapiens SRR12385392 177 bp 186 132 134 11x 31.5

P. falciparum ERR1615432 154 bp 1 959 564 13x 0.3

P. syringae ERR005143I 36 bp 14 204 532 42x 0.26

S. aureus ERR2360692 228 bp 1 338 465 109x 0.31
S. aureus SRR0705961 514 bp 185 384 34x 0.1
S. cerevisae SRR031259I 36 bp 7 485 708 22x 0.27
S. cerevisae SRX0394411 274 bp 690 237 16x 0.19

1 454. 2 Ion Torrent,I Illumina.

S3.2 Performance evaluation
Gain Computation with compute gain. For the evaluation of read correction quality, the metric gain has been established in (Yang et al.,
2010) and (Yang et al., 2013) as a good summary of both sensitivity and precision. We use the gain metric for edit distance: For both 454 and
IonTorrent data, the uncorrected reads are mapped against the known reference genome using BWA-SW (Li & Durbin, 2010) with default
parameters. BWA-SW yields the best local match in a SAM file which is used as the predicted true origin in the rest of the evaluation.

For the evaluation, we developed a tool called compute gain which employs multi-core parallelism and is included in the Fiona
distribution. This tool reads the SAM file generated by BWA-SW and the corrected FASTQ file that the correction tool produces. The full
uncorrected and corrected read sequences are then aligned around the predicted origin position using a banded DP alignment algorithm
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from (Döring et al., 2008). The gain can be computed by (b − a)/b where a and b are the sums over the number of errors after and before
correction over all reads. When more errors are introduced than corrected over all the reads, the gain takes a negative value.

Handling Local Alignments for 454 and IonTorrent Data. Since BWA-SW yields local alignments, we use a similar scheme for filtering
BWA-SW matches as in (Yang et al., 2013): Reads where fewer than 30 bases are aligned by the read mapper are ignored. We also ignore
reads aligning with more than 10 errors or with an overall error rate of more than 20 %.

Besides the gain, we also compute the base error rate which is the total number of edit distance errors divided by the total number of bases.

Sensitivity and Specificity Computation. Computing other metrics such as sensitivity and specificity values requires that false positive
correction, true positive corrections etc. can be defined and computed in an unique way. As we assess the true originating position of
the reads using the best alignment to the genome, we have to avoid changes in the alignment before and after correction which would create
ambiguities. There is not such a problem when using Hamming distances, as each aligned base of the read is compared to the same exact
position on the reference genome before and after correction.

For edit distance, however, positions of gaps in each read alignment can change before and after correction. For instance, even a substitution
of a bp can change the position it aligns to on the reference genome. There, read bases untouched during read correction and that previously
aligned without an error, might after correction align with a mismatch, even though their status was unchanged.

In their study, (Yang et al., 2013) propose an approximation of the true/false positive/negative counts using a scheme that we describe
below. Our program compute gain also allows for such a computation but because of the limitations on corrections using edit distance
operations, we only give these metrics in the supplement.

The approach to compute the metrics for sensitivity and specificity and the counts required for this computation are as follow. Collect a
quadruple (p, o, c, w) for each erroneous alignment base where p is the reference position, o is an offset in gaps in the reference, c is the
correct base (reference base, can be - for gaps in the reference) and w is the wrong base in the read. The sets B and A contain the errors
before and after the correction. The true positives can now be computed as |B \A|, false positives as |A \B|, and the number of false
negatives as |A ∩B|. The number of true negatives is the number of reference positions before correction that are not in A nor B.

Consider the following example for a case where the algorithm described above does not count the true/false positives/negative corrections
correctly. The read ACGCTCTACG aligns against the reference ACGATCTGTACG with edit distance 3. The read error correction method
corrects the read to ACGCTGTACG (replacing the third C from the left by a G). This makes the read align against the reference with edit
distance 2.

before correction after correction

11 11
pos 012345678901 012345678901

* ** **
REF acgatctgtacg REF acgatctgtacg

|||.||| ||| ||| |||||||
READ acgctct--acg READ acg--ctgtacg

ˆ
‘-- change to ‘‘g’’

edit distance = 3 edit distance = 2

Since the edit distance alignment before correction was ambiguous, the alignment errors are not correlated correctly. The algorithm above
counts one uncorrected base (false negative) at position 3, one introduced error (false positive) at position 4, and two corrected errors at
position 7 and 8 (true positives). However, the corrected base was the C previously aligned to position 5 and after correction aligned to
position 7 as G. Thus, there actually is one corrected error, two uncorrected errors, and no introduced error.

Note that the alignment algorithm that we used for edit distance place gaps at the rightmost possible position. Any dynamic programming
(DP) alignment algorithm implementation has to decide how to handle ambiguous traces through the DP matrix, effectively placing gaps at
the leftmost or rightmost possible position. Using the reverse complement for both read and reference in the example above gives an example
for incorrect counts for a DP alignment algorithm placing gaps at the leftmost position.

S4 ROBUSTNESS EVALUATION
Table S3 shows the robustness of Fiona with respect to the expected error rate. The parameter of ε was varied between 2 % and 10 % when
correcting the 13x E. coli and the 34x S.aureus data sets with varying coverage.

S5 PROGRAM VERSION AND PARAMETRIZATION DETAILS
For all programs the gain analysis was done on the complete read set, even if some programs discarded reads from their output.
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Table S3. Results of robustness evaluation

best fraction of best gain value with ε =

data set gain 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 %

E.coli SRR000868 13x 90.5 95.52 98.75 99.92 100.00 99.60 92.58 92.64 91.80 87.73
S.aureus SRR070596 34x 74.9 87.15 89.39 92.74 93.30 100.00 85.47 85.47 85.47 84.92

Fraction of the best gain for different given values for the per-base error rate ε. Fiona was run one E. coli and one S.aureus data set with
different values of the per-base error rate between 2 % and 10 %.

S5.1 Fiona
Fiona was used in version 0.2. The values chosen automatically by Fiona for kmin were 14 for the E. coli data sets, 15 for S. cerevisae, 16 for
RAL399-2L, and 17 for C. elegans and D. melanogaster. We used the parameter -t 8 for eight threads, and pass the genome length using
-g GLEN. A q-gram of length 10 was hard-coded into Fiona for benchmarking (and can be changed after recompiling). Fiona uses a default
error rate of 0.05 and Fiona-H for Illumina data uses a default of 0.01. Example:
fiona -nt 8 -g 1000 IN.fq OUT.fa.

S5.2 Allpaths-LG
Allpaths-LG was used in release 44994. We ran the read correction program ErrorCorrectReads.pl with the settings THREADS=8
PHRED ENCODING=33 REMOVE DODGY READS=0 UNPAIRED READS IN=IN.fq READS OUT=OUT.fq. The output was post-
processed to add back the reads that were removed by the read correction routine although REMOVE DODGY READS=0 was set.
Example:
ErrorCorrectReads.pl THREADS=8 PHRED ENCODING=33 REMOVE DODGY READS=0 UNPAIRED READS IN=IN.fq
READS OUT=OUT.fq

S5.3 Coral
Coral was used in version 1.4. It was run with default parameters, i.e. -fq for the input FASTQ files, -o for the output file, and -454 for
both 454 and IonTorrend data. For some 454 and Ion Torrent data, Coral’s parameters had to be adjusted to allow higher error rates to yield
better gain (as instructed by the Coral authors).

We ran Coral with default parameters (an error rate of 7 % or -e 0.07). We also tried to increase the error rate in Coral to 10 %, 15 %,
20 %, and 25 %. The best variant for each data set is given as Coral*. We stopped Coral after 24 hours on the 18x D. melanogaster data set
with -e 0.20 and -e 0.25.

Coral uses 8 threads by default. Example:
coral -fq IN.fq -o OUT.fa -454 -e 0.10.

S5.4 HybridShrec
HybridShrec was used in version 1.0 (BaseSpaceShrec). We ran HybridShrec in two versions. The variant HybridShrec was run with default
parameters as instructed by the authors. For most data sets, the program did not run through but exited with the suggestion to lower the
strictness parameter -s. Because the achieved gain did not correlate with the strictness parameter value, we ran it with strictness values set
from 2 to 7 and reported the best achieved gain.

The default setting for levels to use is 14 to 17. The variant HybridShrecF used the same levels as fiona. This variant was run with strictness
values 2 to 7 as well. Example:
java -Xmx40960m Shrec -n 5348428 -s 7 IN.fa
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S6 RUNNING TIME AND MEMORY CONSUMPTION
Table S4 shows the running time and memory consumption of the evaluated tools on 454 and IonTorrent data. Table S5 shows the same
metrics for Illumina data.

Table S4. Running time and memory consumption for 454 (top) and IonTorrent (bottom) experiments

Allpaths-LG Coral Coral* Fiona HybridShrec* HybridShrecF

data set Gbp time mem time mem time mem time mem time mem time mem

D. melanogaster 18x 2.2 145.0 11 496.1 59 1414.1 60 240.7 18 333.2 41 499.5 42
E. coli K-12 13x 0.06 1.0 0 0.8 3 0.9 3 2.5 1 4.8 5 5.0 12
S. aureus 34x 0.1 3.0 1 5.5 5 112.2 5 12.3 1 12.0 14 13.6 15
S. cerevisae 16x 0.19 6.5 1 7.1 5 19.6 5 13.1 2 22.5 15 30.5 15

B. pertussis 85x 0.3 6.0 2 13.5 9 81.2 9 32.0 3 58.3 17 54.0 21
E. coli K-12 8x 0.04 2.6 0 3.4 3 4.4 3 3.1 1 7.1 5 9.2 8
E. coli K-12 163x 0.8 14.2 4 243.0 13 373.8 13 118.3 9 111.3 19 160.2 6
E. coli K-12 156x 0.7 15.0 7 249.1 12 290.1 12 49.2 8 111.4 18 111.0 6
E. coli O104:H4 32x 0.2 3.8 1 5.3 8 12.6 8 15.2 2 21.7 15 28.7 16
H. sapiens1 11x 31.5 572.8 129 —2 —2 1187.1 244 —2 —2

P. falciparum 13x 0.3 5.6 1 11.0 11 24.8 11 20.5 3 38.9 16 49.7 20
S. aureus 109x 0.31 4.4 1 12.0 13 175.8 13 43.7 3 51.1 18 53.8 29

1 The programs were run on machine with 16 physical and 32 virtual cores and 370 GB of RAM. 2 Out of memory. — Time (in minutes and fractions thereof)
and memory (in GB, rounded to the next GB) for the read correction runs from Table 1. For each data set, the results with the lowest running time and memory
are given in bold. The results are separated by sequencing technology, the 454 results are above the IonTorrent results.

Table S5. Running time and memory consumption for Illumina experiments

Allpaths-LG Coral ECHO Fiona-H HiTEC Quake
data set time mem time mem time mem time mem time mem time mem

C. elegans 30x 61.73 13.31 162.53 49.33 —2 445.06 22.27 —1 13.79 16.10
D. melanogaster 5x 9.64 3.22 21.78 17.53 307.59 15.89 31.19 6.24 82.65 13.68 26.37 11.88
D. melanogaster 28x 83.07 15.54 172.36 54.41 —2 108.12 33.55 —1 29.81 12.37
E. coli K-12 30x 3.57 0.73 4.44 3.54 67.58 4.11 2.72 1.68 13.34 2.58 4.01 0.15
E. coli K-12 490x 51.47 9.07 261.33 25.55 —1 56.43 16.85 277.32 9.84 42.72 5.80
P. syringae 21x 2.17 0.59 1.71 3.71 55.45 2.86 2.73 1.63 11.74 2.53 6.57 1.05
S. cerevisae 22x 4.00 1.15 9.75 5.21 102.57 15.14 4.64 3.21 28.27 4.96 8.73 0.64

Time (in minutes and fractions thereof) and memory (in GB, rounded to the next GB) for the read correction runs from Table 3. For each data set, the results with the lowest
running time and memory are given in bold. 1 The program crashed. 2 The program ran too long.
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S7 SENSITIVITY AND SPECIFICITY RESULTS
Table S6 shows the sensitivity and specificity results as well as the number of true and false positives of the evaluated tools on 454 and
IonTorrent data. Table S7 shows the same metrics for Illumina data.

Table S6. Sensitivity and specificity results on 454 (top) and IonTorrent data (bottom)

Allpaths-LG Coral Coral*

data set sens. spec. TP FP sens. spec. TP FP sens. spec. TP FP

D. melanogaster 18x 9.5 100.0 431,174 26,579 45.2 99.9 2,061,475 292,128 68.0 99.8 3,097,777 667,718
E. coli K-12 13x 56.2 100.0 156,100 4,884 59.4 99.9 165,031 34,931 76.4 99.9 212,002 68,012
S. aureus 34x 27.2 99.9 65 8 0.0 100.0 0 0 92.9 99.7 222 43
S. cerevisae 16x 19.9 100.0 92,094 6,799 0.7 100.0 3,165 583 11.1 99.9 51,326 37,492

B. pertussis 85x 41.5 100.0 1,343,905 43,636 0.0 100.0 711 104 45.2 99.5 1,464,858 473,514
E. coli K-12 163x 18.3 100.0 1,880,350 236,298 73.8 99.8 7,590,588 1,450,793 98.5 99.6 10,132,261 2,550,490
E. coli K-12 156x 41.3 99.9 3,188,726 717,730 92.5 99.7 7,147,691 2,429,213 99.1 99.7 7,653,796 1,882,367
E. coli O104:H4 32x 40.8 100.0 180,646 1,217 0.0 100.0 19 9 49.2 99.2 218,026 68,296
H. sapiens 11x 14.7 99.9 66,887,396 14,645,519 —- —-
P. falciparum 3D7 13x 22.5 100.0 106,451 5,160 0.0 100.0 177 33 46.5 98.9 220,013 101,915
S. aureus 109x 16.1 100.0 130,036 9,786 0.3 100.0 2,503 542 73.8 99.4 596,332 136,676
E. coli 8x 31.7 100.0 117,828 3,880 62.2 99.9 231,115 47,576 82.2 99.8 305,096 68,200

Fiona HybridShrec* HybridShrecF

data set sens. spec. TP FP sens. spec. TP FP sens. spec. TP FP

D. melanogaster 18x 67.9 100.0 3,097,392 151,321 48.3 96.3 2,200,434 14,943,564 41.5 100.0 1,892,893 152,683
E. coli K-12 13x 92.8 100.0 257,697 6,379 58.8 99.9 163,164 47,089 43.0 100.0 119,441 7,667
S. aureus 34x 35.2 100.0 84 7 40.6 99.5 97 74 22.2 100.0 53 4
S. cerevisae 16x 40.1 100.0 185,299 18,633 28.5 99.8 131,782 106,449 25.1 100.0 116,000 9,119

B. pertussis 85x 77.8 99.8 2,521,238 161,532 30.3 91.1 981,897 8,611,563 7.2 99.4 232,814 546,348
E. coli K-12 163x 84.6 100.0 8,695,573 341,386 4.2 99.7 427,098 2,370,597 0.0 100.0 0 0
E. coli K-12 156x 76.6 100.0 5,915,443 193,441 4.7 99.7 359,316 2,225,252 0.0 100.0 0 0
E. coli O104:H4 32x 76.1 99.7 337,107 30,122 20.7 99.8 91,465 17,273 20.7 99.8 91,484 17,289
H. sapiens 11x 52.0 99.9 236,114,218 24,304,808 —- —-
P. falciparum 3D7 13x 69.7 99.2 329,796 73,538 31.4 96.0 148,631 391,500 15.3 99.7 72,315 32,056
S. aureus 109x 67.8 99.9 547,443 22,926 3.4 99.5 27,286 135,833 1.6 100.0 12,617 10,013
E. coli 8x 84.3 99.9 313,159 26,809 60.4 99.8 224,310 140,519 37.8 100.0 75,576 13,199

Sensitivity (sens.) and specificity (spec.) are given in percent. Also, the table shows true positives (TP) and false positives (FP). See Table S4 for the reasons of missing
values.
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Table S7. Sensitivity and specificity results on Illumina data

Allpaths-LG Coral ECHO

data set sens. spec. TP FP sens. spec. TP FP sens. spec. TP FP

C. elegans 30x 29.8 100.0 1,847,743 84,120 35.9 99.8 2,224,305 2,453,521 —-
D. melanogaster 5x 34.1 100.0 2,472,286 94,512 52.7 99.9 3,820,682 412,417 44.3 100.0 3,207,820 146,833
D. melanogaster 28x 33.6 100.0 11,676,976 516,280 33.3 99.9 5,416,789 1,678,511 —-
E. coli K-12 30x 99.4 100.0 277,941 353 99.1 100.0 276,949 21,455 93.0 100.0 259,843 5,117
E. coli K-12 490x 98.3 100.0 4,532,069 3,803 97.3 100.0 4,483,687 58,367 —-
P. syringae 42x 75.4 100.0 524,048 6,626 84.7 100.0 589,084 35,909 92.2 100.0 640,955 7,567
S. cerevisae 22x 58.1 100.0 587,218 20,427 60.9 99.9 615,641 162,862 35.2 100.0 355,528 28,853

Fiona HiTEC Quake

data set sens. spec. TP FP sens. spec. TP FP sens. spec. TP FP

C. elegans 30x 30.1 100.0 1,865,313 300,769 —- 18.2 100.0 1,126,131 71,476
D. melanogaster 5x 53.3 100.0 3,861,950 218,559 40.6 99.8 2,939,537 1,207,761 47.7 100.0 3,455,254 51,454
D. melanogaster 28x 34.3 100.0 11,911,334 1,012,857 —- 68.9 100.0 10,236,997 133,916
E. coli K-12 30x 98.7 100.0 276,003 2,291 94.4 100.0 263,847 3,353 95.6 100.0 267,312 175
E. coli K-12 490x 99.2 100.0 4,571,973 26,034 94.8 100.0 4,369,759 45,666 88.2 100.0 4,065,202 4,742
P. syringae 42x 95.5 100.0 663,786 28,732 94.5 99.9 657,018 118,634 81.2 100.0 564,406 10,534
S. cerevisae 22x 78.0 99.9 788,641 195,792 72.4 99.6 731,798 964,394 53.8 100.0 543,952 16,552

Sensitivity (sens.) and specificity (spec.) are given in percent. Also, the table shows true positives (TP) and false positives (FP). See Table S5 for the reasons of
missing values.
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S8 FULL CORAL RESULTS
Table S8 and Table S9 show the full results of all Coral runs in terms of quality and resource consumption. We stopped the Coral runs after
24 h.

Table S8. Full gain and error rate results for Coral with different value for the -e parameter

original Coral -e 0.07 Coral -e0.10 Coral -e0.15 Coral -e0.20 Coral -e0.25
data set e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain

B. pertussis 85x 3.71 3.71 0.02 3.71 0.06 3.69 0.40 3.55 4.18 2.57 30.60
D. melanogaster 18x 1.17 0.72 38.81 0.58 50.68 0.55 53.30 –1 –1 –1 –1

E. coli K-12 13x 1.06 0.54 49.42 0.43 59.25 0.38 63.79 0.39 63.28 0.41 61.46
E. coli K-12 8x 0.62 0.33 46.86 0.30 51.86 0.32 48.07 0.36 42.47 0.40 35.72
E. coli K-12 162x 1.46 0.59 59.70 0.41 71.62 0.38 73.72 0.39 73.11 0.42 71.37
E. coli K-12 156x 1.11 0.43 61.07 0.32 71.37 0.28 74.70 0.29 73.60 0.32 70.59
E. coli O104:H4 32x 5.19 5.19 0.00 5.19 0.03 5.15 0.66 4.80 7.44 3.44 33.82
P. falciparum 3D7 13x 5.06 5.05 0.03 5.05 0.17 4.97 1.60 4.57 9.65 3.80 24.94
S. aureus 109x 3.32 3.32 0.24 3.29 1.08 3.03 8.90 1.92 42.38 1.44 56.91
S. aureus 34x 1.76 1.76 0.00 1.73 2.09 1.51 14.23 1.00 43.51 0.44 74.90
S. cerevisae 16x 0.95 0.95 0.56 0.94 1.06 0.93 2.41 0.92 2.99 1.01 -5.84

The values selected for Coral* are highlighted in bold. — 1 Coral did not finish within 24 h.

Table S9. Full running time (in minutes) and memory consumption (in GB) results for Coral with different values
for the -e parameter

Coral -e 0.07 Coral -e0.10 Coral -e0.15 Coral -e0.20 Coral -e0.25
data set time mem time mem time mem time mem time mem

B. pertussis 85x 9.19 24 9.19 24 9.19 24 9.23 24 9.39 24
D. melanogaster 18x 59.13 73 59.41 73 59.62 73 –1 –1 –1 –1

E. coli K-12 13x 2.61 17 2.61 17 2.61 17 2.61 17 2.62 17
E. coli K-12 8x 2.86 18 2.86 18 2.87 18 2.87 17 2.87 17
E. coli K-12 162x 13.21 28 13.21 28 13.21 28 13.21 28 13.21 28
E. coli K-12 156x 11.96 27 11.95 27 11.94 27 11.94 27 11.94 27
E. coli O104:H4 32x 8.24 23 8.24 23 8.25 23 8.27 23 8.42 23
P. falciparum 3D7 13x 11.02 26 11.02 26 11.03 26 11.08 26 11.35 26
S. aureus 109x 12.92 28 12.93 28 13.00 28 13.23 28 13.26 28
S. aureus 34x 4.72 19 4.73 19 4.79 19 4.86 19 4.85 19
S. cerevisae 16x 5.06 20 5.06 20 5.07 20 5.10 20 5.18 20

The values selected for Coral* are highlighted in bold. — 1 Coral did not finish within 24 h.
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S9 FULL HYBRIDSHREC RESULTS
Table S10 and Table S11 show the full results of all HybridShrec (HS) runs in terms of quality and resource consumption. Some values are missing because HS did not work with
the given strictness value or the program terminated.

Table S10. Full gain and error rate results for HybridShrec (HS) with different values for the strictness (-s) parameter.

original HS* HSF HS* HSF HS* HSF HS* HSF HS* HSF HS* HSF

-s 2 -s 2 -s 3 -s 3 -s 4 -s 4 -s 5 -s 5 -s 6 -s 6 -s 7 -s 7
data set e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain

B. pertussis 85x 3.71 –1 –1 4.07 -9.68 –1 –1 4.11 -10.89 –1 –1 4.15 -11.83 –1 –1 4.17 -12.61 –1 –1 4.20 -13.22 12.44 -235.48 4.18 -12.78
D. melanogaster 18x 1.17 13.89 -1,086.21 1.15 1.89 14.17 -1,109.80 1.08 7.94 10.72 -813.56 –1 –1 4.46 -279.51 0.73 38.17 –1 –1 –1 –1 –1 –1 –1 –1

E. coli K-12 8x 1.06 1.20 -12.98 0.81 23.52 0.64 40.05 0.70 34.28 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

E. coli K-12 13x 0.62 1.20 -93.69 0.55 10.50 0.97 -56.04 0.46 25.55 0.36 41.81 0.37 40.26 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

E. coli K-12 163x 1.46 1.73 -18.90 1.46 0.00 1.81 -23.85 1.46 0.00 1.86 -27.80 1.46 0.00 1.90 -30.45 1.46 0.00 1.94 -33.01 1.46 0.00 2.07 -41.73 1.46 0.00
E. coli K-12 156x 1.11 1.38 -24.15 1.11 0.00 1.45 -30.62 1.11 0.00 1.50 -35.16 1.11 0.00 1.53 -37.76 1.11 0.00 1.56 -40.71 1.11 0.00 1.68 -51.48 1.11 0.00
E. coli O104:H4 32x 5.19 5.40 -3.98 5.16 0.51 5.44 -4.82 5.16 0.61 5.56 -7.11 5.15 0.77 5.79 -11.56 5.12 1.35 6.08 -17.35 4.83 6.87 4.39 15.36 4.31 16.76
P. falciparum 3D7 13x 5.06 13.27 -162.26 5.14 -1.76 11.38 -124.62 4.87 3.54 7.67 -51.29 4.63 8.50 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

S. aureus 109x 3.32 3.77 -13.44 3.31 0.32 3.89 -17.02 3.32 0.04 4.04 -21.57 3.33 -0.33 4.26 -28.01 3.35 -0.88 4.55 -36.89 3.38 -1.64 5.00 -50.38 3.41 -2.79
S. aureus 34x 1.76 2.26 -28.03 1.68 4.60 2.28 -29.71 1.70 3.77 2.64 -49.79 1.70 3.35 3.11 -76.57 1.72 2.51 2.50 -41.84 1.53 13.39 1.59 9.62 1.40 20.50
S. cerevisae 16x 0.95 2.57 -169.97 0.92 3.67 3.17 -233.71 0.88 7.09 2.06 -116.27 0.76 19.85 0.90 5.48 0.73 23.11 –1 –1 –1 –1 –1 –1 –1 –1

The values selected for HybridShrec* and HybridShrecF are highlighted in bold. — 1 HybridShrec could not run for the given value of -s.

Table S11. Full running time (in minutes) and memory consumption (in GB) results for HybridShrec (HS) with different values for the strictness (-s) parameter.

HS* HSF HS* HSF HS* HSF HS* HSF HS* HSF HS* HSF

-s 2 -s 2 -s 3 -s 3 -s 4 -s 4 -s 5 -s 5 -s 6 -s 6 -s 7 -s 7
data set time mem time mem time mem time mem time mem time mem time mem time mem time mem time mem time mem time mem

B. pertussis 85x –1 54.01 21 –1 55.24 20 –1 53.71 19 –1 53.58 19 –1 54.27 20 58.31 17 54.42 19
D. melanogaster 18x 387.56 42 549.71 42 352.42 41 537.02 42 352.44 41 –1 333.22 41 499.52 42 –1 –1 –1 –1

E. coli K-12 8x 6.72 5 5.57 12 4.81 5 5.04 12 –1 –1 –1 –1 –1 –1 –1 –1

E. coli K-12 13x 11.46 7 11.75 12 6.95 5 11.03 12 7.08 5 9.16 8 –1 –1 –1 –1 –1 –1

E. coli K-12 163x 111.33 19 160.21 6 110.03 18 116.05 7 108.12 19 115.84 7 106.06 18 115.29 7 109.48 18 115.73 7 106.34 18 116.51 7
E. coli K-12 156x 111.36 18 110.96 6 103.76 18 110.35 6 104.94 18 110.93 6 104.55 18 110.40 6 107.65 17 110.46 6 104.38 17 111.18 6
E. coli O104:H4 32x 27.01 15 28.11 17 23.94 15 27.55 17 24.48 15 28.81 17 22.51 15 27.76 16 23.44 15 28.55 16 21.72 15 28.70 16
P. falciparum 3D7 13x 46.10 15 50.40 21 46.50 15 50.38 20 38.93 16 49.66 20 –1 –1 –1 –1 –1 –1

S. aureus 109x 51.13 18 53.84 29 48.43 18 55.05 26 48.87 18 54.83 26 48.36 18 54.47 24 48.37 18 53.43 26 44.37 18 54.31 26
S. aureus 34x 14.69 14 15.48 15 12.68 14 15.75 14 12.05 14 15.92 11 11.94 14 15.64 15 12.01 14 13.57 15 12.01 14 13.59 15
S. cerevisae 16x 28.96 15 29.42 15 28.58 15 30.02 16 28.95 15 29.68 15 22.46 15 30.52 15 –1 –1 –1 –1

The values selected for HybridShrec* and HybridShrecF are highlighted in bold. — 1 HybridShrec could not run for the given value of -s.
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S10 NUMBER OF BASES REMOVED BY QUAKE
In Table S12, we report the number of removed bases and percentage of removed bases by Quake. Note that this is only due to clipped away
bases. Any read removed by Quake as erroneous was inserted back from the original result.

Table S12. Number of bases in the data sets, bases in Quake’s result, bases removed by Quake, and
percentage of bases that Quake removed.

data set original bases Quake bases Quake removed Quake removed %

C. elegans 30x 2 995 360 535 2 602 871 767 392 488 768 13.10
D. melanogaster 5x 719 242 720 682 934 709 36 308 011 5.05
D. melanogaster 28x 3 983 042 294 3 870 735 864 112 306 430 2.82
E. coli 30x 139 190 322 135 027 481 4 162 841 2.99
E. coli 490x 2 294 730 100 2 226 186 200 68 543 900 2.99
P. syringae 41x 525 567 684 131 242 129 394 325 555 75.03
S. cerevisae 22x 276 971 196 276 903 093 68 103 0.02
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