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1 Truncated normal distributions

We used truncated normal distributions as priors for kinetics parameters, as
described in Main Text. Here, we describe truncated normal distributions and
how we sampled from them.

1.1 Definition

A random variable Y ∈ Rp has a truncated multivariate normal distribution
with mean µ and covariance Σ, denoted Y ∼ NT (µ,Σ), if Y has probability
density function

pY (y) ∝ exp

(
− (y − µ)TΣ−1(y − µ)

2

)
I(y ≥ 0). (1)

where I here is the indicator function, such that I(y ≥ 0) = 1 if y ≥ 0, otherwise
I(y ≥ 0) = 0. (The notation y ≥ 0 is taken to mean that yi ≥ 0 for all
i = 1, . . . , p.) The density pY is related to the standard normal probability
density φ via pY (y) = C−1φ(y)I(y ≥ 0), so evaluation of pY requires

C =

∫
y≥0

φ(y;µ,Σ)dy =

∫
z≤0

φ(z;−µ,Σ)dz := Φ(0;−µ,Σ), (2)

where Φ is the normal cumulative distribution function.

1.2 Sampling

In general, sampling efficiently from truncated multivariate normal distributions
is challenging. For example a rejection sampler based on an unconditioned
normal density becomes inefficient when the measure of the target density’s
support is small. One approach is to construct a Gibbs sampler based on Eqn.
1 (see [9, 10]) but this is considerable effort for obtaining random samples for
our purposes. However if the target distribution is non-degenerate (i.e. Σ
is positive definite) then there exists a bijective mapping onto a product of
standard truncated normal densities, which we exploit for sampling. Specifically,
if Y ∼ N (µ,Σ) then we can write Y = µ + AZ where Z ∼ N (0, I) where
I is the identity matrix and A arises from the Cholesky decomposition Σ =
AAT . Positive definiteness ensures that the Cholesky decomposition exists and
is unique. Moreover A is invertible, being lower triangular with strictly positive
diagonal entries. Since Y ≥ 0 if and only if Z ≥ −A−1µ, we have the basis
for efficient sampling (Algorithm 1). In the case that the target distribution
approximates a point mass (this arises from conditioning on a rare event in the
tails of a normal distribution), the algorithm uses numerical regularization.
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Algorithm 1 Efficient sampling from the (non-degenerate) truncated multi-
variate normal Y ∼ NT (µ,Σ), with numerical regularization. Here U is the
uniform distribution, p is the dimension of Y and ε is taken to be machine
precision.

A← Cholesky(Σ)
b← −A−1µ
for i = 1 to p do
u ∼ U [Φ(bi), 1]
if u > 1− ε then
zi ← bi

else
zi ← Φ−1(u)

end if
end for
y ← µ+Az

2 A graphical model view

Figure 1(a) restates the reaction graph G as a probabilistic graphical model,
where bounding boxes are used to indicate a set of variables. Nodes in the
graphical model then correspond to the kinase and kinase inhibitor sets Ei,
Ii,E , as shown in Figure 1(b).

3 Markov chain Monte Carlo

Here we describe the Markov chain Monte Carlo (MCMC) approach used to
compute the marginal likelihood p(D|G). The methodology, due to [Chib and Jeliazkov, 2001],
has been demonstrated to perform well against state-of-the-art methods for esti-
mation of marginal likelihood [Friel and Wyse, 2012]. As in Main Text, we focus
on a single substrate i and take both i and conditioning on a local reaction graph
Gi to be implicit in what follows.

Partition the parameter vector θ = (θ1,θ2) where θ1 = K, θ2 = (V , σ). As
noted in Main Text, the conditional posterior density p(θ2|θ1,D) is available
in closed form, making it natural to implement a Gibbs sampler. Indeed, the
conditional density p(V , σ|K,D) is given in closed form as

p(V , σ|K,D) = NT (V ;µ,Σ)IG(σ; a, b), (3)

where

µ = 1/(n+ 1) + n/(n+ 1)× (D′D)−1D′z (4)

Σ = σ2n/(n+ 1)× (D′D)−1 (5)

a = (n− 1)/2 (6)

b = (1/2)(1′D′D1/n+ z′z − n/(n+ 1)× z′D(D′D)−1D′z) (7)
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Figure 1: (a) A reaction graph G may be considered as a series of phosphoryla-
tion and dephosphorylation cycles, with the rate of phosphorylation depending
on the concentrations of various kinases E and their inhibitors I. Bounding
boxes are used as a shorthand to denote multiple kinases and inhibitors. (b) A
graphical model for the kinetics fG corresponding to G, with unknown param-
eters θ in dark gray.

and IG(•; a, b) is an inverse gamma density with shape and scale parameters
a, b respectively. (Here D = DG,S(K) is the design matrix defined in the
Main Text.) However the remaining conditional p(θ1|θ2,D) is not available
analytically and a Metropolis-Hastings step must be used to facilitate sampling
from this distribution.

Denote a Metropolis-Hastings proposal as q(θ1,θ
′
1|θ2) so that the acceptance

probability is

α(θ1,θ
′
1|θ2,D) = min

{
1,
p(D|θ′1,θ2)p(θ′1,θ2)

p(D|θ1,θ2)p(θ1,θ2)

q(θ′1,θ1|θ2,D)

q(θ1,θ′1|θ2,D)

}
. (8)

In practice the proposal density is taken to be NT (θ1, λI) where λ is chosen to
deliver an average acceptance probability of 30%. The Metropolis-within-Gibbs
scheme with M iterations is summarized in Algorithm 2.

Following [Chib and Jeliazkov, 2001] we construct the identity

p(D) =
p(D|θ1,θ2)p(θ1,θ2)

p(θ2|θ1,D)p(θ1|D)
(9)

and seek an estimator p̂(θ1|D) of the posterior ordinate p(θ1|D). Then an
estimate for the marginal likelihood will be

p̂(D) =
p(D|θ∗1 ,θ∗2)p(θ∗1 ,θ

∗
2)

p(θ∗2 |θ∗1 ,D)p̂(θ∗1 |D)
, (10)

for some choice of θ∗. For minimizing estimator variance, [Chib and Jeliazkov, 2001]
propose to take θ∗ to be the maximum a posteriori (MAP) estimate (or more
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Algorithm 2 Parameter sampling scheme

θ(0) = (θ
(0)
1 ,θ

(0)
2 )← initial guess

for i = 1 to M do
θ′1 ∼ q(θ

(i−1)
1 ,θ′1|θ

(i−1)
2 ,D)

r ∼ U [0, 1]

if r < α(θ
(i−1)
1 ,θ′1|θ

(i−1)
2 ,D) then

θ
(i)
1 ← θ′1

else
θ
(i)
1 ← θ

(i−1)
1

end if
θ
(i)
2 ∼ p(θ2|θ

(i)
1 ,D)

end for

conveniently the MAP estimator derived from the MCMC sample). In this ap-
plication we found better performance to be achieved by taking θ∗ to be the
arithmetic mean estimator; however in general the arithmetic mean may be
unsuitable due to multi-modality or skew in the multidimensional likelihood.

An estimator is constructed based on the identity

p(θ∗1 |D) =
Ep(θ1,θ2|D)[α(θ1,θ

∗
1 |θ2,D)q(θ1,θ

∗
1 |θ2,D)]

Ep(θ2|θ∗
1 ,D)q(θ∗

1 ,θ1|θ2,D)[α(θ∗1 ,θ1|θ2,D)]
. (11)

Estimation of the numerator is directly facilitated by the MCMC output, whereas
estimation of the denominator requires an additional Monte Carlo integration,
summarized in Algorithm 3. In practice the length of this additional run is
taken to be equal to the length M of the full run. For further details see
[Chib and Jeliazkov, 2001].

Algorithm 3 Computation of the Chib and Jeliazkov denominator

for i = 1 to M do
θ
(i)
2 ∼ p(θ2|θ∗1 ,D)

θ
(i)
1 ∼ q(θ∗1 ,θ1|θ

(i)
2 ,D)

end for
denominator ← 1

M

∑M
i=1 α(θ∗1 ,θ

(i)
1 |θ

(i)
2 ,D)

We used standard diagnostics to assess convergence of the MCMC sam-
pler, including both “within-run” and “between-run” diagnostics, using parallel
runs from dispersed initial conditions [Cowles and Carlin, 1996]. In general the
Metropolis-within-Gibbs sampler provided satisfactory convergence of the pos-
terior edge inclusion probabilities. In all experiments we used M = 10, 000
Monte-Carlo iterations. An example of within-run convergence for the cancer
cell line data is shown in Fig. 2.

5



0 5000 10000
0

1

2

3

4

5

V
0

0 5000 10000
0

0.5

1

1.5

σ

0 5000 10000
0

1

2

3

4

K
0

0 5000 10000
0

0.2

0.4

0.6

0.8

1

V
E

0 5000 10000
0

1

2

3

4

K
E

Iterations

 

 

MCMC Samples

MCMC Mean
Estimator

Figure 2: Within-run MCMC convergence diagnostics; cancer cell line data,
typical trace plots for kinetic parameters θS = (V0,K0, VE ,KE , σ).

4 Sensitivity to hyperparameter specification

The analysis presented in the Main Text requires specification of hyperparam-
eters µV , µK and ν. To investigate sensitivity, we first considered one of the
simulation regimes presented in the Main Text (specifically n = 100 and σ = 0.1,
notation as in Main Text). For this regime we varied each of the three hyperpa-
rameters one at a time with the other two held at the values used in Main Text
(the set of values used for results reported in Main Text were µV = µK = 1,
ν = 0.5). We are not directly concerned with identification of dynamical param-
eters, rather we investigated whether network inference performance (quantified,
as in Main Text, by AUPR and AUROC) was highly dependent on the precise
values used for these hyperparameters. Results are shown in SFig. 3. Both
performance measures appear stable to changes in the hyperparameters.

Empirical results in Main Text demonstrate that the overall set-up, including
prior specification, performs well across a range of regimes. Due to computa-
tional considerations, we did not carry out exhaustive exploration of hyperpa-
rameter values on full networks. Instead, we constructed a smaller toy model,
and explored sensitivity more fully using that model. In addition to the hyper-
parameters considered above, we also considered the influence of the maximum
in-degree constraints c1, c2. The following model was used

X ∼ NT (110×1, I10×10) (12)

Z1|X ∼ N
(
fG,1(X,θ1), σ2I

)
(13)

where we took

fG,1(X,θ1) = − V0X
∗
1

X∗1 +K0
+
V2X

∗
2X1

X1 +K1
+

V3X
∗
3X1

X1 +K3(1 +X∗4/K4)
(14)

corresponding to two kinases X∗2 and X∗3 , the second of which is inhibited by X∗4 .
All parameter values θ1 were taken to be unity, in line with the observability
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Figure 3: Sensitivity to hyperparameter specification. Network inference per-
formance (quantified, as in Main Text, by AUPR and AUROC) for various
hyperparameter values. [Here we present results over 5 independent datasets
generated with n = 100, σ = 0.1. The 3 hyperparameters were varied one at a
time, with the remaining 2 hyperparameters being set equal to the values used
in Main Text, namely µV = µK = 1, ν = 0.5.]
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Figure 4: Sensitivity to hyperparameter specification, toy model. (a) prior
variance Var(K) = ν2, (b) prior mean µV of V , (c) prior mean µK of K, (d)
in-degree restrictions c1 and c2,.
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hypothesis (see Main Text). For all experiments using the toy model we used
N = 10, 000 MCMC iterations (this was sufficient for convergence).

We first considered µV and µK , along with the variance ν2 of Michaelis-
Menten parameters K. Fixing c1 = 2, c2 = 0 we computed posterior edge
probabilities (PEPs) whilst varying these hyperparameters (SFigs. 4(a-c)). In
general we found that PEPs are stable, suggesting that results reported are not
highly sensitive to the precise values used.

To investigate sensitivity to the in-degree constraint, we compared results
obtained on the toy model using (c1 = 2, c2 = 0) with (c1 = 2, c2 = 1) and
(c1 = 3, c2 = 0) (with ν = 0.5 in all cases). Results are shown in SFig.
4(b), comparing PEPs obtained under the three (c1, c2) regimes; we find good
agreement between the three regimes, suggesting that the restriction is not
highly influential in this setting. Results using c1 = 3 suggest that models
allowing 3 kinases to jointly influence a substrate are not needed in situations
where the true number of kinases is ≤ 2 (arguably a reasonable assumption
for this paper). Results for c1 = 2, c2 = 1 showed that the inhibitor X∗4 was
difficult or impossible to identify from data (SFig. 4(b)). This suggests that
time course data obtained experimentally may not contain enough information
to identify such “second order” inhibitory effects, in line with previous reports
that Michaelis-Menten parameters Ki (and hence inhibitory interactions) are
only “weakly identifiable” from time course data [4]. The ODE model of [12]
does not include inhibitory effects of this kind. Combined with computational
considerations, we decided to fix c2 = 0 in all subsequent experiments. As
demonstrated in results in the Main Text, CheMA performs well empirically
with these restrictions.

5 ODE model of MAPK signaling for simulation

5.1 Dynamical system

The in silico model used for our investigation was published by [12], with the
ODE formulation Ẋ = fG(X;θ) reproduced in Figure 5. Parameter values
θ were chosen an in Section 4 in order to ensure signaling was identifiable in
principle from the dynamics.

5.2 Simulation regimes

In order to accurately assess the impact of sample size upon performance, it
is important that the amount of information in the simulated data increases
with n. Given that the informative range of the dynamics is determined by the
choice of parameters (approximately 0 ≤ t ≤ 20), adding noise to deterministic
data will not satisfy the above requirement, since additional data will merely
replicate existing information. We therefore introduced intrinsic stochasticity
into the data generating process, interpreting the Xu et al. model as the drift
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Figure 5: In silico ODE model of the EGFR/ERK signaling pathway due to
[12].
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Figure 6: Typical simulated time course from the ODE model of [12]. [Initial
conditions were drawn from a truncated standard Gaussian; four such time
courses constitute a dataset. Here 100 evenly spaced samples are shown with
intrinsic noise of magnitude σ = 0.05. Species expression is normalized to unit
maximum to improve presentation.]

in a stochastic differential equation:

X(0) = x0 (15)

dX = fG(X,θ)dt+ σdB (16)

where σ controls the magnitude of the stochastic fluctuations. Initial state x0

was drawn from the truncated standard normal distribution.
To generate time courses, we simulated solutions X(t) of this SDE for

times 0 ≤ t ≤ 20 and then selected [n/4] evenly spaced samples; four such
time courses constituted a dataset. Data regimes were characterized by to-
tal observation sample size n ∈ {25, 50, 100, 200} and noise magnitude σ ∈
{0, 0.05, 0.1, 0.15, 0.2}. A time course with 100 evenly spaced samples is shown
in SFig. 6. Simulated datasets differ in both the initial state x0 and the real-
ization of the Brownian motion B.

5.3 Details of assessment

Of the 25 state variables, 3 denote drug compounds; these were not considered
for the purpose of network inference. The remaining 22 variables denote the
active and inactive forms of 11 signaling proteins; Raf1, EGFR, SOS, Ras, Rap1,
PKA, MEK, ERK, EPAC, BRaf and C3G. Network inference was therefore
performed for these 11 proteins, in each of the experimental regimes, using
each available method. Disregarding self-edges made a total of (210)10 ≈ 1029

possible networks.
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6 Implementation

All of the methods used in Main Text have a number of user-set parameters or
configurations. We used default configurations for each method, as described
below.

6.1 LASSO

We used the R package glmnet [6] to train an l1-regularised linear model (known
as LASSO, for Least Absolute Shrinkage and Selection Operator) on the input
data. The optimal setting of the regularisation parameter λ was determined for
each dataset separately using cross-validation. For each node i in the network,
we learn a regression model for observations Y ∗i (t) with respect to the remaining
nodes Y ∗j (t− 1) (j 6= i) at time t− 1. LASSO automatically sets the regression
coefficients of some nodes to zero. We used the absolute values of the regression
coefficients to give an indication of the strength of each edge in the network. We
used the default settings of the glmnet, and the input data for each regression
were standardised to mean 0 and variance 1.

6.2 TSNI

Time Series Network Inference (TSNI) [2] was run according to the recom-
mended settings provided at http://dibernardo.tigem.it/wiki/index.php/
Time_Series_Network_Identification_TSNI-integral. Since TSNI only ac-
cepts single time series, the resulting weighted adjacency matrices corresponding
to separate time courses were subsequently averaged to obtain a single network
estimate.

6.3 DBN

To learn dynamic Bayesian networks (DBNs) from the data, we used the model
described in [7], which also corresponds to the model in [5] when one imposes the
restriction of not allowing changepoints. For obtaining the results in this paper,
we therefore used the R software package EDISON that implements the model in
[5] and samples from it via reversible-jump MCMC. We fixed the changepoint
settings so that no changepoints would be inferred during the network inference.
The sampled networks were evaluated based on the marginal posterior proba-
bility of each edge. We used the default settings of the software package, except
for the maximum number of iterations, which was set to 1e6. The data was
standardised to mean 0 and variance 1. Note that alternative implementations
of linear DBNs may enjoy computational advantages [7].

6.4 TVDBN

For inferring time-varying DBNs, we again used the R software package EDISON

that implements the model in [5]. In this case, changepoints were allowed to be

12



Method: CheMA LASSO TSNI DBN TVDBN GP
Time (secs): 2× 104 1 1 4× 103 4× 103 3× 102

Table 1: Computational times (approximate) for inference of the Xu et al.
network. [Implementational details for the various methods are contained in
Section 6. Note that certain methods may enjoy more favourable computational
implementations, e.g. [7] for linear DBNs.]

inferred during the reversible-jump MCMC, which potentially allows for mod-
elling nonlinear effects. The sampled networks were evaluated based on the
marginal posterior probability of each edge. We used the default settings of the
software package, except for the maximum number of iterations, which was set
to 1e6. The data was standardised to mean 0 and variance 1. We also used in-
formation sharing with a soft coupling of nodes, as described in [5], to regularise
the number of changes at each changepoint.

6.5 GP

GP [1] was run in MATLAB R2012b using code generously supplied by Tarmo
Äijö. On noise-free data (σ = 0) this code could encounter numerical loss
of positive-definiteness so, when required, covariance matrices were regularized
using Tikhonov regularization prior to Cholesky decomposition. GP was then
run using the following settings; optimization iterations = 50, no delay terms,
zero order model = used, maximum in-degree = 2, prior covariance = 0.01× I,
prior mean = 0.

6.6 Computational times

Table 1 contains the approximate computational time requirements of the com-
peting methodologies. It may be seen that the chemical kinetic approach is
considerably more demanding compared with competing approaches, requiring
at least 5 times more computation. Note that these time requirements are em-
pirical and implementation-dependent; a formal time complexity analysis of the
algorithms is beyond the scope of this paper.

For illustration of computation for larger networks, we ran CheMA using
data obtained on breast cancer cell line AU565 (see Section 9) based on 27
phosphoproteins (network not shown, since its interpretation and assessment is
beyond the scope of this paper). This required over 12 hours of computational
time. This illustrates that in principle CheMA could be used for larger networks.
However, there were fewer samples (n = 24) than protein species in the dataset,
and only 2 targeted interventions, so caution would need to be exercised in
interpreting the results.
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7 In silico results

7.1 Network reconstruction

SFig. 7 shows AUROC scores for varying sample size n and intrinsic noise σ. We
see that CheMA offers superior performance at large sample sizes (n = 100, 200),
whereas at low sample sizes GP, DBN and TVDBN may confer an advantage.
The linear and piecewise linear DBNs displayed reduced performance at large
sample size, in line with inconsistency arising from model misspecification. SFig.
8 summarizes both AUPR and AUROC scores by averaging over σ for fixed n
and vice versa.

7.2 Parameter inference

The present work does not focus on identification of dynamical parameters, but
rather on network inference and dynamical prediction. Nevertheless it is inter-
esting to consider behaviour with respect to parameter inference. SFig. 9, which
is reproduced in the Main Text, displays posterior probability distributions over
parameters θ for the toy model of Eqn. 14 (assuming known true graph G, else
the parameters are not well defined) for varying sample size n. Results show
that, whilst maximum reaction rates V0, V2, V3 could be estimated from data,
Michaelis-Menten parameters K0,K1,K2,K3,K4 were much more difficult to
infer. Estimation for the noise parameter σ demonstrated bias toward lower
values. In general, inference at the smaller sample size was much less successful.
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Figure 8: An overview of network inference performance. [Here we average the
AUROC and AUPR results from Main Text Fig. 2 and SFig. 7 over varying
stochasticity σ for fixed sample size n and vice versa. Network inference meth-
ods: (i) LASSO, `1-penalized regression, (ii) TSNI, `2-penalized regression, (iii)
DBN, dynamic Bayesian networks, (iv) TVDBN, time-varying DBNs, (v) GP,
nonparametric regression, (vi) CheMA, the proposed approach. Shaded regions
display standard error, computed over 25 independent datasets.]

Figure 9: (Marginal) parameter posterior distributions for increasing sample size
n. [For the Zellner g-prior, the n = 3 case is the closest well-defined analogue
to a prior which we can plot.]
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Figure 10: Impact of nonlinearity. [Here n = 200, σ = 0. Shaded regions display
standard error computed over 5 independent datasets.]

7.3 The effect of nonlinearity

We varied the amount of nonlinearity in the data-generating model by intro-
ducing Hill coefficients h into all Michaelis-Menten functionals

V [S]

[S] +K
7→ V [S]h

[S]h +Kh
:= g([S]). (17)

Here h > 1 implies positively cooperative binding: Once one substrate molecule
is bound to the enzyme, its affinity for other substrate molecules increases. As
h→∞, the function g approaches a step function g(x) = V ×1{x ≥ 1}, grossly
invalidating the assumption of the linear model.

We simulated additional data under positively cooperative binding (h =
2, 3, 4, n = 200, σ = 0) in order to quantify the impact of nonlinearity upon
inference. Results (SFig. 10), which are averaged over 5 independent datasets,
showed that all methods’ performance decreased in the highly nonlinear regimes.

8 Prediction of signaling response

For the prediction problem we are given training data D and an initial condition
x0, from which the goal is to predict the entire time course x(t). Below we
describe how these data were generated and how training data were used. The
quality of a prediction was assessed by mean square error (MSE) with respect
to the test data. All protein species were normalized by their maximum value
in the training data D. The network inference algorithms used in Section 7 have
not been modified for prediction; we therefore considered simple stationary and
linear benchmark predictors (described in the Main Text).
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8.1 Data generation

Training data D were generated as described in Section 5. For test data, one
randomly chosen protein Xi was selected as the target of an intervention. One
time course x(t) was generated under this intervention by forcing terms X∗i
corresponding to the target(s) of intervention to equal zero in the drift fG of
Eqn. 7.

8.2 Stationary benchmark

The benchmark mean square error was computed by predicting x(t) = x0 for
all t.

8.3 CheMA

Our approach returns samples from the joint posterior distribution p(G,θ|D)
over reaction graphs G and parameters θ. In order to facilitate prediction of
x(t), we perform model-averaging as described in Algorithm 4. For the exper-
iments reported in the Main Text we used I = 1, 000 samples to construct an
averaged prediction. Note that, since we do not model genetic variation, predic-
tion is conditional upon the noisy measurements of unphosphorylated protein
expression in x; linear interpolation of noisy data is used to approximate un-
phosphorylated protein concentrations at any given time.

Algorithm 4 CheMA prediction

for i = 1 to I do
G(i) ∼ p(G|D)
θ(i) ∼ p(θ|G(i),D)
Numerically solve the ODE Ẋ = fG(i)(X,θ(i)) from the initial condition
X(0) = x0. Denote the solution by X(i).

end for
Predict x(t) ≈ 1

I

∑I
i=1X

(i)(t).

8.4 Linear kinetics

For an unbiased assessment of the importance of nonlinearity in inference, the
same approach to prediction was employed based on the linear model fG,S(X,θ) =
β0,S+

∑
E∈ES βE,SX

∗
E where, following [7], the parameters βS and σS for a given

target S are assigned (untruncated) Zellner prior distribitions with zero mean.
Models G involving kinase inhibition were excluded from inference (inhibitory
effects are accommodated by allowing coefficients to become negative). We be-
lieve this to be the closest (reasonable) linear approximation to the chemical
kinetic framework described above.
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Figure 11: Assessment of predictive performance over varying sample size n and
noise level σ; average normalized mean square error. [Shaded regions display
standard error, computed over 15 independent datasets.]

8.5 Results

We found that linear methods do not deliver stable prediction over longer peri-
ods of time (Fig. 3(a) Main Text). We therefore computed MSE relative to the
test data over the initial duration 0 ≤ t ≤ 5, representing the first 25% of the
held-out time course. SFig. 11 displays average normalized mean square error
for the above predictions, varying both the size n of the test sample and the
noise level σ. We see that in all regimes the CheMA predictions significantly
outperform both the linear and stationary benchmark predictions. Interestingly,
linear predictions performed increasingly badly for increasing sample size n; this
may be due to model misspecification.

9 RPPA experimental protocol

Cells were plated into 10 cm2 dishes at a density of 1− 2× 106 cells. After 24
hours, cells were treated with 250 nM lapatinib or 250 nM AKTi (GSK690693).
DMSO served as a control. Cells were grown in 10% FBS and harvested in
RPPA lysis buffer at 30 min, 1h, 2h, 4h, 8h, 24h, 48h, and 72h post-treatment.
Cell lysates were quantitated, diluted, arrayed, and probed as described previ-
ously [11]. Imaging and quantitation of signal intensity was done as described
previously [11]. Pre-treatment allowed for protein phosphorylation levels to re-
spond to kinase inhibition treatment. In this way, the initial time point contains
considerable information concerning the effect of treatment.
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The particular protein species analyzed were 4EBP1(pT37), AKT(pS473),
EGFR(pY1173), GSK3ab(pS21), MEK1/2(pS217), S6(pS240).

10 In vitro results

From literature we obtained a canonical protein signaling network (SFig. 12a).
Many of the networks inferred by CheMA shared topology with the literature
network (SFig. 12b). However it is not possible to validate inferred line-specific
topology without extensive biochemistry. We therefore focused on the predic-
tive power of CheMA, comparing this to the predictive power afforded by the
literature network coupled with kinetic equations as described in the Main Text.
SFig. 13 displays typical predictions produced by both approaches. MSE was
calculated over all proteins and all time points in the test data, with protein-
specific normalization performed as in Section 8.
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Figure 12: (a) Protein signaling network derived from literature. (b) Inferred
topology for cell line HCC 70. [Edge weights correspond to posterior probabili-
ties. Only the most probable edges are displayed.]
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