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Figure 1: Mapping induced quartet trees to a tripartition. Each
node u in an unrooted tree defines a tripartition (A|B|C) of the set of taxa.
Each induced quartet tree x1x2|y1y2 maps to two tripartitions. Here, we show
how the quartet tree on x1, x2, y1, y2 maps to u and v. Node u is where the
paths from x1 and x2 to either y1 or y2 first join each other. Similarly, node
v is where the paths from y1 and y2 to either x1 or x2 first join each other.

1 ASTRAL Details

Each node u in an unrooted gene tree g divides the set of taxa into three
distinct subsets (see Figure 1). We refer to this tripartition of taxa with
the Tri(u) = (A|B|C) notation, and refer to each of the three subsets as
one “side” of the tripartition. Consider any arbitrary quartet tree x1x2|y1y2
induced by the tree g. The path from x1 to y1 and the path from x2 to y1
first join each other at some node u. It is easy to show that the paths from
x1 and x2 to y2 first join each other at the same exact node u. Thus, x1 is
on one side of Tri(u) and x2 is on another side, and {y1, y2} are both on the
third side of Tri(u). Similarly, if paths from y1 and y2 are followed to either
x1 or x2, they join each other first at some node v, and as long as the tree
is fully resolved, we can easily show that u 6= v. Again we can show that y1
is on one side of the tripartition Tri(v), y2 is on another side, and x1, x2 are
on the third side. Thus,

Lemma 1. For each quartet tree x1x2|y1y2 induced by an unrooted fully re-
solved (i.e., binary) tree, there are exactly two nodes u and v where Tri(u)
has x1 on one side, x2 on another side, and y1, y2 on the third side; and
similarly, Tri(v) has y1 on one side, y2 on another side, and x1, x2 on the
third side.
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A consequence of Lemma 1 is that each quartet tree in each unrooted
gene tree can be mapped uniquely to exactly two nodes. Furthermore, given
any node u with tripartition (A|B|C), the number of quartet trees that are
mapped to u can be easily counted by choosing two leaves from one side, and
one leaf from each remaining side. Therefore, the number of quartet trees
mapped to a node u can be counted using
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where Tri(u) = (A|B|C) and a = |A|, a = |B|, a = |C|. We consider a
quartet tree to be mapped to a tripartition (A|B|C) if and only if two of its
leaves are in one side, and each of the other two leaves are in different sides
(equivalently, all sides of the tripartition have a non-empty intersection with
the quartet tree leaf set).

Using this result we can now define a dynamic programming algorithm to
calculate a tree that satisfies the maximum number of quartet trees from a
given set of input trees, subject to the constraints that all bipartitions of the
output tree should come from an input set X . Importantly, we can do this
without even enumerating the set of all quartet trees and calculating their
weights.

Support of quartet tree q for tree TA: We begin by defining the
support of a quartet tree q for a rooted binary tree TA on taxon set A. Let I
denote the set of all quartet trees induced by all the gene trees, and for each
q ∈ I , we define weight(q) to be the number of gene trees that induce q (i.e.,
the number of times q appears in any of the input gene trees). Then, for a
given rooted subtree TA on clade A, we define m(q, TA) to be 0 if q cannot
be induced by any tree that contains TA as a subtree or if |q ∩ A| ≤ 1, and
otherwise to be the number of nodes in TA that q maps to (i.e., either 1 or
2). We define the total support of the tree TA from quartet tree q to be the
product of m(q, TA) · weight(q), and denote this by c(q, TA).

Computing C(A), the total support of the best tree TA: We set

C(A) = max
TA

{
∑
q∈I

c(q, TA)},

where TA is a rooted binary tree on taxon set A. That is, C(A) is the largest
total value that can be obtained for any rooted tree on A.

To compute this using dynamic programming, suppose TA is a rooted
tree on clade A, in which the root of TA has major subcluster A′ (thus, the
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root of TA has a child defining cluster A′, and another child defining cluster
A−A′). Suppose that TA is optimal among all rooted trees on A that contain
A′ as a rooted subclade off the root. Now consider the total support of all
quartet trees to TA. Each such quartet tree that contributes support maps
either to one or two nodes in TA. Note that this total support is obtained
by C(A′) + C(A−A′) + W (A′|A−A′|S −A), where W (A′|A−A′|S −A) is
the total weight of all quartet trees that map to the root of TA (i.e., to the
tripartition (A′|A− A′|S − A)).

Dynamic Programming Algorithm: Thus, the dynamic programming
algorithm is given by:

C(A) = max
A′⊂A;A′∈X ∗

(C(A′) + C(A− A′) + W (A′|A− A′|S − A))

where X ∗ is the set of clusters formed by taking halves of the bipartitions in
X . We set the boundary condition C({x}) = 0.

Preprocessing: The preprocessing involves computing all allowed tripar-
titions, and then computing W (N) for every allowed tripartition N , where
W (N) is the number of quartet trees in the gene trees that map to the tri-
partition N = (X|Y |S − X − Y ). To count these, we need to look at each
individual tripartition from each individual gene tree, and count how many
of its quartet trees are shared with the quartet trees defined by tripartition
N .

In general, let M = (A1|A2|A3) and M ′ = (B1|B2|B3); we will show
how to calculate the number of quartet trees in common between these two
tripartitions. First, we calculate nij = |Ai ∩Bj| for all i, j between 1 and 3.

We let QI(M,M ′) denote the number of quartet trees that map to both
tripartitions M and M”, and note that

QI(M,M ′) =

F (n11, n22, n33) + F (n11, n23, n32)+

F (n12, n21, n33) + F (n12, n23, n31)+

F (n13, n21, n32) + F (n13, n22, n31)

Now, letting N denote the tripartition (A|A−A′|S−A) and Tri(g) denote
the set of tripartitions of a gene tree g, we can calculate W as

W (N) =
∑
g∈G

∑
M∈Tri(g)

QI(N,M)
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Note that for a rooted tree T on the full set of species S, there is no
tripartition defined at the root. Hence, we define its total support using
C(S ′) + C(S − S ′), where S ′ ⊂ S is the subcluster of one child of the root.
Thus, C(S) = maxS′⊂S[C(S ′) + C(S − S ′)]. Equivalently, we set W (A|S −
A|∅) = 0.

Finally, every quartet tree that supports a binary tree maps to two nodes
in the tree, and so the best MQSST score that can be achieved is half of
C(S).

Running time analysis.

Theorem 1. ASTRAL runs in O(n2kx2) time, where n is the number of
species, k is the number of gene trees, and x is the number of bipartitions in
X .

Proof. The initialization involves computing the set of allowed tripartitions,
and then the weight of each such allowed tripartition. The input set X
contains just bipartitions, and so computing the set of allowed tripartitions
is straightforward, taking O(nx2) time, and producing a set of O(x2) allowed
tripartitions. To compute the weight for a given allowed tripartition, it needs
to be compared to every triparition from the input set of gene trees, and each
comparison takes O(n) time. There are O(nk) tripartitions from the input
set of k gene trees, and so this step takes O(n2kx2) time.

The algorithm then computes C(A) for every A ∈ X ∗, but to do so it looks
at every A′ ∈ X ∗ that is a subset of A, and then performs O(1) operations;
therefore, this step takes O(x) time per element of X ∗. Hence, to compute
all C(A) for all A ∈ X ∗ takes O(x2) time, once the weights of all tripartitions
are computed. Hence the total time is O(x2 + n2kx2) = O(n2kx2).

Corollary 1. If ASTRAL is run in default mode, then X ∗ contains only
the distinct clades in the input gene trees, and so |X ∗| is O(kn). Hence, in
default mode ASTRAL runs in O(n4k3) time.

However, the running time is better expressed as a function of the num-
ber of distinct tripartitions among its input gene trees and inferred allowed
tripartitions. Therefore, when the amount of ILS is very low, then the num-
ber of distinct tripartitions in the input gene trees is mostly impacted by
estimation error rather than true gene tree conflict, and can be quite small;
in such cases, ASTRAL can be very fast. But when ILS is high, or gene tree
estimation error is high (for example, due to insufficient phylogenetic signal
in the gene trees), then ASTRAL needs to compute weights for a larger set
of tripartitions, and hence is slower.
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2 Further Results
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Figure 2: Species tree estimation error on the simulated mammalian
datasets with 37 genes and 200 genes with 500bp length, showing
BUCKy-pop. We show the missing branch rates for estimated species
trees computed using summary methods (MRP, MP-EST, greedy, BUCKy-
pop, and ASTRAL) as well as concatenation using RAxML maximum likeli-
hood on the mammals simulated datasets of 200 genes of 500bp length, and
varying ILS level. The summary methods are run on RAxML gene trees,
BUCKy-pop is run on RAxML bootstrap gene trees. and CA-ML is run on
the true alignments. Average and standard error shown based on 20 repli-
cates.
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Figure 3: Running time of ASTRAL as a function of the number
of genes. We show the running time for default ASTRAL on the mam-
mals simulated datasets with varying number of true gene trees with much
increased ILS level (0.2X). Top: normal scale; Bottom: log scale.
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Figure 4: Running time of ASTRAL as a function of the amount of
gene tree incongruence We show the running time for default ASTRAL
on the mammals simulated datasets with varying levels of ILS with 200 genes
of 500bp resolution. The running time of ASTRAL increases as the level of
ILS is increased, because the set X is populated with more bipartitions when
gene trees have high levels of ILS.
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Figure 5: MP-EST tree on the Song et al. dataset [3]. We show
results of analyzing the biological mammalian dataset with 37 taxa and 424
genes using MP-EST. The original dataset had 447 genes; we removed 21 mis-
labelled genes and 2 genes that we found to be outliers. Bootstrap support
values were obtained using the multi-locus bootstrapping procedure with site
and gene re-sampling and 100 replicates (gene resampling is used to reproduce
the procedure from Song et al). Our MP-EST tree is different from the one
reported by Song et al. in the support obtained for the sister relationship
of tree shrews and the primates (our tree recovers 62%, while [3] reports
support above 95%). The exact cause of this difference is not clear to us.
Branches without designation have 100% support.
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Figure 6: ASTRAL tree on the Song et al. dataset [3]. We show
results of analyzing the mammalian dataset with 37 taxa and 424 genes using
ASTRAL. The original dataset had 447 genes; we removed 21 mis-labelled
genes and 2 genes that we found to be outliers. Bootstrap support values
were obtained using the multi-locus bootstrapping procedure with site and
gene re-sampling and 100 replicates (gene resampling is used to reproduce
the procedure from Song et al.) Branches without designation have 100%
support.
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Figure 7: ASTRAL tree on Zhong et al. dataset [7]. We ana-
lyzed a plant dataset with 32 species and 184 genes from [7]. Bootstrap
support values were obtained using the multi-locus bootstrapping proce-
dure with 100 replicates; values not shown indicate 100% support. The
rooted ASTRAL tree (with bootstrap support values) is shown on top, and
we show a cartoon version of the tree below. The cartoon version only
shows the relationship between the 5 groups – land plants, Coleochaetales,
Zygnematales, Charales, and the outgroups, after collapsing the branch with
bootstrap support of 18%. Note that there are three possible sister groups
to land plants: Coleochaetales, Zygnematales, or the two together (Zygne-
matales+Coleochaetales); however, Charlaes is strongly rejected as the sister
group to land plants. 12
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Figure 8: ASTRAL trees on Chiari et al. dataset [1]. We analyzed
an Amniota dataset with 16 species and 248 genes from [1] using the exact
version of ASTRAL on both AA and DNA gene trees. Bootstrap support
values have been obtained using the multi-locus bootstrapping procedure
with 100 replicates. The two trees are highly similar (differing topologically
only in one very low support branch), but display some some differences in
bootstrap support.

13



0

50

100

0% 5% 10% 15% 20% 25%
Percent incompatible with other gene trees at 75% support

co
un

t

Two outlier genes

Figure 9: Outlier mammalian genes. The histogram shows the distribu-
tion of average percentage of branches that each gene had in conflict with
other gene trees with at least 75% support. Two genes, with IDs 232 and
209, had on average more than 20% of their edges in conflict with other gene
trees with bootstrap support higher than 75%. We suspect these two gene
trees have undetected problems. Hence, we removed these two genes from
the dataset (in addition to 21 mis-labelled genes).
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Method bestML All BS

CA-ML 0.057
ASTRAL 0.061 0.052

GC 0.064 0.056
MRP 0.064 0.055

Table 1: Average FN rates (over 20 replicates) of different methods on the
100-taxon 25-gene simulated datasets.
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3 Experimental Details

3.1 Extra trees for Zhong et al. biological dataset

Many of the gene trees in the Zhong et al. biological dataset were incomplete.
In this kind of input, the default setting for X to be the bipartitions defined
by gene trees is insufficient. We therefore used bipartitions drawn from the
following set of estimated trees to add to the set X : the MP-EST tree from
[7], the STAR tree from [4], 50 bootstrap trees from concatenation with
RAxML (we computed), 50 parsimony trees on the concatenated alignments
(we computed), and 100 bootstrap MRL [2] trees (we computed). (See below
for information about MRL.)

For the mammals dataset, since all gene trees were complete, we did not
need to add extra bipartitions to the set X .

3.2 Methods and Commands

3.2.1 Gene tree estimation

RAxML version 7.3.5 [5] was used to estimate gene trees. The following
command was used for estimating the best ML trees.

raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name]

-N 20 -p [random seed number]

The following command was used for bootstrapping.

raxmlHPC-SSE3 -m GTRGAMMA -s [input file] -n [a name] -N 200

-p [random seed number] -b [random seed number]

3.2.2 ASTRAL

We ran version 3.1.1 of ASTRAL (corresponding to the github commit
fb21c0ce6140e9e238575356bc174c88c6cfc597 from March 6th on https://github.

com/smirarab/ASTRAL with the following command:

java -jar astra 3.1.1.jar -wq -in [input tree]

Where the exact version of ASRAL was used, we ran it with the following com-
mand:

java -jar astra 3.1.1.jar -wq -in [input tree] -xt

To add new bipartitions to X , we used it with the following command:
java -jar astra 3.1.1.jar -wq -in [input tree] -ex [extra tree files]
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3.2.3 BUCKy-pop

We ran BUCKy with the default settings, except for the number of generations
that we changed from 100K to one million. The following command was used to
run BUCKy.

bucky -n <numberOfGenerations> -o <outputFileRoot> <inputFiles>

3.2.4 MRP and MRL

MRP trees are built using a custom Java program available at https://github.

com/smirarab/mrpmatrix. The following command was used to create the MRP
matrix.

java -jar mrp.jar [input file] [output file] NEXUS

We used the default heuristic in PAUP* (v. 4. 0b10) [6] for maximum par-
simony. This heuristic first generates an initial tree through random sequence
addition and then uses Tree Bisection and Reconnection (TBR) moves to reach a
local optimum. This process is repeated 1000 times, and the most parsimonious
tree is returned. When multiple trees have the same maximum parsimony score,
the greedy consensus of those trees is returned. The following shows the PAUP*
commands used.

begin paup;

set criterion=parsimony maxtrees=1000

increase=no;

hsearch start=stepwise addseq=random

nreps=100 swap=tbr;

filter best=yes;

savetrees file = <treeFile> replace=yes

format=altnex;

contree all/ strict=yes

treefile = <strictConsensusTreeFile>

replace=yes;

tcontree all/ majrule=yes strict=no

treefile = <majorityConsensusTreeFile>

replace=yes;

contree all/ majrule=yes strict=no

le50=yes

treefile = <greedyConsensusTreeFile>

replace=yes;

log stop;

quit; end;

MRL stands for “Matrix Representation with Likelihood”, and is the supertree
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method obtained by running two-state symmetric maximum likelihood on the
MRP matrix [2]. We computed maximum likelihood trees on the same MRP
matrix using RAxML under the two-state maximum likelihood model, to obtain
MRL (matrix representation with likelihood) trees.

3.2.5 Concatenation

We used RAxML version 7.3.5 to create the parsimony starting trees:

raxmlHPC-SSE3 -y -s supermatrix.phylip -m GTRGAMMA

-n [a name] -p [random seed number] -s [alignment]

We then used RAxML-light version 1.0.6 with the following command to search
for the ML tree.

raxmlLight-PTHREADS -T 4 -s supermatrix.phylip -m GTRGAMMA -n name

-t [parsimony tree] -s [alignment]
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