
Polytomy Refinement

APPENDIX
Proof of Theorem 1: Let H be a minimum refinement of G. Then
H is a binary arrangement of the n subtrees Hi for 1 ≤ i ≤ n,
where each Hi is a refinement of Gi. Suppose that for a given
i, Hi is not a minimum refinement of Gi. Then replacing Hi
by Hmin(Gi, S) lowers the number of NAD nodes in the subtree
rooted at xi, but has no effect on the type of nodes outside this
subtree. It follows that a minimum refinement of G is a minimum
refinement of G′.

Proof of Lemma 1: Sufficiency is clearly true. As for necessity,
let J be a join sequence with d NADs, and Ji−1 = {G1, G3} be
the first join of type AD or NAD in J followed by a join Ji =
{G2, G4} of type S. We show that we can swap the join types of
Ji−1 and Ji. In other words, we create a new sequence J ′ where
J ′k = Jk for k < i − 1, J ′i−1 is of type S, J ′i of the same type
as Ji−1, and all subsequent joins types are the same as in J . We
can then apply this swapping procedure until all S joins are in the
beginning of J ′.

Let G1,3 denotes the subtree created after applying Ji−1. If
neither G2 nor G4 are equal to G1,3, then we can safely swap Ji−1

and Ji since they create two independent subtrees, which does not
affect subsequent joins. So suppose w.l.o.g. that G4 = G1,3, and
therefore Ji = {G1,3, G2}. Since Ji is of type S, then G1 and G3

both shared an S edge withG2 inF(J, i−2). Let J ′i−1 = {G1, G2}
be the join of type S, which creates a subtree denoted G1,2, and
let J ′i = {G1,2, G3}. If Ji−1 is of type AD, then by applying
Ruleset 1.1 (replacing T by G3), it follows that J ′i = {G1,2, G3}
is of type AD. Conversaly, if Ji−1 is of type NAD, then by applying
Ruleset 1.2, it follows that J ′i if of type NAD. In other words,
J ′i and Ji−1 are of the same type. Since the subtrees created by
applying Ji and J ′i share the same leafset, and that join types are
defined by the leaves, all subsequent joins in J can be applied in
J ′.

Proof of Theorem 2: We first prove a simple claim.
Claim i. Consider H ∈ H(G) with exactly d NADs. Then there

exists a set W of vertex-disjoint cliques in RS such that RAD ∪W
has d+ 1 connected components.

Recall that d is the minimum number of NADs attainable. Let
J be a join sequence realizing H . By Lemma 1, we can assume
that all speciations precede all duplications. Let k be the number
of maximum speciation subtrees of H . As stated before (statement
just preceding the theorem), the set of leaves of each speciation
subtree of H forms a clique in RS . Moreover, as the k maximum
speciation subtrees ofH are disjoint (do not share a common node),
the corresponding set W of cliques in RS are vertex-disjoint. Let
RJ be the graph obtained after applying all the speciations in J . If
RJ has more than d + 1 AD-components, then J cannot lead to a
solution with d NADs. Indeed, we have exhausted all speciations
used by J , which implies only NAD edges are used to join AD-
components together - requiring more than d of them if there are
more than d+ 1 AD-components. On the other hand, if RJ has less
than d + 1 AD-components, then there exists a solution with less
than d NADs, contradicting the fact that d is the minimum number
of NADs of a solution to the MinNADref Problem . It follows that
RJ has exacly d+1 AD-components, which completes the proof of
the claim.

“⇐” Let d+1 be the minimum number of connected components
formed by the edges of RAD augmented with the edges of a set W
of vertex-disjoint cliques of RS . Then all nodes of each connected
component can be joined under a single subtree by applying joins of
type AD and S. These d+1 subtrees can then be joined with exactly
d NADs, yielding a refinement H with exactly d NADs. Then H
is a solution to the MinNADref Problem as otherwise there is a
refinement H∗ with d∗ < d NADs, leading (Claim i) to a W ∗ such
that RAD ∪W has d ∗+1 < d+ 1 connected components, which
contradicts the fact that d+ 1 is the minimum number of connected
components formed by the edges ofRAD augmented with the edges
of a set of vertex-disjoint cliques in RS .

“⇒” Let H be a solution to the MinNADref Problem with d
NADs. Then, by Claim i, there is a set W of vertex-disjoint cliques
in RS such that RAD ∪ W has d + 1 connected components.
Now suppose that the minimum number of connected components
induced by a set of vertex-disjoint cliques is d∗+1 < d+1. By the
sufficient proof above, it follows that d∗ is the minimum number of
NAD nodes of a resolution, contradicting the minimality of d.

Proof of Theorem 3: In this proof, for two vertices Gi, Gj of R,
we denote si,j = lcaS(s(Gi), s(Gj)).

“⇒”Suppose RS is not {P4, 2K2}-free. Let G1, G2, G3, G4 be
four vertices, with {G1, G2} and {G3, G4} being two edges in RS ,
that form an induced P4 or 2K2. This implies that at least one of the
two edges {G1, G3} and {G2, G4} should be absent from RS .

Assume w.l.o.g. that {G1, G3} is the missing edge. The edge
between G1, G2 means that s(G1) and s(G2) are unrelated in S.
Suppose w.l.o.g. that s(G1) is in the left subtree of s1,2, and s(G2)
in the right subtree. The missing edge between G1 and G3 then
implies that s(G1) and s(G3) are related, in other words that s(G3)
is on the left subtree of s1,2 or is an ancestor of s1,2.

Suppose that {G2, G3} is not an edge in RS . Then, by a similar
reasoning as before, it follows that s(G3) is either on the right
subtree of s1,2 or is an ancestor of s1,2. It follows from the two
arguments that s(G3) is an ancestor of s1,2. Now, the edge between
G3, G4 means that s(G3) and s(G4) are unrelated in S, and
thus s(G4) is unrelated to s(G1) and s(G2) as well. But in this
case {G1, G4} and {G2, G4} should be edges in RS , and thus
G1, G2, G3, G4 can neither form a 2K2 nor a P4 struture.

Now suppose that {G2, G3} is an edge in RS . Then
G1, G2, G3, G4 cannot form a 2K2 structure, and for the four edges
to form a P4 structure, {G2, G4} should not be an edge in RS . By
taking the same proof as above (switchingG3 andG4), we have that
s(G4) is an ancestor of s1,2. Now, the edge {G3, G4} means that
s(G3) and s(G4) are unrelated in S, and thus s(G3) is unrelated to
s(G1) and s(G2) as well. But in this case {G1, G3} should be an
edge in RS , and thus G1, G2, G3, G4 can neither form a 2K2 nor a
P4 structure.

In both cases, the evolutionary constraints on S edges in a valid
graph lead to a contradiction with the assumption that RS contains
a P4 or a 2K2. So if RS contains a P4 or a 2K2, R is not valid.

“⇐”The other direction of the proof uses the notion of cotrees,
related to P4-free graphs. A cotree T is a rooted tree in which the
internal nodes are labelled 0 or 1 and have at least two children.
We say T is an alternating cotree if the labels of any root-leaf path
alternate between 0 and 1. A cotree T represents a given graph H
if l(T) = V (H), and xy ∈ E(H) if and only if lcaT (x, y) is

1

Lafond et al

labelled by 1. It is well-known that for any P4-free graph H , there
is a unique alternating cotree that represents H . Let T denote the
unique alternating cotree representing RS . Note that l(T) = V (R).
The fact thatRS is also 2K2-free implies the following: any internal
node x of T labelled 0 has at most one non-leaf child. If not, then x
has two children x1, x2 labelled 1, which implies we can find a, b ∈
l(x1), c, d ∈ l(x2) such that lcaT (a, b) = x1 and lcaT (c, d) =
x2. Since the lca of each pair (a, c), (a, d), (b, c) and (b, d) is x,
labelled 0, then a, b, c, d induces a 2K2 in which the edges are ab
and cd.

Now, given R and T , we can construct a forest F and a species
tree S that make R valid. Note that since T is constructed from RS ,
for two leaves x, y of T , lcaT (x, y) is labelled 1 if jt(x, y) = S,
and labelled 0 if jt(x, y) ∈ {AD,NAD}. The reader may refer
to Figure 1 for an example of the whole construction for a given
R. The species tree is found by a transformation of T . Note that
T is not necessarily binary, but the reader can verify that any
binary refinement of the constructed species tree will result in a
valid instance. Let x ∈ l(T). We transform x into a bigger tree
β(x) = (βAD(x), (x∗, βNAD(x))), where x∗ is a single leaf and
βAD(x) and βNAD(x) are two copies of T . For some y ∈ l(T),
denote by βAD(x, y) (resp. βNAD(x, y)) the unique leaf of βAD(x)
(resp. βNAD(x)) that corresponds to y in the copy.

The species tree S is obtained by replacing each leaf x ∈ l(T)
by β(x). The point of β(x) is to reserve the βAD(x) subtree for
the vertices of R that x shares an AD relationship with, and the
βNAD(x) subtree for the NAD relationship. Hence in F , both trees
corresponding to x and y will have a gene mapped to βAD(x, y)
or to βAD(y, x) when jt(x, y) = AD. If jt(x, y) = NAD, then
either y but not x will have a gene mapped to βNAD(x, y), or x but
not y will have a gene mapped to βNAD(y, x)

Denote by βx the root of β(x). Now on to the construction of F .
Let x ∈ l(T). Let γ(x) be a copy of β(x) from which we remove
the βNAD(x) subtree (hence γ(x) is a copy of (βAD(x), x∗)). The
species that each gene of γ(x) is mapped to is its corresponding leaf
in β(x). It follows from this that s(γ(x)) = βx.

We finally construct F by adding a subtree for each x ∈ l(T) as
such :

• If the parent of x in T is labelled 1, add γ(x) to F .

• If the parent of x in T is labelled 0, start from γ(x) and for
each leaf y of T such that lcaT (x, y) is the parent of x,

– if jt(x, y) = AD, let γ(x)← (y′, γ(x)), where y′ is a new
gene such that s(y′) = βAD(y, x).

– if jt(x, y) = NAD, let γ(x) ← (y′, γ(x)), where y′ is a
new gene such that s(y′) = βNAD(y, x).

then add the resulting γ(x) to F .

Note that from this, for x ∈ l(T), if the parent of x is labelled
1 then s(γ(x)) = βx, and if the parent of x is labelled 0, then
s(γ(x)) is the parent of βx, which is labelled 0. To see this, denote
by p(x) the parent of x in T , labelled 0. Observe that p(x) remains
unchanged in S. Now, for each y ∈ l(t) such that lcaT (x, y) =
p(x), γ(x) has genes mapped to species of β(y). Thus γ(x) has
only genes mapped to species that are descendants of p(x) in S, and
thus s(γ(x)) = p(x) in S.

In both cases, s(γ(x)) is a descendant of its lowest ancestor
labelled 1, if any. From this, we get that if x, y share an S edge
in R, then they are left and right descendants of lcaT (x, y) labelled
1, implying that s(γ(x)) and s(γ(y)) are left and right descendants
of this same node labelled 1 in S. They are therefore related by
speciation as prescribed. Now, suppose that x, y are related by a
NAD edge. If lcaT (x, y) is p(x), then γ(x) contains y′ mapped to
βNAD(y, x). This forces γ(x) and γ(y) to be related by duplication,
which is of type NAD since by construction γ(x) and γ(y) contain
no gene mapped to the same species. The same argument holds
when lcaT (x, y) is p(y). So suppose that lcaT (x, y) is not p(x) nor
p(y). Then lcaT (x, y) = lcaT (p(x), p(y)) and is labelled 0. But
this implies that lcaT (p(x), p(y)) has at least two non-leaf children,
one containing p(x) and the other containing p(y), contradicting
the 2K2-free assumption as stated above. We observe that the same
applies to vertices x, y of R related by an AD edge, except that they
must share a gene mapped to βAD(y, x) or βAD(x, y), making them
related by apparent duplication. We finally note that no other tree of
F has genes mapped to βAD(y, x) or βAD(x, y), thereby removing
the possibility of an unwanted apparent duplication.

Before being able to prove Theorem 4, we need the following
general property on P4-free graphs.

LEMMA 1. Let {x, y} be an edge of a P4-free graph G, and
let Wx and Wy be two vertex-disjoint cliques of G respectively
containing x and y. Then we can partition the vertices V (Wx) ∪
V (Wy) into at most two other cliques, with one containing {x, y}.

PROOF. If the set V (Wx) ∪ V (Wy) induces a single clique,
then we are done. Otherwise, let Y (x) ⊆ V (Wy) denote the set
of vertices in Wy that share an edge with x (including y), and
let X(Y) ⊆ V (Wx) be the vertices of Wx that share an edge
with every vertex of Y (x). The set V1 = {x} ∪ Y (x) ∪ X(Y)
induces a clique containing {x, y}. Now, let a and b be two vertices
sharing an edge of Wx and Wy respectively with x and y, such that
a, b /∈ V1. If a, b are both inWx, or both inWy , then they obviously
share an edge. Otherwise, suppose w.l.o.g. that a is in Wx and b
in Wy . Because a /∈ X(Y), there is some bi ∈ Y (x) such that
{a, bi} /∈ E(G). And because b /∈ Y (x), {x, b} /∈ E(G). But
{a, x, bi, b} induces a P4, unless ab ∈ E(G). Therefore, every pair
of vertices in Wx or Wy but not in V1 share an edge, forming our
second clique.

If Y (x) is empty, we can apply the same argument by symmetry
usingX(y) and Y (X) ifX(y) is not empty. If both Y (x) andX(y)
are empty, then let V1 = {x, y} induce the first clique. Let a, b
be vertices sharing edges with x and y respectively. Now, a, x, y, b
induce a P4 unless {a, b} ∈ E(G), and thus second clique is formed
by the vertices sharing an edge with x, y.

Let cAD be the number of AD-components of R before applying
any join. Suppose we have a join sequence with s useful speciations,
all applied before any AD or NAD join. It follows that applying
a useful speciation connects two AD-components together, and
applying s of them results in a graph with ADAD − s AD-
components, from which we can obtain a tree with d = ADAD −
s − 1 NADs. It is then clear that there exists a solution with d
NADs iff there exists a join sequence with s = ADAD − d − 1
useful speciations. Hence we can minimize the number of NADs
by maximizing the number of useful speciations we can make. Our

2

Polytomy Refinement

0

1

a b

c d

βAD(a) βNAD(a)
a*

βAD(b) βNAD(b)
b*

βAD(c) βNAD(c)
c*1

0

βAD(a) βAD(b)

βAD(c)
βNAD(b,c)

βAD(a,c)

a* b*

βNAD(d,c)

c*
βAD(d)

βAD(b,d)

βNAD(a,d)

βNAD(c,d)

d*

βAD(d) βNAD(d)
d*

a b

d c

(R) (T)

(S)

γ(a) γ(b)

γ(c) γ(d)

βa βb

βc βd

Fig. 1. A construction of F and S given R. The solid black edge of
R is an S-edge, the green edges are AD-edges and the blue dotted
edges are NAD-edges. T is the cotree corresponding to RS , where
V (R) = l(T). The species tree S is build by replacing each leaf
x of T by β(x). For instance here, βAD(a) contains the leaves
{βAD(a, a), βAD(a, b), βAD(a, c), βAD(a, d)}. The gene tree forest F
consists of {γ(a), γ(b), γ(c), γ(d)}, in which we labelled the genes to their
corresponding species, built from the construction given in the proof of
Theorem 3.

heuristic consists in constructing a join sequence by always picking
the lowest available speciation, which is shown to find at least half
the number of useful speciations as the optimal solution. We first
need the following property.

LEMMA 2. Let {x, y} be an S edge of R corresponding to a
lowest available speciation, and let d be number of NADs of a
solution to the MinNADref problem. Then there exists a solution
which makes the {x, y} speciation that has at most d+ 1 NADs.

PROOF. Let W be a set of vertex-disjoint cliques of RS , and let
RW be the R graph restricted to the set of edges W ∪ RAD (W
must exist by Theorem 3). RW has d + 1 connected components.
Let Wx (resp. Wy) be the clique of W that contains x (resp. y). If

Wx = Wy , then we are done. Otherwise, by Lemma 1, we can
partition the vertices of Wx and Wy into two other cliques, namely
W1 containing the xy edge and the other clique W2. Let W ′ =
W \ {Wx,Wy} ∪ {W1,W2}. Now, W ′ is another set of vertex-
disjoint cliques. Denote by RW ′ the graph R restricted to W ′ ∪
RAD . Denote by Zx, Zy the vertices in V (R) \ {Wx,Wy} in the
same RW component as x and y respectively. Similarly, let Z1, Z1

be the vertices in V (R) \ {W1,W2} in the same RW ′ component
as a vertex of W1 and a vertex of W2 respectively. We have that
Zx∪Zy = Z1∪Z2. If x, y were in two distinct componentsWx∪Zx
andWy∪Zy inRW , thenRW ′ also has d+1 components, as these
two components got replaced byW1∪Z1 andW2∪Z2. If x, y were
in the same component, at worstRW ′ has d+2 components, having
the x, y component replaced by W1 ∪ Z1 and W2 ∪ Z2.

We are now ready to prove Theorem 4:
Proof of Theorem 4: Let d = ADAD − s − 1 be the minimum
number of NADs in an optimal solution, and let xy be the lowest
useful speciation available in R. Note that s = ADAD − d − 1.
By Lemma 2, there exists a solution with d+ 1 NADs that contains
the xy speciation. Let R′ be the graph obtained after applying the
{x, y} join, thus contracting x and y and applying Ruleset 1. Since
xy is the lowest speciation, any common neighbor of x and y in RS
is a neighbor of the xy vertex in R′S . Therefore, R′S has ADAD −
1 AD-components and admits an optimal solution with at most d
NADs. Hence, the number of useful speciations we can make given
R′ is at least s′ = ADAD − 1 − d − 1 = s − 2. It then follows
that after applying the first k lowest speciations, we have a solution
with at least s − 2k more useful speciations, which implies that k
can be at least as big as s/2 if s is even. If s is odd, k can be as high
as (s − 1)/2, and there is at least one useful speciation available,
hence the lower bound of ds/2e.

Proof of Theorem 5: First, we can notice that by including the
bridges into M , we ensure that all other added edges are useful
speciation edges.

Now, we prove the maximality of the useful matching by
induction on |X ∪ Y |. Given P = (X,Y,ADX , ADY , B), denote
byMP the solution returned by Algorithm 2, and byOPTP a useful
matching of maximum size over instance P .

If |X ∪ Y | = 1, then the theorem trivially holds, since each
useful matching of P contains no edge. Assume the theorem holds
for |X ∪ Y | = k, we show that it holds for |X ∪ Y | = k + 1.

Let α ∈ X ∪ Y be the last vertex added to D by Algorithm 2,
and assume w.l.o.g that α ∈ X . Write X ′ = X \ {α}, and P ′

the instance obtained from P by removing α. By induction, since
|X ′ ∪ Y | = k, |MP ′ | = |OPTP ′ |. Moreover, by construction,
MP ′ is exactly MP minus the edge of MP incident to α, if any.

Assume that α is incident to an edge ofMP . It holds that |MP | =
|MP ′ |+1 = |OPTP ′ |+1. On the other hand, remove fromOPTP
the edge incident to α, if any. Then the edges left in OPTP form
a useful matching of P ′, and thus |OPTP ′ | ≥ |OPTP | − 1. As it
has been shown that |MP | = |OPTP ′ |+ 1, it follows that |MP | ≥
|OPTP |, and thus MP is a useful matching of P of maximum size.

Now, assume that α is not incident to an edge of MP . Denote by
c(α) the connected component of GP,MP that contains α.

Claim i. Each vertex β in Y \ c(α) is incident to an edge in MP .
If the claim was wrong, the algorithm would have added an edge

between α and β. If, in addition, each vertex of Y ∩ c(α) is incident

3

Lafond et al

to an edge of MP , then each vertex of Y is incident to an edge
of MP , implying that MP is of maximum size, which completes
the proof. Hence assume that there exists at least one vertex β of
Y ∩ c(α) such that β is not incident to any edge of MP .

Claim ii. Each vertex γ in X \ c(α) must be incident to an edge
of MP (statement ii).

Again, the proof is immediate: if the claim was wrong, the
algorithm would have defined an edge from β to γ.

Now, consider the set AD\α = ADX\c(α) ∪ ADY \c(α) of
AD-components on the sets of vertices (X \ c(α)) ∪ (Y \ c(α)).
By definition of useful speciation edges, the graph defined by the
vertex set AD\α and the edge set containing one edge for each pair
(ADXi ∈ ADX\c(α), ADYj ∈ ADY \c(α)) of linked components
has no cycles, and thus at least one vertex (AD-component) of
degree less than 2. Each such AD-component reduces to a single
vertex as otherwise there would be a vertex of this AD-component
not incident to any edge of MP , which is in contradiction with
Claim ii. Hence, as α is the last vertex added toD and the algorithm
proceeds in decreasing order of AD-component cardinality, the AD-
component containing α inX should be of cardinality one, meaning
that x is an isolated vertex. Hence Y ∩ c(α) = ∅, and with Claim i
it follows that each vertex of Y is adjacent to an edge of MP , and
thus MP has maximum size.

LEMMA 3. Let P = (X,Y,ADX , ADY , B) and P ′ =
(X ′, Y ′, ADX′ , ADY ′ , B′) be two instances such that |X ′| =
|X|, |Y ′| = |Y |, |ADX′ | = |ADX |, |ADY ′ | = |ADY | and
|B| = |B′|. Then P and P ′ admit maximum useful matchings of
the same size.

Proof of Lemma 3: Consider two maximum useful matchings M ,
M ′ of P , P ′ respectively and the induced graphs GP,M ,GP ′,M′ .
Assume w.l.o.g. that |M | > |M ′|.
• Claim (i): Since |X ′| = |X|, |Y ′| = |Y | and |ADX′ | = |ADX |,
it follows that GP,M contains strictly less connected components
than GP ′,M′ .
• Claim (ii) Since |M | > |M ′|, it follows that there exists a node
x of X ′ and a node y of Y ′ that are not incident to an edge of M ′.
Then one of the two following cases hold.
Case 1.: x and y belong to different components of GP ′,M′ . Then it
holds that M ′ is not a maximum useful matching, since we can add
edge {x, y} to M ′, thus contradicting the assumption that M ′ is a
maximum useful matching of P ′.
Case 2.: x and y belong to the same connected component c(x) of
GP ′,M′ . We show that we can compute a useful matchingM∗ of P ′,
such that|M∗(P ′)| > |M(P ′)|. First, we show that there exist two
nodes x1 ∈ X ′ and y1 ∈ Y ′ that belong to a connected component
of GP ′,M′ different from c(x) such that {x1, y1} is an edge of M ′.
Notice that if x1 and y1 do not exist, then one of the following
two cases holds: (2.1) There exists a single connected component in
GP ′,M′ , but this violates Claim (i); (2) Each connected component
of GP ′,M′ different from c(x) contains only bridges, which implies
that there exist two nodes of GP ′,M′ (one of x, y and a node that
belongs to (ADX′ ∪ ADY ′) \ c(x)) not incident to an edge of M ′

and belonging to different components of GP ′,M′ . But then we fall
in Case 1. and M ′ is not a maximum useful matching of P ′. Thus
nodes x1 and y1 exist, so we can compute a useful matching M∗

of P ′ starting from M ′ as follows: remove {x1, y1} from M ′ and

add edges {x, y1}, {x1, y} to M∗. It follows that M∗ is a useful
matching for P ′ with |M∗| > |M ′|, contradicting the assumption
that M ′ is a maximum useful matching of P ′.

LEMMA 4. Let P = (X,Y,ADX , ADY , B = ∅) and P ′ =
(X ′, Y, AD′X , ADY , B

′ = ∅) be two instances such that |X ′| −
|X| = |AD′X | − |ADX | with |X ′| ≥ |X|. If P ′ admits a useful
matching M ′, then P admits a useful matching M such that |M | ≥
|M ′| − (|X ′| − |X|).

Proof of Lemma 4: Let x1, x2 be two nodes of X ′ in two distinct
components of AD′X . If we join the trees corresponding to x1 and
x2, leading to a single node x1,2, we create a new instance P ∗ =
(X∗, Y, AD∗X , ADY , ∅), in which |X∗| = |X ′| − 1 and |AD∗X | =
|AD′X | − 1. If x1 and x2 are incident to edges in M ′, say {x1, y}
and {x2, z}, then M∗ = M ′ \ {{x1, y}, {x2, z}} ∪ {x1,2, z} is
a useful matching for P ∗. Otherwise, if x1 or x2 is not incident
to an edge of M ′, then construct a matching M∗ of P ∗ from M ′

by removing the edge incident to x1 or x2, if any. In all cases,
|M∗| ≥ |M ′|−1. By applying such join operation |X ′|−|X| times,
we obtain an instance P ∗ with |X| nodes and |ADX | components
and a useful matching M∗ verifying |M∗| ≥ |M ′| − (|X ′| − |X|).
By Lemma 3, it follows that P admits a useful matching M of the
same size, which concludes the proof.

Proof of Theorem 6: Let F be the input forest of Algorithm 1. Let
F(s) be the subset of F containing the trees G such that s(G) is
s or one of its descendants. Let ns be the total number of useful
speciations performed on trees of F(s) at step s of the algorithm,
i.e., after considering node s. We show by induction on the height of
s that ns is the maximum number of useful speciations that can be
chosen on the trees of F(s), which proves the theorem as s can be
the root of S. This is trivially true if s is a leaf. So let s be an internal
node of S with children x and y. LetP = (X,Y,ADX , ADY , B =
∅) be the instance corresponding to s. Let |MP | be the number of
useful speciations performed by the algorithm for P . Then ns =
|MP |+ nx + ny .

Suppose we can make another choice of n′x and n′y useful
speciations on F(x) and F(y) respectively, yielding a different
instance P ′ = (X ′, Y ′, AD′X , AD

′
Y , B

′ = ∅) for s. Suppose also
that P ′ admits |MP ′ | useful speciations such that n′s = |MP ′ | +
n′x+n′y > |MP |+nx+ny = ns. Note that by induction, nx ≥ n′x
and ny ≥ n′y , and thus we should have |MP ′ | > |MP |. Any of
the n′x speciations has the effect of merging two nodes potentially
in X , and merging two components potentially in ADX . Now
|X| = |F(x)| − nx. If |ADR| is the number of AD-components
of R before any speciation, then |ADX | = |ADR| − nx. Similarly
|X ′| = |F(x)| − n′x and |AD′X | = |ADR| − n′x. This leads to
nx − n′x = |X ′| − |X| = |AD′X | − |ADX |. In the same manner,
ny −n′y = |Y ′| − |Y | = |AD′Y | − |ADY |. From this, n′s > ns ⇒
n′s−ns > nx−n′x+ny−n′y = |X ′|−|X|+|Y ′|−|Y |. But we cal
also deduce from Lemma 4 that n′s−ns ≤ |X ′|−|X|+ |Y ′|−|Y |:
a contradiction.

Proof of Corollary 1: A bridge is created between two AD-
components ADX , ADY if and only if there exist two vertices x ∈
ADX and y ∈ ADY such that {x, y} is an S edge in R and x and
y belong to the same AD-component in R. It follows that for a pair

4

Polytomy Refinement

(F ,S) leading to a graphR where AD-components are free from S
edges, we are guaranteed that for every node s of S the instance P
corresponding to s has no bridges. It follows from Theorem 6 that
Algorithm 1 finds a maximum set M of useful speciations, i.e., a
set of useful speciations leading to the minimum number ad of AD-
components, and to a refinement H with ad− 1 NADs. Suppose H
is not optimal, i.e., there is an H ′ with ad′ < ad − 1 NADs. By
Lemma 1, we can assume that the join sequences J ′ leading to H ′

has all M ′ joins of type S first, followed by AD and NAD joins. As
M is a maximum set of useful speciations, we have |M ′| ≤ M . If
M ′ < M , then after applying the M ′ speciations, the graph is left
with ad′ > ad − 1 AD-components, requiring more than ad − 1
NADs, contradicting the hypothesis. Therefore H is a solution to
theMinNADref problem.

5

