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Figure 1: Drug resistance labels and histogram of available IC5¢ ratios for 970
reverse transcriptase sequences. For drug resistance labels, red: resistant; blue:
susceptible; white: missing
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Figure 2: AUC values and histogram of available dose-response curves for 790
cell lines. For AUC values, red: higher; blue: lower; white: missing
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Figure 3: Hierarchical clustering of HIV-1 drugs based on correlation matrices.
Top: Using the correlation matrix calculated over the measured ICs ratios.
Bottom: Using the correlation matrix calculated over the task-specific classifi-
cation parameters found by kernelized Bayesian multitask learning



1 Inference details of kernelized Bayesian mul-
titask learning
The approximate posterior distributions of the precision priors can be updated
as
a(Al) = ay+1/2
i i -1
BN = (1/Bx +((as)*)/2)
where (g(-)) denotes the posterior expectation as usual, i.e. Eq.[g(-)].
The approximate posterior distribution of the projection matrix can be up-
dated as
(a,) = (diag((As)) + KK /o2) ™
plas) = S(as) (K((h*)T)/a}),

and the approximate posterior distribution of the hidden representation for each
data point can be updated as

1
() = (I/oi N z<wtw:>>

teT;

u(hi) = S(h,) <<AT>ki/ai 3 [<ft,i><wt>]> ,

teT;

where 7; gives the indices of tasks with given class labels for data point i. Note
that, for each data point, we use the tasks with given class labels only to update
the shared hidden representation.

The approximate posterior distribution of the classification parameters for
each task can be updated as

Y(wy) = <I/012U + Z<hzh;r>> B

€Ly

plwy) = S(w;) Y {(ft,z‘)(hz‘ﬂ,

i€Ts

where it can be seen that the inference mechanism transfers information between
the tasks because the task-specific classification parameters are updated using
the shared hidden representations.

The approximate posterior distribution of the predicted outputs can be up-
dated as

S(fei)=1
p(fei) = (w )(hs)
p(ft.i) £ ftiYea > v,

where we can fortunately calculate the expectation of the truncated normal
distribution in closed-form.



The inference procedure summarized in Algorithm ?? sequentially updates
the approximate posterior distributions of the priors, latent variables and model
parameters until convergence, which can be checked by monitoring the lower
bound. The first term of the lower bound corresponds to the sum of exponen-
tial form expectations of the distributions in the joint likelihood. The second
term is the sum of negative entropies of the approximate posteriors in the ensem-
ble. The only nonstandard distribution in these terms is the truncated normal
distribution used for the predicted outputs; nevertheless, the truncated normal
distribution has a closed-form formula also for its entropy.

Algorithm 1 Kernelized Bayesian Multitask Learning (KBMTL)

Require: K, {y,}1;, R, ay, Bx, o, 0y and v
. Initialize ¢(A), ¢(H) and {q(w.), ¢(f,)}!_; randomly
repeat
Update ¢(A), ¢(A) and ¢q(H)
Update {q(w+),q(f)
until convergence
return g(A) and {g(w,)}7,

2 Extension to regression problems

In regression problems, for each task, we are given an output vector y, = {y;; €
R}iez, instead of a label vector. The binary classification part of our method is
replaced with the following distributional assumptions:

wy s ~ N(wy 5;0,02) V(t,s)
v ~ G(€s ae, Be) vt
Yeilhi,wi e ~ N(yrisw, hisey ') V(i €1y),
where we do not need to use a bias term by centering the output vector to

zero mean. We again used a variational approximation for inference, and the
factorable ensemble approximation of the required posterior becomes

T
P(OIK, {y,}/=1) ~ ¢(©®) = q(A)q(A)g(H) | [ [a(w:)q(es)],

t=1

where ¢(A), ¢(A), ¢(H) and g(w;) remain intact. One additional factor in the
ensemble is defined as

q(er) = Gless aler), Bler))-

The approximate posterior distribution of the regression parameters for each
task can be updated as

Y(wy) = (I/aﬁj + Z<€t><hih;>> 7

€Ty

plwe) = ) Y [l (fra) )]

i€Ts



and the approximate posterior distribution of the additional precision priors can
be updated as

Ol(Et) = Q¢ —+ Nt/Q

Bler) = (1/56 + Z<(ytz - wthi)2>/2> )

1€Ly

where other update equations for ¢(A), ¢(A) and ¢(H) are not changed.

3 Baseline algorithms

3.1 Bayesian probit classifier

Its distributional assumptions are defined as

D g(’}/; Ay, 57)
bly ~ N (b;0,771)

n ~ G0y an, By) vf

wylng ~ N (wp; 0,m5 ) vf
filb,w,x; ~ N(fi;w @; +b,1) Vi
yilfi ~ 6(fiyi > v) Vi,

where the predicted outputs of data points are modeled as a linear function of
input features (i.e. w'x; +b). We learn the priors {,n}, latent variables f
and model parameters {b, w} using a deterministic variational approximation
as we do for our method.

3.2 Bayesian relevance vector machine
Its distributional assumptions are defined as

D g(’}/; Ay, 57)
bly ~ N (50,771

Ai ~ G(Ai; an, B) Vi

ailXi ~ N(ai; 0,27 Vi
fila,b,k; ~ N(fi;a ki +b,1) Vi
Yilfi ~ 6(fiyi > v) Vi,

where the predicted outputs of data points are modeled as a linear function of
their kernel representations (i.e. a'k; +b). We again learn the priors {v, A},
latent variables f and model parameters {a, b} using a deterministic variational
approximation as we do for our method.



