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Supplementary Information

1.1 Efficient implementation of the Switching-Algorithm

Let G = (V, E) a bipartite graph with node sets V. and V.
Let B be the incidence matrix of G, i.e. a V. XV; binary matrix such that w; ; = 1 if and only if the i-th node of the

first class is connected to the j-th node of the second class.
Finally, let L be the edge-list of B, i.e. |E|x2 matrix such that (L;,L;,) €E Vi=1,..,|E|.

Let us suppose that we want to perform N switching-steps then, our optimal implementation of the switching-

algorithm proceeds as follows:

Algorithm 4.1: switching-algorithm(G, N)
f « edgelList(G)
B « incidenceMatrix(G)

repeat

Randomly choose m,n € [1, ..., |El], m#n
aeLpy,be Ly,
CeLpq,de Ly,

ifweg=0,w., =0b#ca#*da#*bc+d

Waa <1l wep el
then { Wgp <0, weq <0
Lpi=d, Ly, =b

NeN-1
untilN =0
G' « graph(B)
return (G')



1.2 Expected similarity between any pair of random bipartite networks with prescribed number

of nodes and edges but with possibly different node degrees

The number of common edges between two random bipartite networks G, = ({V,, V.},E;), and G, = ({V,,
V.}, E;), containing both |E; | = |E,| = |E| edges, follows the hypergeometric distribution

(121 =9 =)

(where t = |V,.|x|V,| is the number of possible edges preserving bipartiteness), whose mean value is equal to
|E|2/t. Thus replacing this value in equation 3 of the main text, the average similarity between the original

network G and one of its fully-randomised versions is equal to:

__|EI
T2t — |E|

s

1.3 Convergence criteria and autocorrelation time

The autocorrelation time is a quantity related to the mixing-time of a Markov chain (Sokal, 1989). Briefly, the
autocorrelation of a signal is the cross-correlation of that signal with itself given a lag T. Formally, for a series of
data (X;), where each X; is a drawn from the same distribution with mean x and variance o, the autocorrelation is
given by Ry (T) = E[(X; — u)(X;—r — 1)]/a? (here E(.) indicates the mean function).

When drawing independent samples from the stationary distribution of the Markov chain underlying a sampler, the
autocorrelation of that set of samples with itself would tend to 0 as the number of samples increases (Stanton and
Pinar, 2012). As a consequence, the autocorrelation time (i.e. the lag needed for the autocorrelation to reach its
minimum) captures the size of the gaps between sampled states of the chain needed before the autocorrelation of
this “thinned” chain is very small. If the chain has 0 autocorrelation then it is sampling from its stationary
distribution. In (Stanton and Pinar, 2012), the authors uses the autocorrelation time as estimation of the mixing
time because they measure the same thing: the number of iterations needed by the Markov chain in order for the
difference between its current distribution and the stationary distribution to be small.

To show that after N switching-step the average edge autocorrelation of the tested networks (as defined in (Stanton
and Pinar, 2012)) fluctuates around its minimal value after an exponential drop off, we ran different instances of
the switching-algorithm on the simulated networks described in section 3.1 (fixed node set sizes and variable edge-
density). For each of these networks, the switching-algorithm was executed for a total number of 50N switching-
steps. Individual binary signals were derived for a set of randomly selected edges (whose cardinality was equal to
10% of the total number of existing edges in the original network under consideration). Each of these signals was
composed of the entries corresponding to the edge under consideration in the B¥ BEMs, for each k = 1, ..., 10N.
Finally, each signal X was sampled with different lags T = 50i, with i = 1, ..., [10N/50] and the autocorrelation
Ry (T) was computed within each lag.

Results of these simulations are shown in supplementary figure S2 (left side). For all the three networks increasing
the lag time causes an exponential drop in the average edge autocorrelation, which then fluctuates around zero. In

all the three cases (corresponding to networks with different edge densities, indicated by different colours), the



stochastic behavior around zero starts before the lag time equal to N (dashed line in the plots and equal to 20,177
for an edge density of 20%, 45,353 for 35% and 42,585 for 50%).

Additionally, as shown in figure 3 of the main text (right side) we observed an almost perfect correlation (> 0.99,
for all the three cases) between the average edge autocorrelation Ry (T) and the average Jaccard index (JI, as
defined in the previous sections) computed between each pair of BEMs composed by BXT~D and its rewired
version after T switching-steps B¥T, for each T (with B? equal to the original starting BEM).

Additionally, as shown in the inset of supplementary figure S2 (and the points plotted in red) for lag times greater
or equal than N, both the average edge autocorrelation and the average Jaccard index fluctuate around their
minimum.

These results suggest that our convergence criteria can be considered as a good estimator for autocorrelation time,

and hence the mixing time, of the Markov chain underlying the switching-algorithm.

1.4 Comparison with the empirical bound

We conducted an empirical study to show that after N switching steps the initial bias of the Markov
chain underlying the switching-algorithm, quantified by the residual similarity to the original network (i.e. x(k)), is
minimised at least as much as it is minimised after N'=100e switching steps (i.e. the empirical bound proposed by
(Milo et al., 2003)). Specifically, we executed 2,500 independent runs of the switching-algorithm on an incidence
matrix modeling a bi-partite network with n. = 500, n, = 1,000, and an edge density d equal to ~4%.

We considered as a reference ‘stationary distribution’ of the x) values the one reached after N' =
100e switching steps.

Results of this simulation are depicted in supplementary figure S3 (A): here the black curve indicates the
difference between the number of edges shared by the original network and its rewired versions at the k-th and the
(k — 1)-th switching steps, respectively x®) and x*~1)_ averaged across the 2,500 independent runs of the
switching-algorithm. Consistently with the simulations presented in the previous sections, this difference reaches a
plateau, close to zero, before N switching steps (in this case equal to 102,285) and far more before N’ switching
steps (in this case equal to 1,992,300). The same happens to the Total variation distance and the Kolmogorov
distance (respectively blue and red curves in supplementary figure S3 (A)) between the distribution of the x ()
values and that of the x™") values across the 2,500 independent runs of the switching-algorithm. The trend of the
first 5 moments of the x(® values distribution, in function of the number of switching steps, confirming a
convergence time lower than N and far more lower than N', is provided in supplementary figure S4.

In supplementary figure S3 (B) the evolution of the distribution of edges in common between the current rewired
version of the network and the original one is shown. The color code reflect the number of performed switching

step and in black is depicted the limit distribution reached at N', which is equal to that reached at N.

1.5 Breast cancer dataset pre-processing and binary event matrix construction

Breast cancer samples and their respective mutations were downloaded from the Cancer Genome Atlas
(TCGA) projects data portal (http://tcga.cancer.gov/dataportal/).
Germline mutations were filtered out from this dataset using a subset of germline mutations from dbSNP (Sherry,
2001), the 1000 genomes project (1000 Genomes Project Consortium et al., 2012), and the NHLBI GO Exome
Sequencing Project (Fu et al., 2012). Optimised cutoffs of minor allele frequencies were applied for pre-filtering

the three germline datasets in order to avoid removing of any known driver mutations. Further, a somatic mutation



at the same genomic position as a germline variant was removed only if it was exactly matched the type of
germline variant. Synonymous mutations and mutations identified as benign and tolerated, respectively, by SIFT
(Kumar et al., 2009) and PolyPhen (Adzhubei et al., 2010) were also removed from the dataset.

A binary event matrix (supplementary data DS1) was constructed from the remaining deleterious somatic
mutations, yielding 757 rows (i.e. samples), 9,757 columns (i.e. genes), 19,758 non-null entries (i.e. variants),

corresponding to an edge density equal to 0.27% in the corresponding bipartite network.

1.6 Colorectal cancer dataset pre-processing and binary event matrix construction

We analysed mutual exclusivity patterns for the protein affecting mutations of a colorectal cancer dataset
assembled from the TCGA and other studies, by using the consequence type retrieved from the Ensembl variant
effect predictor tool (Chen et al., 2010). We limited this analysis to those genes identified as putative mutational
drivers by following a similar approach to that described in (Tamborero, Gonzalez-Perez, Perez-Llamas, et al.,
2013) in which several methods aiming at detecting complementary signals of positive selection were combined.

We used MutSigCV (Lawrence et al., 2013) to identify recurrently mutated genes, OncodriveFM (Gonzalez-Perez
and Lopez-Bigas, 2012) to detect genes biased towards the accumulation of mutations with a larger functional
impact, and OncodriveCLUST (Tamborero, Gonzalez-Perez, and Lopez-Bigas, 2013) to select genes exhibiting
larger than expected by random chance mutation accumulations across the protein sequence. Finally we removed

genes altered in less than 2 samples.

1.7 Time complexity analysis of the Rewire function contained in the package iGraph v0.6.1

The rewire function contained in igraph v0.6.1 does not implement the switching-algorithm but proceeds through

a series of rewiring steps as follows:
Given a bipartite network G = (V, E) with node sets V. and V,
1. two nodes a, ¢ are randomly selected from V;.;
2. b israndomly selected among the nodes in V, that are connected to a (i.e. neighbours of a);

3. d israndomly selected among the nodes in V, that are connected to c (i.e. neighbours of c).

This strategy systematically biases the edge selection, by privileging edges connected to nodes in V; that have low
degree. In fact, in the first step of the above list, each node has the same probability of being selected but in step 2
and 3, the probability of extracting a neighbour of a selected node (hence a given edge) is inversely proportional to
the degree of that node. Specifically, with this strategy the distribution of selected edges is uniform only if the

degree distribution of the nodes in V, is uniform (i.e. each node has the same number of incident edges).

Additionally, this implementation requires, at each step, a local exploration of the network that is generally slower
than storing and retrieving individual edges from an edge list. In particular, the asymptotic time complexity for a
single switching step in the first case would be O(|V| + |E|) while it would be proportional to the maximal
observed degree (i.e. 0(max(degree)) = O(|V]) in the second case. As a consequence, performing N of these
steps does not guarantee that the residual similarity reaches its minimal value (as shown in the second column of
Table 1 (B) of the main text) and the execution time of our implementation of the switching-algorithm is
significantly lower than the one required by the rewire function (i.e. ~3.2x103 sec vs. ~1.8x10* sec to execute N

steps, ~3.46x10* sec vs. ~3.73x105 sec to execute N’ steps).



Supplementary datasets DS1 and DS2 are available on the BiRewire website:
http://www.ebi.ac.uk/~iorio/BiRewire/BiRewire/BiRewire_Home.html

at:
http://www .ebi.ac.uk/~iorio/BiRewire/BiRewire/BiRewire_Home_files/SuppData_SD1_BRCA_d
ataset.txt

and

http://www.ebi.ac.uk/~iorio/BiRewire/BiRewire/BiRewire_Home_files/SuppData_SD2_COREAD
_dataset.txt
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Supplementary Figure S1 - Trends of similarity to the original network as function of the number of switching-steps. The
vertical lines indicate the number of switching-steps to be performed according to our new lower bound (black line) and the
empirical one (cyan line). Each blue curve indicates the average similarity between the original bipartite network under
consideration and its 50 different rewired versions at different sample time (i.e. increasing numbers of switching-steps). Each red
curve indicates the average pair-wise similarity between each pair of rewired networks. The green curves indicate the expected
similarity between any two random bipartite networks with the same numbers of nodes, density and squareness of the networks
under consideration. (A) Different line styles refer to bipartite networks with different level of squareness. All the original
networks contained 20,000 nodes and 3,000 edges. (B) Different line styles refer to bipartite networks with different levels of
edge density. All the original networks contained two classes of 100 and 200 nodes, respectively.
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Supplementary Figure S2 — Comparison between autocorrelation and our convergence criterion.

Plots on the left show the average auto-correlation as function of the lag time for 3 networks with different edge density
(indicated by the colors). For all the three networks increasing the lag time causes an exponential drop in the average edge
autocorrelation, which then fluctuates around zero. In all the three cases the stochastic behavior around zero starts before the lag
time equal to N (dashed line in the plots). On the right scatter plots of the average Jaccard index and the average edge
autocorrelation computed between each pair of BEM and its rewired version at T switching-steps/lag-time show an almost
perfect correlation between these two convergence diagnostic metrics.

In the inset of the right plots, is a magnification of the region containing the points in red (i.e. values of the metrics for lag times

greater or equal than N): both the average edge autocorrelation and the average Jaccard index fluctuate around their minimum.
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Supplementary Figure S3 — Network similarity distributions comparison

(A): the black curve indicates the difference between the number of edges shared by the original network and its
rewired versions at the k-th and the (k-I)-th switching steps, averaged across 2,500 independent runs of the
switching-algorithm. This difference reaches a plateau, close to zero, before N switching steps (indicated by the
dashed line) and far more before N' switching steps (the right limit of the x-axis). The same happens to the Total
variation distance and the Kolmogorov distance (respectively blue and red curves) between the distribution of the
shared edges at the k-th and the N’-th switching-step, across the 2,500 independent runs of the switching-
algorithm.

(B): evolution of the distribution of common edges between the original network and its rewired version at k
switching-steps. The color-coding reflects the number of performed switching step. The limit distribution reached
at N' switching-steps, which is equal to that reached at N switching-steps is depicted in black.
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Supplementary Figure S4 — Moments of the distribution of common edges between the original network and
its rewired versions at k switching-steps

The trend of the first 5 moments of the number of edges in common between the original network and its rewired
versions in function of the number of switching steps, confirming a convergence time lower than N and far more

lower than N'.
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Supplementary Figure S5 — Trend of Jaccard similarity across the switching steps for the Breast-cancer
dataset

The blue curve indicates the average Jaccard index between the original network and its rewired
versions as function of the number of switching steps. The vertical green (respectively red) line
indicates our novel bound (respectively the empirical one).



A novel approximated lower bound to the number of switching steps

required to rewire bipartite networks: Formal Proof

Here we show how we derived a lower bound N for the number of switching steps (SSs) required by
the Switching Algorithm (SA) (see main text of the paper for details)to generate a rewired version of a
bipartite network G, providing it with the maximal level of achievable randomness (on average). In
what follows, we compute analytically the mean value of the similarity between G an its rewired
version at the k-th switching step G®),i.e. s (see Equation 1 defined below). Being the number of
edges |E| preserved between G and G, s® is a function of |E| and the number of edges in
common between G and G®),ie. x®),

We first define a mean-field equation (1) for x(®), which results in a second order recursive function of
the number of switching steps. Since this mean-field equation admits a closed form, it is possible to
compute from it a unique fixed point x and a convergence time N (in terms of number of SSs), once a
level of accuracy ¢ is fixed.

Finally, we prove that the similarity between any pair of rewired versions of G obtained through
different instances of the SA, with N SSs, is lower than their individual similarity to G, hence this
algorithm can be used to simulate samples from the uniform distribution of networks with same node set

sizes and degree distributions of G. In the following table a scheme of the proof is provided.

1. Computation of the mean-field equation for x*) and consequently for s®) (see Lemma 1);

2. Derivation of the fixed point x and the convergence time N for the mean-field equation found

in Lemma 1 (see Lemma 2);

3. Proof that the SA can be used to simulate samples from the uniform distribution of networks
with same node set sizes and degree distributions as G through N switching steps (see Lemma

35




Preliminary notation and randomness of a rewired network across

switching steps

Let G = ({V;,V.},E) be a bipartite network and B its n,Xn, binary incidence matrix (with
n, = || and n, = |V|), with |E| = number of edges, V, = {1, ...,n,} and V, = {1, ...,n.}. In what
follows, we will indicate with 1 (respectively 0) all the entries of a matrix (or a vector) assuming value
1 (resp. 0). The number of edges in a complete bipartite graph with same node set sizes of G will be

indicated with t (= n.n,). The superscript (k) will indicate the observation time (in terms of SSs) of
the object under consideration. For example B*) will indicate the incidence matrix of the original
network G after k switching steps (i.e. G), E(® the set of edges of the same network and so on.

When referring to the initial network (i.e. k = 0) this superscript will be omitted.

The switching algorithm (SA) proceeds through a sequence of switching steps (SS). Let w;; be the
i,j-th entry of B*D and L*D the edgelist of G* 1, ie. a |E|X2 matrix such that

@5 iz ) eEED,vi=1,.., |E|.

At the k-th SS, the following actions are performed:

1. two numbers m,n are randomly selected, such that n # m and n,m € {1, ..., |E|},

2. the terminal nodes of the corresponding edges are considered,

S LR o

2\
a= ln,l m,1

3. if wegq=0,w, =0,b#c,a#d,a#b,c#d:
a. wga=1Lw, =1,

b. Wap = 0, Wea = 0.

C. ln'z - d, lm‘z - b.



Let B®) be the incidence matrix of G®), after k of these steps and s® the Jaccard Index (JI) (2)
between B and BX¥). Each switching step does not alter the node degrees of G, the total number of 1s

in B, as well as its row- and column-wise sums. As a consequence, s can be written as:

Ny e (k) k
Yily XjZq Wiy Wij X%

S(k) = = = G = Ol
20E| - 3ir, Xie, wwyy  2lEl—x

Equation 1

where x(® € [0, |E|] is equal to the total number of 1s in the Hadamard product B o B®) (ie. the
number ones in common positions across the two adjacency matrices, hence common edges in the two

corresponding networks).

Lemma 1

The mean-field equation for x**1 is equal to

- — 2
24D = ) 4 g = HEI =24 2IE] ,  2¢E| —2IE)°
|E|t t?
Equation 2

Proof. After a switching step, turning B®¥) into B**1 5 possible values can be assumed by x*+1:

1) x®*D = £, (x®) = x® + 1: unitary increment. The switching step is successfully

performed and one of the following conditions is verified:

e (a,b),(c,d) € E and only one between (a,d) and (c,b) isin E;
e only one between (a,b) and (c,d) isin E and (a,d),(c,b) EE.



2) x*+D = £ (x®)) = x() — 1: unitary decrement. The rewiring step is successfully

performed and one of the following conditions is verified:

e (a,b),(c,d) € E and only one between (a,d) and (c,b) isin E;
e only one between (a,b) and (c,d) isin E and (a,d),(c,b) €E.

3) x*+D = £,(x®) = x*® + 2: maximal increment. The rewiring step is successfully

performed and (a, b),(c,d) € E while (a,d),(c,b) EE.

4) x®+D = f£,(x®) = x*) — 2: maximal decrement. The rewiring step is successfully

performed and (a, b),(c,d) € E while (a,d),(c,b) €E.

5) x®*+D = £ (x®)) = x(: null variation. Otherwise.

Note that E refers to to the edge setof G (ie. E (0)),

Table 1 contains a summary of the five possible values that x**1) can assume.

h| || h|fs
+1| —1|+2| -2 (40

Table 1: Possible variations of x*+1,

If we indicate with p0° = P(x®*D = f,(x®)) (i.. probability of each of the 5 cases, for i =

1,...,5), then x&*+1D jg equal, on average, to:



5
k
£ (kD) — Z p® £, (x®).
i=1

Equation 3

Explicating the probabilities pi(k) for i =1,...,5 (see Proposition 1, 2 and 3 below and Figure 1)

reduces Equation 3 to Equation 2.

Proposition 1

Lemma 1

Figure 1 Proof scheme for Lemma 1

Proposition 2

In order to prove Proposition 1, 2 and 3, we will make use of the following additional notation.

Consider a,b,c,d defined in 2nd step of the SA and Bi(f.) the i, j-th element of the incidence matrix

(k)
of the graph B®). With (3 g) we will indicate the submatrix of B®) corresponding to the
four positions a = bg‘g,& = bgg, B = bgg,y = bg;)). In what follows, when an entry of the

x)
(z g) can be neglected then it will be indicated with the - symbol. When k =0 the

B

0)
corresponding submatrix (‘; 8) will be denoted with ($ g) and it will contain entries from the

original matrix B. We will denote the probabilities of the following eight possible events as follows:

@@ =rasp=r(( )|(5 )" )=reso=r(C D|(5 1)

o =resn = )|(5 97)-reso=r(C o)|(5 9

@ =rar=p(( (5 " )=rem=r(( )|(5 9°




(%) .. )
o =rern=p(( O|(5 1) |=rerr=p((o J|(5 )

For example, the value qgk) is the probability of having w,;, = 1 in the initial graph knowing that
the rewiring step is performed successfully. The other events and probabilities have similar

interpretations.

Proposition 1

The probability p, of the event PR = ‘a rewiring step is successfully performed’ is equal to:

rer(lo 0710 7)= (55

Equation 4

Proof.

i =0) = () () (1)

pr = P(wig =0AwS) =0) =P(wl) =0)P(w(} =

The probability P(ng = ) is computed as the ratio between the number of positive cases (available

positions) and the number of possible cases (all the positions). Note that this probability does not

depend on k.

Proposition 2

In the above notation:

&  x® k) _ |E|I-x® k) _ |EI-x® (k) _ t=2|E|l+x®
T TR - T T-THL ¢ A T:T

Proof. Pretend that at the step k there are x®) ones in common between B®) and B, and that

)
wéﬁ,) =1, then the probability that in the initial graph w,, =1 is equal to TTI (positive cases

divided by possible cases). Similarly, for q}k) the possible cases are t — |E|, i.e. the number of

available positions in which the new non null entry can be placed, and the positive cases are |E| —

x(): then



w0  JEI—x%
Equation 5

where we made use of following approximations: x® —1 ~ x® and |E| — 1 ~ |E|. The rest of the

proof can be deduced observing that ps(k) =1- qgk) and p,(ck) = R Q}k)-

Proposition 3

The probabilities pi(k), i=1,..,5 are equal to:

k) _ 2(EI-x®)32x®+t-2|E|) k) _ 2(El-x®)(x®+t—2|E)(2x W) +t-2|E|)x®

1 =0 t2|E|Z {4 pZ - t2|E|2 L/
(k) o *O-IED* k) o 2O EW+-21E)2x® ® _ ® _ ) _ () _ (K
N T g = t2|E|2 » b5 =1-py —p3 " —p;  —pp

Proof. Using the definition of f;(x®)) in Lemma 1, the value p, computed in Proposition 1 and the

four probabilities in Proposition 2, it follows that:

p(?) = P(PR A (((PSi APS7) A ((QF APFR)V (QF; APF)))V
(((@SF APSE) V (QS; APSH)) A (QFY AQFL)))).

This can be rewritten (omitting the probabilities of the prior events, for the sake of simplicity) as:

Vv

2@ =r|6 D7A{C DAl DG VI DvC aG Y]}
=[G 97A[C DAIG H¥G M +e[6 97AC DvC G Y]

= p,[p2(1 - p? — q?) + (1 — p? — 4?)q?].

+ P

Similarly:



Vv

w2 = 2|3 9l DAl DG eIt DvC DIaG O}
G A DALG G Of+2|6 DA v a6 )

=p,[q2(1 - p? - q%) + (1 — p% — q2)p?],

=P +P

p?=p [((1, 2)0()/\((.) I ?)]=prp§q,%,

p® =p [((1) (1))(10 " (1 1) A (0 0)] =~ p,q2p}.

Combining Equation 1 and Equation 2, the mean-field equation for the JI s**1) can be written as:

s 2x(0t2 — xO2|E| — 2xOt|E| — 2t|E|? + 2|E|?
s = -
x®Ot2|E| — 2x(®t2 + 2x(Ot|E| — 2t2|E|2 + 2t|E|? — 2|E|3
Equation 6

The mean-field Equation 6 is an approximation because Equation 5 does not consider the preservation of

the degree distributions. To take this constraint into account, we slightly modify Equation 5 as follows:

W |E| — x®
f t—|E|-2
Equation 7

where t — |E| — z represents the number of available positions where the new non null entry can be
placed. The value z depends on the initial graph G and is related to the admissible configurations of
the BEM keeping constant the degree distributions. In Lemma 2 we show that this value can be
neglected, or better, that the number of SSs required to approach the fixed point is maximum for z =
0.

If reformulating Proposition 1, 2, 3 and Lemma 1 according to this modification the mean-field equation
for x**1 is equal to:

x®*D =m(2)x® +q(2) =



(IEl = 2)t® — [(|[E| — 2)z — 4|E| + |E|?]t? — 2(2z|E| + |E|*)t + 2z|E|? ®
= x

t3|E| — (z|E| + |E[*)t?

2t2|E|? — 4t|E|® + 2|E|*
t3|E| — (Z|E| + |E[P)t2
Equation 8

The demonstration of Lemma 2 follows from Lemma 1, Proposition 4 and Proposition 5 (as summarized in

Figure 2).
Proposition 4
—_—
o)}
Proposition 5
Figure 2: Proof scheme for Lemma 2
Proposition 4

The unique fixed point x of Equation 8 is:

__|E?

x = :
t—z

Equation 9

Proof. Let us solve x*+1) = x(0) = x:

0 =p )&+ +p(X)Ex—1) +ps()(X +2) +ps(X)(x — 2) + ps(X)x — X

= p1(X) — P2 (%) + 2p3(X) — 2p4 (%)
_ -2t - [EN*Gz - %t + |EI?)
B (z—t+ |E)I|E|t?

=xz—xt + |E|?

|E|?
t—z

- x =



Proposition 5

For a fixedreal € <1, |x® — x| < ¢ forall k > N with

&(t—z)

N = logm(z)g(z, E) with g(zl E) = (t—]E|—Z)|E|'

Proof. From Equation 8 it follows that:

L = m(2)x® +q(2)
= (m(2)+ Dx® —m(z)x*V,
which is a second — order linear recursive sequence admitting
F(x) = x2—(m@) +1x+m2)
as characteristic polynomial. As shown in (3) we can write
x(k+1) = ark*l 4+ psk*1  where r and s are the two roots of F

and a and b are constants

= am(z)**' +b, in our case r = m(z), s=1,

B q(z) g q(z)
B (lEl 11— m(z)) W 1-m(2)

Equation 10

given that x© = |E| and x® = m(2)|E| + q(2).

Fixed € <1,
z
x™) —X| < e ‘(lEI —1f(—nl)(z))m(z)k <e®e
_ e(t—2)
N > 10gm»g(z,€)  with g(z,€) = G IE = DIE
Equation 11

Since 0 < m(z) <1 the previous inequality holds.



Lemma 2

Let d denote the edge density of G,namely d = l%l € [0,1] and € = 1, then
N = |Llln(lEl —d|E|).
2(1-4d)
Equation 12
—IE])? 232
Proof. Since m'(z) = —% <0 and aa_z g(z,e) = —(te%) < 0, the maximum value

for N of Equation 11 is reached for z = 0 and its value is:

N = log(ei-2)t+21E|

B LEIIEP
=log. 20-ay———
1-—" |E|-d|E|
1
_ InEaE
= 2(1-0)
lnl——dc
dt

_ gl B
= = In(E| - dIE]).

Pairwise-similarity

Let r®) = s(B®,c®) where B® and €™ are the incidence matrices of two rewired version of
G, obtained through the SA with k SSs . In this section we will show that the similarity between any
pair of rewired versions of G obtained through different instances of the SA, with k SSs, is lower

than their individual similarity to G.



Proposition 6

r&+) =mr® 4+ g

_ (IE| - 4)t® — (|E|2 — 8e)t? — 4|E|%¢

t3|E| - |E|?t?

Equation 13

rlo

Using the same notation and Proposition 1 and 2, with z = 0 it follows that:

4(tZIEI — 2t|E|* + |EI®)

|E|t2 — t3

Proof. Similarly to the proof of Lemma 1 the value r®**V can be estimated as:

9
k
TSV Z q® g (r®),
i=1

Equation 14

where the values of g; are summarized in Table 2. For more details see Appendix A.
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The rest of proof follows from the explication of the probabilities g

Table 2: Possible variations for r®**1,

Proposition 7 as summarized in Figure 3).

(%)

i

i =

1, ...,9 (Proposition 6 and




Proposition 4

Proposition 1
Proposition 3 Lemma 1 »| Lemma2
Proposition 2
Proposition 5
Proposition 7 Proposition 6 Lemma 3

Figure 3: Proof scheme for Lemma 3

Proposition 7

) ;

From the definition of the probabilities in Proposition 3 we can compute g, *,

details in Appendix B).

i=1,...,9 (values and

Proof. Similarly to the proof of Lemma 1:
q\” = P(PR, APR. A (PSF APS; APS§ APS;) A(QE' AQF. AQF} AQE,))~p?piq},
qy” = P(PR, APR. A (QSy AQSy AQSy AQSy) A (PE} APF. APE} APE))~piqip},

¢ = P(PR, APR. A(

((PSF APS, APS; APSy) A

((QFF AQF; AQES ANPFT)V (QFF AQF APFFAQET)V
(QF" APF AQFF AQE7) V (PEF AQF; AQFS AQE))
IV (

((PS APS; APSHFAQS;)V (PSHAPS; AQSFAPS)V
(PSFAQS; APst APSZ)V (QSH APS; APSHAPSZ)) A
(QF; AQF; AQFS AQFy))))~p?(4piq;ps + 4p345q7).

Similarly:

k
09 ~p2 (4qtq;p} + 443p.p}).



{9 ~p2(6q2pp¢ + 16q}p,p3qs + 6qtp2q?) + 2pr(1 — pr)(q?p?).
q6 )~ p? 2(6q7p7qs + 16p}qrq3ps + 6pfpZq?) + 2p. (1 — p,) (P G2).
{9 ~p? (4q5pfps + 24747 p3qs + 24prqip2a? + 445p5q3) + 2p,(1 — p,) (202 qsp5 + 2D545G5).

q{?~p? 2(4q7prqs + 247D} 43ps + 24q,pFp2q? + 4pFaspd) + 2pr(1 — pr)(2q2psqr + 2psqsp)).
8

¢ =1~ Zq(k)

Lemma 3

Let be x® defined as in Proposition 5 and z = 0, assuming |E| > 6, then the fixed point 7 of
Equation 12 is

|E|?
t

and for all k =1, ..., N, follows that:

r(k) S x(k)_

T =

Proof. From Equation 12, 7 is a fixed point if and only if:

0 = rU+D) _ () = ZHEIED2(E-T®1)
IEI(IE|-t)t?

2
The unique admissible root of this equivalence is %

The sequence in Equation 12 is again a second order linear sequence for which a closed form can be

computed as shown in (3):

t|E| — |E|2 ((IE| - 4)t + 4lE[\* |E|?
s BE] ||<(|| ) ||)+|| i
t A t
k
Lo = HEI—EI* ((IE| - 2)t + 2|E[\"  |EI®
- 5 |E|t t
S8 e an AR (B =2)65h2 |
t? E|t
(IE| = 2)t? + 4t|E| — 4IE* _
|E|t? =

o —(|E| —2)t? — 4t|E| +4|E|* <0



S 4|E|? < (|E| — 2)t? + 4t|E|.
Equation 15

Assuming that |E| > 6, the last inequality is always satisfied because:

4t2 < (|E| — 2)t% + 4t|E| < (6 — |E|)t < 4|E|.

In conclusion 7™ < x*®),

Bound generalization

Binary event matrices coding for large-scale cancer genomic datasets tend to be sparse (i.e. the number
of variants is small compared with the product between the number of sequenced genes and the number
of samples). Additionally, usually few genes (i.e. oncogenes and tumor-suppressor genes) are altered in
a large number of samples whereas a large amount of genes is altered in few samples.

As a consequence, when coded as bi-partite network such a dataset results into a low edge-density,
scale-free network. This allows the probability of the event PR = “a switching step is succesfully
performed”, p, to be approximated as we have done in Proposition 1.

In the case of datasets yielding networks with a very high edge density and/or a high level of
homophily, then this probability cannot be computed as in the previous case and a more general bound

for the number of steps would be

|EI(1—d)
N = ———In|E|(1 - d).
2p, R
In this case a lower bound for the minimum number of successful switching steps to be performed
would be
Ell1-d
M= II(T)lnlEl(l -d)

Obviously, in the cases where the effective value p, can be computed or estimated, the number of

switching steps directly follows from the equation N = pﬁ.

r
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Appendix A

Using the letters a, b, ¢, d for B® and a, 8,7, 8 for C® and introducing F®), the

set of the common edges between B*) and ¢*) we have:

1) g,(r®) =70 + 4: we gain four ones. The two rewiring steps are performed (one
for B®) and one for ™) and (a, b), (¢, d), (a, B), (v, ) € F® and
(a,d), (c,b),(@,6),(y.B) € F®

2) g,(r®) = r® — 4: we lose four ones. The two rewiring steps are performed and

(a,b), (c,d), (@, B), (v,6) € F® and (a,d), (c, b), (a,6), (v, B) € F®

3) gs(r®) =r® + 3: we gain three ones. The two rewiring steps are performed
and:
e (a,b),(c,d),(a,p),(y,8) € F® and only three among
(a,d), (c,b), (a,8), (v, B) are elements of F) or
e One among (a, b), (c,d), (a, B), (¥,8) is in F® and
(a,d),(c,b), (2,6),(v.B) e F®

4) g,(r®) = r® — 3: we lose three ones. The two rewiring steps are performed and:
e (a,b),(c,d),(a,pB),(¥,8) € F® and only one among
(a,d), (c,b), (a,8), (v, B) is a element of F) or
e Three among (a,b), (c,d), (a, B), (v, 8) are in F) and

(a,d), (c,b), (a,8),(y,B) € F®



5) gs(r®) =r® + 2: we gain two ones.
e The two rewiring steps are performed and:
0 (a,b),(c,d),(a,B),(y,8) € F® and only two among
(a,d), (c,b), (a, 5), (v, B) are elements of F*)
0 (a,b) € F® (or one of the other) and
# if (a,d) € F® two among (c, b), (, 8), (v, B) are in F()
s if (a,d) & FO (c,b), (a,8),(y, B) € F®©

¢ (a,b)(c,d)€EF ) (or any other couple) and (a, d), (c,b), («, 6), (v, B) €
F&®

e Only one of the two rewiring steps are performed (let say B*)) and:

0 (a,b),(c,d) € F® and (a,d), (c,b) € F¥

6) ge(r®) = r® — 2: we lose two ones.
e The two rewiring steps are performed and:
0 (a,b),(c,d),(apB), (¥, 8) € F® and only two among
(a,d),(c,b), (a,8), (v, B) are elements of F
0 (a,b) € F® (or one of the other) and
# if (a,d) € F® one among (c, b), (a, 8), (y, B) is in F
+ if (a,d) € F® (c,b), (a,8), (v, B) € F®

0 (a,b)(c,d) € F® (or any other couple) and
(a,d),(c,b), (,8), (v, B) € F®

e Only one of the two rewiring steps are performed (let say B*)) and:

0 (a,b),(c,d) € F® and (a,d), (c,b) g F®



7 g,(r®) =r® + 1: we gain a one.
e The two rewiring steps are performed and:
0 (a,b),(c,d),(aB), (¥, 8) € F® and only one among
(a,d), (c,b), (a,8), (v, B) is an element of F*)
0 (a,b) € F® (or one of the other) and
# if (a,d) € F® one among (c, b), (, &), (y, B) is in F(O
# if (a,d) € F® two among (c, b), (, 8), (v, B) are in F()

0 (a,b)(c,d) € F® (or any other couple) and
# if (a,d), (c,b) € F® one among (a, §), (y, B) is in F®
# if (a,d) € F® and (c,b) € F® (or viceversa) (a,8), (v, ) € F®

0 Three among (a, b), (¢, d), (&, B), (¥, ) are in F®) and
(a,d),(c,b), (a,8),(y,B) EF®

e Only one of the two rewiring steps are performed (let say B*)) and:
0 (a,b),(c,d) € F® and only one among (a, d) and (c, b) is an element of
F® or
0 (a,b) € F® (c,d) g F® and (a,d), (c,b) € F®

8) gg(r®) =r® — 1: we lose a one.
e The two rewiring steps are performed and:
0 (a,b),(c,d),(a,p),(y,8) € F® and three among
(a,d),(c,b), (a,8), (v, B) are elements of F
0 One among (a, b), (c,d), (a, B), (v, ) is in F®) and

(@.d),(c.b), (@, 8), (v, B) € F®

0 (a,b)(c,d) € F® (or any other couple) and
# if (a,d), (c,b) € F® one among (a, §), (y, B) is in F®



# if (a,d) € F® and (c,b) € F® (or vice versa) (a, 8), (y, ) € F®

0 (a,b) € F® (or one of the other) and
# if (a,d) € F® two among (c, b), (a, 8), (v, B) are in F(©)
* if (a,d) € F® one among (c, b), (a, 8), (y, B) is in F®)

e Only one of the two rewiring steps are performed (let say B*)) and:
0 (a,b),(c,d) € F® and only one among (a, d) and (c, b) is an element of
F® or
0 (a,b) € F® (c,d) g F® and (a,d), (c,b) € F®

9) go(r®) = r®: no variation.



Appendix B

The nine probabilities in Proposition 7 are defined as:

) __ ((t—IEI)(IEI—r("))Z)4
G~ (IEI-t)IE|t

%) ((t—IEI)(r(k)+t-2|E|)r(k))4
i (EI-t)IE|t

(k) _ 4(t=IED*(IEI-r®)7 (t+2r(®2|E])
s EI-DIEID*

(k) _ 4(t= IEN*(EI-r®)(r® t+r® —2|E]))> (2r® +t-2|E])
U E-D)EI)*

g~ (81" [ (B’ (s2mter O (mr )t
16 (Er0) (12eler®) (s1r Oy (1)
+6<'E:-.¢r>>“<w';:‘“f ]

t |E| [ t |E| H |E| r<"> |E| r<k) ]
t— |s| |E|

o2~ (Y s (o) () (o) +
6 (5 (ED ) (50)
+6<t-2:'f:;r“°>“ G G

t |E| [ c |E| H c 2|E|+r(k) r(k) ]
t—|E| |E|

- (B o5 () (5 +

24 (S5 (S5) (55 ()
g (S (B0 () (0 (0 ) ')
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- (2 [ () ) )+
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r2a (B (Y (o) () 4 (2’ (50) (22 ]
#2 (S [1- ()] o () () () +

2 () () (2er ]

q{9~1 -3, q®

A key point for the calculation of these probabilities is that the number of
admissible configurations should be correctly enumerated. As an example, to compute
qgk) , 1.e. probability of unitary increment, factors 4 and 24 are defined considering that if
originally all the four selected edges are not in F) we gain a one if and only if one of the
rewired edges is in the original network, and there are exactly 4 possible configurations.
If we are in the second of the subcases of the first case, then the possible configurations

are summarized in Figure 1.

Before

e e
e |

Figure 1: All the 24 configurations resulting in a unitary increment in the second of the
subcases of the first case, in the definition of g, (r(®)). The four columns represent the edges

and the blue boxes are elements of F). The first row of each block represents the
configuration before the SS, while the second one represents it after the SS.

Alter

Before

Alter

Before

After

After




‘COVERAGE EXPECTATION [N]

EXPECTATION [Nemp]| SD [N] SD [Nemp] pN] b [Nemp] % fdr [N] % fdr [Nemp]
PIK3CA, TPS3 138.08 X 2.6 8.4 82

KRAS, NRAS . 11077 93 87
APC, MECOM
AKAP9, TPS3
ATM, TP53
BRAF, KRAS
SOX9, TPS3
FAM123B, TP53
APC, SMAD2
ARID1A, TP53
APC, BRAF .
APC, CDC73 i i X X 137602
APC, CNOT1L 174 172.54 17253 0.66 0.66 1.35E-02 1.30E-02 224 216
APC, DIS3 174 17254 17253 0.66 0.66 138E-02 132E-02 224 216
APC, MED24 174 172.54 172.52 0.67 0.65 142602 1.18E-02 224 216
KRAS, TP53 174 166.53 166.58 353 3.47 171602 1.626-02 236 237
CREBBP, TPS3 127 125.24 12524 0.85 085 1.89E-02 1.926-02 236 237
PPP2R1A, TPS3 127 12525 12524 084 085 1.89E-02 1.88E-02 236 237
TP53, TP538P1 127 12523 12524 084 0.86 1.76€-02 2.00E-02 236 237
CASP8, TPS3 127 12524 12524 0.86 085 2.05E-02 192602 243 237
TGFBR2, TPS3 130 127.31 127.27 136 136 2.43E-02 2.27€-02 27.4 256
ACSL6, TP53 126 124.82 124.82 0.69 0.7 4.42E-02 4.60E-02 356 34.8
ATRX, TP53 126 124.82 124.83 07 07 4.52E-02 4.69E-02 356 3438
NR2F2, TP53 126 124.83 124.83 07 07 4.63E-02 4.70E-02 356 348
NUP107, TP53 126 124.82 124.82 07 0.69 4.75E-02 4.35E-02 356 348
PTEN, TP53 126 124.84 124.82 07 0.69 4.81E-02 452€-02 356 348
TCF12, TPS3 126 124.83 124.82 0.69 0.7 454E-02 4.46E-02 356 348
TNIK, TP53 126 124.83 124.83 07 0.69 4.65E-02 453E-02 356 348
CDK12, KRAS 105 103.54 103.55 0.86 085 457E-02 4.46E-02 356 348
CTCF, KRAS 105 103.55 103.54 0.86 0.86 4.64E-02 4.52E-02 356 34.8
DIS3, KRAS 105 103.54 103.56 0.86 0.86 4.45E-02 4.65E-02 356 3438
EGFR, KRAS 105 103.54 103.56 0.85 0.86 438E-02 4.60E-02 356 348
APC, ATM 176 173.97 173.96 125 123 5.28E-02 4.92E-02 379 353
APC, FBXW7 179 176.48 17643 176 175 7.53€-02 7.08E-02 437 2
APC, CTNNBL 175 173.44 17343 107 107 7.15€-02 7.14E-02 437 24
CEP290, KRAS 104 103.02 103.03 071 071 8.26E-02 8.55E-02 437 44
DNMT3A, KRAS 104 103.03 103.02 071 071 8.48E-02 8.25E-02 437 44
EPN2, KRAS 104 103.02 103.03 07 0.71 8.20E-02 8.51E-02 437 a4
KIFC3, KRAS 104 103.04 103.03 07 071 8.67E-02 8.43E-02 437 4
KRAS, MAP2K1 104 103.01 103.03 07 071 8.05E-02 8.57E-02 37 2
KRAS, NR2F2 104 103.03 103.03 07 07 8.10E-02 831E-02 437 24
KRAS, PTPN11 104 103.03 103.03 07 0.7 8.37E-02 8.24E-02 437 2
KRAS, SF3B1 104 103.02 103.03 07 0.7 8.28E-02 8.48E-02 437 24
KRAS, STAG2 104 103.03 103.04 071 0.7 8.64E-02 8.62E-02 437 44
KRAS, TNIK 104 103.04 103.03 07 071 8.40E-02 8.69E-02 437 44
KRAS, WIPF1 104 103.03 103.02 0.71 0.7 8.44E-02 8.23E-02 437 a4
KRAS, ZC3H11A 104 103.02 103.04 07 071 8.13E-02 8.73E-02 437 4
FBXW?7, KRAS 118 114.91 114.9 235 234 9.42E-02 9.26E-02 465 457
APC, ARNTL 173 172.36 17236 054 055 1.206-01 1.21E-01 467 47.3
APC, CULL 173 17236 17236 054 054 1.18E-01 117601 46.7 473
APC, EPN2 173 17235 17236 053 054 113601 1.20€-01 46.7 473
APC, GATA3 173 17236 17236 054 055 117E-01 122601 46.7 473
APC, LUC7L2 173 17236 17235 054 054 1.18E-01 117€-01 46.7 473
APC, MAP2K1 173 17236 172.37 0.54 0.54 1.16E-01 1.23E-01 467 473
APC, POLR2B 173 172.36 17235 054 054 117601 1.14E-01 46.7 47.3
APC, RUVBLL 173 172.36 17236 054 054 117601 1.19E-01 467 47.3
APC, STAG2 173 172.36 17236 054 055 1.206-01 1.236-01 467 47.3
APC, TNIK 173 17235 17235 054 054 1.15€-01 1.14E-01 46.7 473
SMAD2, TP53 132 129.79 1298 176 179 1.04E-01 1.09E-01 46.7 473
FN1,TP53 130 12812 12815 151 151 1.06E-01 1.10E-01 46.7 473
CAD, TPS3 128 126.49 12647 12 119 1.03£-01 9.79E-02 46.7 473
APC, DNMT3A 173 17237 172.37 0.55 0.55 1.23€-01 1.24E-01 469 473
FBXW?7, SMAD4 26 44.33 44.32 145 146 1.256-01 1.266-01 46.9 47.3
AKAP9, APC 174 173.04 173.08 091 093 147601 1.60E-01 54.4 57.4
APC, ARID1A 175 173.79 17381 118 119 153601 1.59E-01 55.7 57.4
FBXW7, TCF7L2 2 42,61 42.57 138 139 1.57E-01 152601 56.4 56.4
KRAS, NF1 105 104.04 104.06 0.99 0.99 1.67E-01 1.71E-01 58.9 60.3
CDK12, TP53 126 12524 12525 084 085 183601 1.86E-01 59.7 60.3
CNOT1, TPS3 126 12524 12525 085 085 1.85E-01 1.89E-01 59.7 60.3
FOXP1, TP53 126 125.23 125.24 0.85 0.84 1.83E-01 1.85E-01 59.7 60.3
MGA, TP53 126 12523 125.26 0.85 0.85 1.84E-01 1.91E-01 59.7 60.3
MLL2, TP53 126 125.25 12524 084 0.85 1.88E-01 1.86E-01 59.7 60.3
PIK3R1, TP53 126 125.24 12523 0.85 085 1.856-01 1.85E-01 59.7 60.3
SMC1A, TP53 126 12524 12524 084 0.86 1.84E-01 1.87€-01 59.7 60.3
TPS3, TRIO 126 12526 12524 084 085 1.89E-01 1.85E-01 59.7 60.3
APC, CASPS 173 17254 172.54 0.66 0.66 2.45E-01 2.42€-01 69.2 70.3
APC, FOXP1 173 17253 172.54 0.66 067 2.39E-01 2.44E-01 69.2 70.3
APC, GOLGAS 173 17254 17255 0.66 0.67 2.42E-01 2.52E-01 69.2 703
APC, PIK3R1 173 172.54 172.54 0.66 0.66 2.41E-01 2.45E-01 69.2 703
APC, PPP2R1A 173 172.53 17255 0.66 067 2.39E-01 2.50E-01 69.2 703
APC, TAFL 173 172.53 172.54 0.66 067 2.34E-01 2.44-01 69.2 70.3
APC, TRIO 173 17253 17253 0.66 0.66 2.38E-01 2.40E-01 69.2 70.3
APC, TP53BP1 173 17253 17254 0.66 066 2.39E-01 2.42€-01 69.2 70.3
CAD, KRAS 106 105.1 105.1 122 121 2.30E-01 2.29€-01 69.2 70.3
ATM, PIK3CA 44 43.2 43.18 119 12 2.50E-01 2.47E-01 69.8 70.3
APC, SMAD4 177 175.96 175.96 17 171 2.71E-01 2.72E-01 74.3 73.7
APC, SOX9 174 173.42 173.44 1.05 107 2.92E-01 3.00E-01 74.3 73.7
CTNNBI, TPS3 128 127.3 127.33 139 137 3.07E-01 3.11E-01 74.3 73.7
ARID1A, KRAS 108 107.19 107.15 154 157 3.00E-01 2.94E-01 743 73.7
FN1, KRAS 108 107.18 107.17 153 154 2.95E-01 2.95E-01 743 73.7
CASP8, KRAS 104 103.56 103.55 0.87 0.86 3.07€-01 2.99E-01 743 73.7
FOXP1, KRAS 104 103.54 103.55 0.86 0.86 2.97E-01 3.00E-01 74.3 73.7
KRAS, MED12 104 103.52 103.57 0.87 0.86 291E-01 3.10E-01 743 73.7
KRAS, MGA 104 103.53 103.54 0.86 0.85 2.94E-01 2.96E-01 74.3 73.7
KRAS, PIK3R1 104 103.54 103.54 0.87 0.87 2.99E-01 2.98E-01 74.3 73.7
KRAS, POLR3B 104 103.56 103.56 0.87 0.87 3.05E-01 3.07E-01 74.3 73.7
KRAS, PPP2R1A 104 103.56 103.55 0.86 0.86 3.036-01 2.98-01 743 73.7
NRAS, PIK3CA 49 4821 482 148 145 2.97€-01 2.92€-01 743 73.7
BRAF, TP53 128 127.34 127.29 137 138 3.14E-01 3.04£-01 74.9 73.7
GNAS, TP53 128 127.33 127.32 139 137 3.16E-01 3.08E-01 74.9 73.7
APC, KRAS 191 190.2 190.09 265 264 3.81E-01 3.65E-01 78.7 79.6
APC, NF1 173 172.72 17272 0.77 0.76 3.60E-01 3.58E-01 78.7 79.6
FBXW7, TP53 135 13433 134.36 23 229 3.86E-01 3.90E-01 78.7 79.6
TCF7L2, TPS3 133 13231 13228 2.09 212 3.70E-01 3.67E-01 78.7 79.6
NF1, TP53 126 125.65 12564 0.97 097 3.61E-01 3.57E-01 78.7 79.6
CDKN1B, TP53 125 124.81 124.83 07 0.69 3.95E-01 4.05E-01 78.7 79.6
CEP290, TP53 125 12482 124.82 0.69 0.7 3.98E-01 3.98-01 78.7 79.6
cuLL, TPS3 125 124.83 124.83 07 0.7 4.05E-01 4.02E-01 78.7 79.6
DNMT3A, TP53 125 124.82 124.83 0.69 0.69 3.99E-01 4.03E-01 78.7 79.6
EPN2, TP53 125 124.82 124.83 0.69 0.69 3.98E-01 4.05E-01 78.7 79.6
GATA3, TPS3 125 124.83 124.82 0.69 0.69 4.05E-01 3.99E-01 78.7 79.6
MECOM, TP53 125 124.82 124.84 07 0.69 4.00E-01 4.06E-01 78.7 79.6
MLLT4, TP53 125 124.83 124.83 0.69 07 4.01E-01 4.06E-01 78.7 79.6
POLR28, TP53 125 124.82 124.82 07 0.7 4.01E-01 4.01E-01 78.7 79.6
RUNXL, TP53 125 124.83 124.83 07 0.69 4.03E-01 4.02€-01 78.7 79.6
SF3B1, TPS3 125 124.83 124.83 0.69 0.69 4.03E-01 4.02E-01 78.7 79.6
TBX3, TPS3 125 124.81 124.82 0.69 0.69 3.94E-01 3.99E-01 78.7 79.6
TPS3, WT1 125 124.82 124.83 0.69 0.7 3.98E-01 4.03E-01 78.7 79.6
TP53, ZC3H11A 125 124.83 12482 07 07 4.02E-01 3.96E-01 78.7 79.6




GENES COVERAGE EXPECTATION [N] |EXPECTATION [Nemp]| SD [N] SD [Nemp] pIN] p [Nemp] % fdr [N] % fdr [Nemp]
AXIN2, KRAS 106 105.6 105.61 13 13 3.80E-01 3.82E-01 78.7 79.6
ELF3, KRAS 106 105.62 105.6 129 13 3.83E-01 3.80E-01 78.7 79.6
PIK3CA, SMAD2 46 45.67 45.71 135 134 4.03€-01 4.16E-01 78.7 80.8
ATM, KRAS 108 107.68 107.69 1.62 161 4.21E-01 4.23€-01 81 815
ELF3, TP53 127 126.87 126.87 1.28 1.29 4.61E-01 4.61E-01 88 88.1
APC, NRAS 175 175.04 175.05 152 151 5.11E-01 5.13E-01 88.6 88.3
APC, RBM10 173 173.05 173.07 0.92 0.93 5.24E-01 5.29€-01 88.6 88.3
SMAD4, TP53 133 133.11 133.13 219 2.23 5.20E-01 5.24E-01 88.6 88.3
PCBP1, TPS3 126 126.07 126.06 1.09 1.09 5.27E-01 5.21E-01 88.6 88.3
AKAPSY, KRAS 105 105.1 105.1 121 121 5.35E-01 5.33E-01 88.6 88.3
ARNTL, KRAS 103 103.03 103.02 0.71 0.71 5.17E-01 5.14E-01 88.6 88.3
ATRX, KRAS 103 103.05 103.04 0.7 0.7 5.27€-01 5.22E-01 88.6 883
CDKN1B, KRAS 103 103.03 103.04 0.7 0.7 5.15E-01 5.23€-01 88.6 88.3
CULL, KRAS 103 103.02 103.03 0.7 071 5.09E-01 5.15E-01 88.6 88.3
KRAS, LUC7L2 103 103.04 103.04 071 071 5.21E-01 5.21E-01 88.6 88.3
KRAS, MECOM 103 103.02 103.04 0.7 0.7 5.12E-01 5.23E-01 88.6 88.3
KRAS, NUP107 103 103.04 103.04 0.71 0.71 5.21E-01 5.21E-01 88.6 88.3
KRAS, POLR2B 103 103.04 103.02 0.7 0.7 5.22E-01 5.12E-01 88.6 88.3
KRAS, PTEN 103 103.04 103.03 0.71 0.7 5.23€-01 5.18E-01 88.6 88.3
KRAS, RUNX1 103 103.04 103.03 0.71 0.71 5.20E-01 5.15E-01 88.6 883
KRAS, TBX3 103 103.02 103.04 0.7 0.7 5.14E-01 5.25€-01 88.6 88.3
KRAS, TCF12 103 103.03 103.01 071 0.7 5.17E-01 5.06E-01 88.6 88.3
KRAS, WT1 103 103.03 103.04 0.7 0.7 5.19E-01 5.23E-01 88.6 88.3
CTNNB1, KRAS 106 106.12 106.13 139 14 5.34E-01 5.37E-01 88.6 88.3
GNAS, KRAS 106 106.13 106.12 138 141 5.39E-01 5.33E-01 88.7 88.3
KRAS, SMAD2 109 109.22 109.21 18 1.82 5.49E-01 5.47E-01 89.7 89.3
APC, TPS3 193 193.77 193.74 2.55 2.58 6.19E-01 6.13E-01 943 943
APC, FN1 173 173.79 173.78 117 117 7.52E-01 7.48E-01 943 943
APC, PTPRU 173 173.6 173.6 113 112 7.02E-01 7.02E-01 94.3 94.3
APC, GNAS 173 173.44 173.43 1.07 1.07 6.59E-01 6.57E-01 94.3 943
APC, TGFBR2 173 173.42 173.43 1.05 1.05 6.56E-01 6.58E-01 94.3 943
APC, ELF3 173 173.26 173.24 1 1 6.02E-01 5.94E-01 943 943
APC, CDK12 172 172.54 172.54 0.66 0.66 7.93€-01 7.94E-01 943 943
APC, CREBBP 172 172.54 172.52 0.66 0.65 7.93€-01 7.88E-01 943 943
APC, CTCF 172 172.53 172.54 0.66 0.66 7.89E-01 7.90E-01 943 943
APC, EGFR 172 172.54 172.54 0.66 0.67 7.92€-01 7.93€-01 943 943
APC, IDH2 172 172.53 17254 0.66 0.67 7.91E-01 7.93€-01 94.3 94.3
APC, LPHN2 172 172.54 17253 0.66 0.65 7.91E-01 7.90E-01 94.3 943
APC, MED12 172 172.54 172.55 0.66 0.67 7.93E-01 7.96E-01 943 943
APC, MGA 172 172.52 172.53 0.65 0.66 7.89E-01 7.92€-01 943 943
APC, MLL2 172 172.54 172.54 0.66 0.66 7.94E-01 7.95E-01 943 943
APC, POLR3B 172 172.54 172.53 0.66 0.67 7.93€-01 7.88E-01 943 943
APC, SMC1A 172 172.53 172.54 0.66 0.66 7.89E-01 7.91E-01 943 943
ACSL6, APC 172 172.36 172.37 0.54 0.54 7.47€-01 7.49€-01 943 943
APC, ATRX 172 172.36 17235 0.54 0.54 7.46E-01 7.43€-01 94.3 94.3
APC, CDKN1B 172 172.36 17236 0.54 0.55 7.48E-01 7.46E-01 94.3 943
APC, CEP290 172 172.35 17237 0.54 0.54 7.45E-01 7.50E-01 943 943
APC, KIFC3 172 172.36 172.36 0.54 0.54 7.46E-01 7.46E-01 943 943
APC, MLLT4 172 172.36 172.35 0.54 0.54 7.48E-01 7.42E-01 943 943
APC, NR2F2 172 172.36 172.36 0.54 0.54 7.45E-01 7.45E-01 943 943
APC, NUP107 172 172.36 172.35 0.54 0.54 7.47€-01 7.44€-01 943 943
APC, PTEN 172 172.36 172.36 0.54 0.54 7.47€-01 7.46E-01 943 943
APC, PTPN11 172 172.35 17235 0.54 0.54 7.44E-01 7.44E-01 94.3 94.3
APC, RUNX1 172 172.34 17236 053 0.54 7.41E-01 7.50E-01 94.3 943
APC, SF3B1 172 172.36 17237 0.54 0.55 7.44E-01 7.50E-01 943 943
APC, TBX3 172 172.36 172.36 0.54 0.55 7.46E-01 7.47€-01 943 943
APC, TCF12 172 17237 172.35 0.54 0.54 7.52E-01 7.44E-01 943 943
APC, WIPF1 172 172.36 172.36 0.54 0.54 7.47€-01 7.45E-01 943 943
APC, WT1 172 172.35 172.36 0.54 0.55 7.45€-01 7.46E-01 943 943
APC, ZC3H11A 172 172.36 172.37 0.55 0.55 7.45€-01 7.48E-01 943 943
NRAS, TP53 130 131.03 131.04 1.96 1.95 7.00E-01 7.03€-01 94.3 94.3
PTPRU, TP53 127 127.74 127.72 144 144 6.95E-01 6.93E-01 94.3 943
RBM10, TP53 126 126.46 126.46 118 12 6.52E-01 6.49E-01 943 943
DIS3, TPS3 125 125.26 125.24 0.84 0.85 6.19E-01 6.11E-01 943 943
EGFR, TP53 125 125.22 125.24 0.85 0.85 6.04E-01 6.13E-01 943 943
GOLGAS, TP53 125 125.25 125.25 0.84 0.85 6.15E-01 6.16E-01 943 943
LPHN2, TPS3 125 125.22 125.24 0.85 0.86 6.02E-01 6.12E-01 943 943
POLR3B, TPS3 125 125.24 125.23 0.85 0.83 6.09E-01 6.07E-01 943 943
TAF1, TP53 125 125.23 125.24 0.84 0.85 6.06E-01 6.09E-01 94.3 94.3
KRAS, SOX9 105 106.14 106.13 1.38 14 7.96E-01 7.90E-01 94.3 943
CNOT1, KRAS 103 103.55 103.55 0.86 0.86 7.38E-01 7.40E-01 943 943
CREBBP, KRAS 103 103.54 103.55 0.86 0.86 7.35E-01 7.40E-01 943 943
GOLGAS, KRAS 103 103.54 103.55 0.87 0.86 7.32E-01 7.37E-01 943 943
IDH2, KRAS 103 103.54 103.55 0.86 0.86 7.32E-01 7.39E-01 943 943
KRAS, LPHN2 103 103.55 103.53 0.87 0.86 7.36E-01 7.29€-01 943 943
KRAS, SMC1A 103 103.55 103.55 0.86 0.87 7.39€-01 7.36E-01 943 943
KRAS, TAF1 103 103.53 10354 0.85 0.86 7.336-01 7.36E-01 94.3 94.3
KRAS, TRIO 103 103.55 103.54 0.86 0.86 7.39E-01 7.37€-01 94.3 943
KRAS, TP53BP1 103 103.54 103.55 0.86 0.85 7.34E-01 7.39€-01 943 943
PIK3CA, TCF7L2 50 50.72 50.76 1.57 157 6.77E-01 6.85E-01 943 943
FAM123B, PIK3CA 46 46.54 46.54 138 137 6.52E-01 6.53E-01 943 943
APC, PIK3CA 176 178.1 178.07 2.01 2.04 8.51E-01 8.44E-01 96.5 96.6
APC, TCF7L2 174 175.57 175.58 1.63 161 8.33E-01 8.36E-01 96.5 96.6
APC, FAM123B 173 1747 174.68 1.43 1.42 8.83E-01 8.81E-01 96.5 96.6
APC, AXIN2 172 173.25 173.25 1 0.99 8.95E-01 8.95E-01 96.5 96.6
APC, CAD 172 173.08 173.08 093 0.93 8.78E-01 8.77E-01 96.5 96.6
APC, PCBP1 172 172.9 172.91 0.85 0.85 8.55E-01 8.58E-01 96.5 96.6
AXIN2, TP53 125 126.89 126.89 1.29 1.29 9.29€-01 9.29€-01 96.5 96.6
CDC73, TP53 124 125.23 125.25 0.85 0.84 9.27E-01 9.31E-01 96.5 96.6
CTCF, TPS3 124 125.23 125.23 0.85 0.85 9.27E-01 9.26E-01 96.5 96.6
IDH2, TP53 124 125.24 125.26 0.85 0.85 9.29€-01 9.31E-01 96.5 96.6
MED12, TPS3 124 125.24 125.25 0.86 0.85 9.26E-01 9.29€-01 96.5 96.6
MED24, TP53 124 125.24 125.26 0.85 0.85 9.28E-01 9.29€-01 96.5 96.6
ARNTL, TP53 124 124.82 124.82 0.69 0.7 8.80E-01 8.81E-01 96.5 96.6
KIFC3, TP53 124 124.82 124.82 0.69 0.69 8.83E-01 8.82E-01 96.5 96.6
LUC7L2, TPS3 124 124.82 124.83 0.7 0.69 8.80E-01 8.85E-01 96.5 96.6
MAP2K1, TP53 124 124.83 124.83 0.7 0.7 8.83E-01 8.82E-01 96.5 96.6
PTPN11, TPS3 124 124.83 124.83 0.7 0.69 8.84E-01 8.83E-01 96.5 96.6
RUVBL1, TP53 124 124.84 124.83 0.7 0.69 8.84E-01 8.84E-01 96.5 96.6
STAG2, TP53 124 124.82 124.82 0.69 0.69 8.83E-01 8.83E-01 96.5 96.6
TP53, WIPF1 124 124.83 124.81 0.7 0.69 8.85E-01 8.81E-01 96.5 96.6
KRAS, SMAD4 110 113.39 11337 2.22 22 9.36E-01 9.37E-01 96.5 96.6
KRAS, TCF7L2 110 112.38 11232 215 213 8.67E-01 8.61E-01 96.5 96.6
FAM1238, KRAS 108 109.72 109.73 1.88 1.86 8.20E-01 8.24E-01 96.5 96.6
KRAS, TGFBR2 104 106.11 106.13 138 14 9.37E-01 9.35E-01 96.5 96.6
KRAS, PCBP1 103 104.57 104.56 11 11 9.23E-01 9.21E-01 96.5 96.6
ACSL6, KRAS 102 103.04 103.04 0.71 0.71 9.28E-01 9.28E-01 96.5 96.6
GATA3, KRAS 102 103.04 103.03 0.71 0.71 9.28E-01 9.28E-01 96.5 96.6
KRAS, MLLT4 102 103.02 103.03 0.7 071 9.27€-01 9.26E-01 96.5 96.6
KRAS, RUVBL1 102 103.03 103.03 071 0.7 9.27E-01 9.29€-01 96.5 96.6
FBXW7, PIK3CA 53 54.91 54.9 174 174 8.64E-01 8.63E-01 96.5 96.6
CDC73, KRAS 102 103.56 103.54 0.85 0.86 9.66E-01 9.63E-01 98.2 98
KRAS, MED24 102 103.56 103.54 0.87 0.87 9.64E-01 9.62E-01 98.2 98
KRAS, MLL2 102 103.56 103.54 0.86 0.87 9.65E-01 9.62E-01 98.2 98
PIK3CA, SMAD4 49 52.39 52.38 1.64 1.66 9.81E-01 9.79E-01 99.3 99.2
KRAS, PIK3CA 111 119.56 119.63 2.63 2.66 9.99E-01 9.99E-01 99.9 99.9
KRAS, PTPRU 103 106.64 106.66 145 146 9.94E-01 9.94E-01 99.9 99.9
KRAS, RBM10 102 105.09 105.09 1.19 119 9.95E-01 9.95E-01 99.9 99.9




