
	
   1 

DawnRank: Discovering Personalized Driver Genes in Cancer 
(Supplementary Materials) 
 

Jack P. Hou and Jian Ma 

 

 

Comparison between the dynamic damping factor and the static damping factor 

We compared DawnRank using the dynamic damping factor (see Methods section) to a PageRank-like 

algorithm with a static damping factor to determine the impact of our method over traditional PageRank-like 

methods. Precision, recall, and F1 score were based on the top N genes where N ranges from 1 to 100. The 

PageRank-like static damping factor used the PageRank-suggested value 0.85, whereas the DawnRank 

dynamic damping factor used a free parameter trained 𝜇 of 3 (see Methods in the main text). We evaluated 

the precision and recall scores to compare the quality of the static damping factor and the dynamic damping 

factor.  

In evaluating both damping factors, the dynamic damping factor has a higher precision, recall, and F1 

score than the static damping factor in all three cancers. See Supplementary Figure S1. In OV and BRCA, 

many known drivers such as NF1, BRCA2, RB1, and APC in OV and PIK3CA, MAP2K4, and PIK3R1 in 

BRCA were ranked in the top 10 using the dynamic damping factor, and they were not accounted for using 

the static damping factor. In GBM, the dynamic damping factor performs slightly worse regarding the top 10 

genes as several driver genes such as TP53 and EGFR are ranked in the top 15 rather than the top 10. 

Overall, the result shows that the dynamic damping factor is helpful in determining known driver 

mutations more precisely than the static damping factor. 

 

The Zero-One Gap Problem 

An illustration of the zero-one gap problem is shown in Supplementary Figure S2. In Supplementary Figure 

S2, there is a network with six nodes linking to a center node. Each of the outer nodes linking to the center 

node has the same ranking. In the PageRank-like method with a static damping factor, the rank of a node 

depends on the rank of outgoing nodes, and therefore genes that have more outgoing edges would have a 

higher score. However, when static damping factor is used, adding outgoing edges from the central node 

provides a counterintuitive result, not increasing the rank of the central node while also decreasing the ranks 

of the outer nodes. This is due to the difference in the damping factor between a node with no incoming edge 

and a node with one incoming edge is very large (a difference of a damping factor 0 and 0.85). This tends to 

lead to unstable rankings. The DawnRank dynamic damping factor correctly stabilizes the rank of the outer 
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nodes while augmenting the rank of the central node. The change in rankings demonstrates the importance of 

using a dynamic damping factor. As shown earlier, we also compared the results on using dynamic damping 

factor and static damping factor based on TCGA data, and demonstrated that the dynamic damping factor 

can help identify more drivers than the static damping factor (Supplementary Figure S1).  

 

DawnRank Proof of Convergence 

The DawnRank formula is shown in Equation 1 below: 

𝑟!! = (1− 𝑑!)𝑓! + 𝑑!
𝐴!"𝑟!!!!

𝑑𝑒𝑔!

!

!!!

, 1 ≤ 𝑗 ≤ 𝑁 (1) 

To prove that the convergence time is small, let us define 𝑟!∗ to be the true ranking of any gene j. Therefore 

the true rank of any gene must satisfy the DawnRank formula in (1) exactly.  

𝑟!∗ = (1− 𝑑!)𝑓! + 𝑑!
𝐴!"𝑟!∗

𝑑𝑒𝑔!

!

!!!

, 1 ≤ 𝑗 ≤ 𝑁 (2) 

To determine the convergence, we calculate the error of DawnRank at each time point t compared to the true 

result. The error rate of gene j will be defined as the sum of the absolute difference between each ranking of 

gene j:  

𝐸𝑟𝑟 𝑡 = 𝑟!! − 𝑟!∗

!

 (3) 

To calculate the error, we calculate  𝑟!! − 𝑟!∗: 

𝑟!! − 𝑟!∗ = 𝑑!
𝐴!"𝑟!!!!

𝑑𝑒𝑔!

!

!!!

− 𝑑!
𝐴!"𝑟!∗

𝑑𝑒𝑔!

!

!!!

 (4) 

Therefore, by way of the triangle inequality 𝑟!! − 𝑟!∗ : 

𝑟!! − 𝑟!∗ ≤ 𝑑!
𝐴!"|𝑟!!!! − 𝑟!∗|

𝑑𝑒𝑔!

!

!!!

 (5) 

And the error rate will become the summation for all j.  

𝐸𝑟𝑟 𝑡 = 𝑟!! − 𝑟!∗

!

≤ 𝑑!
!

𝐴!"|𝑟!!!! − 𝑟!∗|
𝑑𝑒𝑔!

!

!!!

 (6) 

 

This becomes 

𝐸𝑟𝑟 𝑡 ≤
(𝑑!𝐴!")! |𝑟!!!! − 𝑟!∗|

𝑑𝑒𝑔!

!

!!!

 (7) 

 

Since 𝑑𝑒𝑔! = 𝐴!"!
!!!  and 0 ≤ 𝑑! ≤ 1 for all instances of j: 
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(𝑑!𝐴!")!

(𝐴!")!
≤ 1 (8) 

We have 

𝐸𝑟𝑟 𝑡 ≤
(𝑑!𝐴!")! 𝑟!!!! − 𝑟!∗

(𝐴!")!

!

!!!

≤ 𝐸𝑟𝑟(𝑡 − 1) (9) 

 

Unless the damping factor for each j is equal to 1, the error will decrease at a compound rate. Therefore 

given enough iterations, the 𝐸𝑟𝑟 𝑡  will eventually approach 0. In our damping factor: 

𝑑! = 𝑑𝑒𝑔! (𝑑𝑒𝑔! + 𝜇) , where 𝜇 = 3, the damping factor will always be less than 1 for all genes. Therefore, 

for our iteration of DawnRank, the algorithm will converge at a compound rate. 

 

Parameter Training 

We trained two parameters in our model, the µ free parameter used to calculate the damping factor  𝑑! =

𝑑𝑒𝑔! (𝑑𝑒𝑔! + 𝜇), and the  𝛿 parameter used in the Condorcet rank-aggregation in order to account for 

missing data in certain pairwise comparisons. We performed the parameter training over 100 random patient 

samples using the small network of the KEGG pathways of 1,492 genes. This network was used to avoid 

using the same data to train the model and to run the analysis. This model was run over a 10-fold cross 

validation to determine the most reliable results. 

Calculating µ. We calculated µ by running the DawnRank algorithm using the data and network described in 

the main text over various empirically chosen µ. We selected the µ that presented the highest average rank 

for common driver genes from CGC. Our results show that the µ parameter has a peak at µ=3 where the 

average percentile rank of known driver genes is in the 72.7 percentile. Known drivers are driver genes in 

CGC. In Supplementary Figure S4, we show that µ=3 parameter contains the highest average rank of 

common driver genes with downward trends as µ both increases and decreases, so we set µ=3. DawnRank 

scores are based on both differential expression and a network connectivity, whose weight is determined by 

the damping factor. A high µ value lowers the impact of the network in DawnRank, and a low µ puts too 

much emphasis on the network and not enough on the differential expression. 

Calculating 𝛿. We then applied the Condorcet rank aggregation to our DawnRank trial runs using the µ=3. 

Since the 𝛿 is a value from 0 and 1, we ran the Condorcet rank aggregation for all values of 𝛿 from 0 and 1 

with an increment of 0.05. We selected the parameter that maximized the precision with respect to genes in 

CGC for the top 10 mutated genes within the randomly selected patient samples. This process was run 10 

times, and the precision results for the 10 runs are shown in the Supplementary Figure S5 below. We can see 

from the figure that the precision with respect to CGC is maximized at 𝛿 = 0.85. 
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Comparison against summary statistics 

In addition to comparing DawnRank results with well-established and known methods, we also compared 

DawnRank rankings to simple metrics. We compared DawnRank’s rankings to the rankings based on the 

results: (1) if we only used connectivity of the genes; (2) if we only used differential expression of the genes; 

and (3) if we only used the maximum downstream differential expression, i.e., ranking genes by the 

maximum differential expression among all outgoing genes. We used the same precision-recall evaluation 

metrics. The results showed that none of the three metrics performs well by themselves, suggesting that it is 

necessary for DawnRank to use a combination of connectivity and differential expression to calculate its 

rank (Supplementary Figure S12).  

 

Comparison against tumor quality and survival rate 

We examined potential clinical factors that may show relationships with the DawnRank output. We 

compared the DawnRank scores with tumor quality and survival rate. With tumor quality, we found no 

significant correlation with DawnRank scores. For each patient in the three cancer types, we determined the 

Pearson correlation of the tumor nuclei percentage with both the average rank of driver mutations and the 

variance of the ranks of the driver mutations. This would test whether or not the tumor nuclei percentage was 

correlated with either the rank of driver mutations, indicating that more tumor quality leads to more 

significant driver, or the variance of the driver mutations, indicating that tumor quality raises the variation 

among drivers. The resulting correlation, however, was low (each of the correlations for driver means and 

variances with tumor nuclei percentages was between 0.01 and -0.01) with the tumor quality having little 

relationship with the mean or variance of drivers. One potential reason behind this lack of correlation is the 

fact that TCGA has already required tumors should have at least 60% tumor nuclei for data from NGS 

platforms (and 80% for previous tumor samples). 

 We then examined the relationship between the DawnRank scores and the survival rate. We took 

advantage of the inter-tumor heterogeneity of the tumors, and the resulting DawnRank scores were used as 

variables to build a consensus hierarchical co-clustering model using Wards linkage to separate the patients 

into potential subtypes. We compared our results to the gene-expression based GBM subtypes: Classical, 

Proneural, Neural, and Mesenchymal [1]. We chose to analyze GBM because it has both gene expression 

based subtypes and lower and more variable survival rates [2]. The results are shown in Supplementary 

Figure S13. Using a log-rank test, we found that the DawnRank hierarchical clustering separated the 

subtypes by survival time even more accurately than that of conventional gene-expression subtypes 

(p=0.0044 and p=0.131).  
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Relationship between DawnRank drivers and the mutation rate 

One factor that may determine the number of driver mutations predicted by DawnRank could be the 

mutation rate itself. On average, there are 4.24 drivers per patient in GBM, 5.89 drivers in BRCA, and 6.05 

drivers in OV, within the range of the 2-8 mutations expected in solid tumors [3]. The total number of 

alterations (mutation plus copy number) in each of the three cancers is 7,876, 10,950, and 17,189, 

respectively. Therefore, even though OV has higher mutation rate, the number of drivers only increases a 

little, suggesting the robustness of our method. To examine the DawnRank score in a more extreme case, we 

applied our method to the lung cancer data in TCGA, including 22,789 mutations across 152 samples. We 

found that the average number of drivers in lung cancer patients is 7.18. Therefore, even with the large 

number of mutations in lung cancer, DawnRank still predicts the reasonable number of drivers, further 

suggesting the robustness of the method. We also plotted the number of predicted drivers against the total 

number of mutations for individual patients in Supplementary Figure S14. We observed that as the number 

of mutations increases, the number of predicted drivers in an individual sample increases at a much lower 

rate until it reaches a plateau, further suggesting the robustness of our method. 
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Supplementary Figures 
 

 
Figure S1: A comparison of the precision, recall, and F1 score for the top ranked genes when using the static 

damping factor (in original PageRank) and the dynamic damping factor (in DawnRank). The X-axis 

represents the number of top ranked genes involved in the precision, recall and F1 score calculation, and the 

Y-axis represents the score of the given metric.  
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Figure S2: A toy example showing the effect of using dynamic damping factor. (A) Original network with 

one central node and six outer nodes. (B) When static damping factor is used, after adding the outgoing 

edges (in red) from the central node, the ranking of the central node does not change and the ranking of the 

outer nodes decreases. (C) When dynamic damping factor is used (as in DawnRank), after adding the 

outgoing edges from the central node, the ranking of the central node increases (as expected) and the ranking 

of the outer nodes does not change (as expected). 

 

  

(A) (B) (C)
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Figure S3: The static versus the dynamic damping factor change over the number of inlinks (i.e. incoming 

edges).  
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Figure S4: The training results for various µ parameters when looking at the average rank of common driver 

genes. The µ that provides the highest average rank is 3. 
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Figure S5 The training results for various 𝛿 parameters when looking at the average precision of the top 10 

rank-aggregated genes with respect to CGC. The 𝛿 is maximized at 0.85 with a precision of 0.59. 
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Figure S6: A close-up view of the protein structure of PDPK1 indicates that an amino acid change from the 

mutation causes substitution of the Glycine (G) to Arginine (R) in TCGA Ovarian Cancer samples TCGA-

13-0751 (DawnRank score 98.14 percentile). The substitution is in a loop between 2 beta strands, and occurs 

close to the binding site for the substrate Ins(1,3,4,5)P4, indicating a potential interaction of the positively 

charged R-group of Arginine and a phosphate group.  

  

Ins(1,3,4,5)P4  

G468ÆR 

β1 β2 



	
   12 

 
Figure S7: A visualization of the top driver CNVs in BRCA, GBM, and OV. The X-axis represents the top 

genes (in order of rank), and the Y-axis represents the copy number changes. The labels of known drivers are 

shown in blue.  
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Figure S8: Personalized drivers in TCGA GBM samples. The darker red/blue entries (red for point 

mutations and blue for CNVs) indicate the personalized drivers that are significant and not documented in 

CGC. The lighter entries are mutations that are not considered as drivers by DawnRank in specific samples. 

The X-axis includes patient samples with a personalized driver that is significant and not documented in 

CGC. On the Y-axis, rare drivers (frequency < 2%) are in blue and non-rare drivers (frequency >= 2%) are in 

purple. 
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Figure S9: Personalized drivers in TCGA BRCA samples. The darker red/blue entries (red for point 

mutations and blue for CNVs) indicate the personalized drivers that are significant and not documented in 

CGC. The lighter entries are mutations that are not considered as drivers by DawnRank in specific samples. 

The X-axis includes patient samples with a personalized driver that is significant and not documented in 

CGC. On the Y-axis, rare drivers (frequency < 2%) are in blue and non-rare drivers (frequency >= 2%) are in 

purple. 
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Figure S10: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank, 

CHASM and OncodriveFM. The X-axis represents the number of top ranking genes involved in the 

precision, recall, and F1 score calculation. The Y-axis represents the score of the given metric.  
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Figure S11: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank, 

DriverNet, and PARADIGM-Shift using the Pan-Cancer predicted drivers based on [4]. The X-axis 

represents the number of top ranking genes involved in the precision, recall, and F1 score calculation. The Y-

axis represents the score of the given metric.  
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Figure S12: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank 

compared to three summary statistics: differential expression only, connectivity, and maximum downstream 

differential expression (MaxExp). The X-axis represents the number of top ranking genes involved in the 

precision, recall, and F1 score calculation. The Y-axis represents the score of the given metric.  
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Figure S13: A Kaplan-Meier survival plot showing the survival rates of four clusters derived from using 

GBM DawnRank scores (left), as compared to expression based clustering (right). The X-axis represents the 

days until death and the Y-axis represents the proportion of living patients. 
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Figure S14: A plot illustrating the trend between the total number of mutations (X-axis) and the number of 

significant DawnRank drivers (Y-axis). The intensity of each point represents the number of patients at the 

coordinate. The line in blue is the LOESS curve. 
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