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Comparison between the dynamic damping factor and the static damping factor

We compared DawnRank using the dynamic damping factor (see Methods section) to a PageRank-like
algorithm with a static damping factor to determine the impact of our method over traditional PageRank-like
methods. Precision, recall, and F1 score were based on the top N genes where N ranges from 1 to 100. The
PageRank-like static damping factor used the PageRank-suggested value 0.85, whereas the DawnRank
dynamic damping factor used a free parameter trained p of 3 (see Methods in the main text). We evaluated
the precision and recall scores to compare the quality of the static damping factor and the dynamic damping
factor.

In evaluating both damping factors, the dynamic damping factor has a higher precision, recall, and F1
score than the static damping factor in all three cancers. See Supplementary Figure S1. In OV and BRCA,
many known drivers such as NF I, BRCA2, RB1, and APC in OV and PIK3CA, MAP2K4, and PIK3RI in
BRCA were ranked in the top 10 using the dynamic damping factor, and they were not accounted for using
the static damping factor. In GBM, the dynamic damping factor performs slightly worse regarding the top 10
genes as several driver genes such as TP53 and EGFR are ranked in the top 15 rather than the top 10.

Overall, the result shows that the dynamic damping factor is helpful in determining known driver

mutations more precisely than the static damping factor.

The Zero-One Gap Problem

An illustration of the zero-one gap problem is shown in Supplementary Figure S2. In Supplementary Figure
S2, there is a network with six nodes linking to a center node. Each of the outer nodes linking to the center
node has the same ranking. In the PageRank-like method with a static damping factor, the rank of a node
depends on the rank of outgoing nodes, and therefore genes that have more outgoing edges would have a
higher score. However, when static damping factor is used, adding outgoing edges from the central node
provides a counterintuitive result, not increasing the rank of the central node while also decreasing the ranks
of the outer nodes. This is due to the difference in the damping factor between a node with no incoming edge
and a node with one incoming edge is very large (a difference of a damping factor 0 and 0.85). This tends to

lead to unstable rankings. The DawnRank dynamic damping factor correctly stabilizes the rank of the outer
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nodes while augmenting the rank of the central node. The change in rankings demonstrates the importance of
using a dynamic damping factor. As shown earlier, we also compared the results on using dynamic damping
factor and static damping factor based on TCGA data, and demonstrated that the dynamic damping factor

can help identify more drivers than the static damping factor (Supplementary Figure S1).

DawnRank Proof of Convergence

The DawnRank formula is shown in Equation 1 below:

=(1 d)f,+dz]” ,L1<j<N (1)

To prove that the convergence time is small let us deﬁne 1i* to be the true ranking of any gene j. Therefore

the true rank of any gene must satisfy the DawnRank formula in (1) exactly.
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To determine the convergence, we calculate the error of DawnRank at each time point # compared to the true

result. The error rate of gene j will be defined as the sum of the absolute difference between each ranking of

gene J:
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Unless the damping factor for eachj is equal to 1, the error will decrease at a compound rate. Therefore
given enough iterations, the Err(t) will eventually approach 0. In our damping factor:
d; = deg;/(deg; + u) , where u = 3, the damping factor will always be less than 1 for all genes. Therefore,

for our iteration of DawnRank, the algorithm will converge at a compound rate.

Parameter Training

We trained two parameters in our model, the u free parameter used to calculate the damping factor d; =
deg;/(deg; + 1), and the § parameter used in the Condorcet rank-aggregation in order to account for
missing data in certain pairwise comparisons. We performed the parameter training over 100 random patient
samples using the small network of the KEGG pathways of 1,492 genes. This network was used to avoid
using the same data to train the model and to run the analysis. This model was run over a 10-fold cross
validation to determine the most reliable results.

Calculating . We calculated x4 by running the DawnRank algorithm using the data and network described in
the main text over various empirically chosen x. We selected the x that presented the highest average rank
for common driver genes from CGC. Our results show that the x parameter has a peak at x=3 where the
average percentile rank of known driver genes is in the 72.7 percentile. Known drivers are driver genes in
CGC. In Supplementary Figure S4, we show that 4=3 parameter contains the highest average rank of
common driver genes with downward trends as ¢ both increases and decreases, so we set 4=3. DawnRank
scores are based on both differential expression and a network connectivity, whose weight is determined by
the damping factor. A high u value lowers the impact of the network in DawnRank, and a low x puts too
much emphasis on the network and not enough on the differential expression.

Calculating 6. We then applied the Condorcet rank aggregation to our DawnRank trial runs using the 4=3.
Since the § is a value from 0 and 1, we ran the Condorcet rank aggregation for all values of § from 0 and 1
with an increment of 0.05. We selected the parameter that maximized the precision with respect to genes in
CGC for the top 10 mutated genes within the randomly selected patient samples. This process was run 10
times, and the precision results for the 10 runs are shown in the Supplementary Figure S5 below. We can see

from the figure that the precision with respect to CGC is maximized at § = 0.85.



Comparison against summary statistics

In addition to comparing DawnRank results with well-established and known methods, we also compared
DawnRank rankings to simple metrics. We compared DawnRank’s rankings to the rankings based on the
results: (1) if we only used connectivity of the genes; (2) if we only used differential expression of the genes;
and (3) if we only used the maximum downstream differential expression, i.e., ranking genes by the
maximum differential expression among all outgoing genes. We used the same precision-recall evaluation
metrics. The results showed that none of the three metrics performs well by themselves, suggesting that it is
necessary for DawnRank to use a combination of connectivity and differential expression to calculate its

rank (Supplementary Figure S12).

Comparison against tumor quality and survival rate

We examined potential clinical factors that may show relationships with the DawnRank output. We
compared the DawnRank scores with tumor quality and survival rate. With tumor quality, we found no
significant correlation with DawnRank scores. For each patient in the three cancer types, we determined the
Pearson correlation of the tumor nuclei percentage with both the average rank of driver mutations and the
variance of the ranks of the driver mutations. This would test whether or not the tumor nuclei percentage was
correlated with either the rank of driver mutations, indicating that more tumor quality leads to more
significant driver, or the variance of the driver mutations, indicating that tumor quality raises the variation
among drivers. The resulting correlation, however, was low (each of the correlations for driver means and
variances with tumor nuclei percentages was between 0.01 and -0.01) with the tumor quality having little
relationship with the mean or variance of drivers. One potential reason behind this lack of correlation is the
fact that TCGA has already required tumors should have at least 60% tumor nuclei for data from NGS
platforms (and 80% for previous tumor samples).

We then examined the relationship between the DawnRank scores and the survival rate. We took
advantage of the inter-tumor heterogeneity of the tumors, and the resulting DawnRank scores were used as
variables to build a consensus hierarchical co-clustering model using Wards linkage to separate the patients
into potential subtypes. We compared our results to the gene-expression based GBM subtypes: Classical,
Proneural, Neural, and Mesenchymal [1]. We chose to analyze GBM because it has both gene expression
based subtypes and lower and more variable survival rates [2]. The results are shown in Supplementary
Figure S13. Using a log-rank test, we found that the DawnRank hierarchical clustering separated the
subtypes by survival time even more accurately than that of conventional gene-expression subtypes

(p=0.0044 and p=0.131).



Relationship between DawnRank drivers and the mutation rate

One factor that may determine the number of driver mutations predicted by DawnRank could be the
mutation rate itself. On average, there are 4.24 drivers per patient in GBM, 5.89 drivers in BRCA, and 6.05
drivers in OV, within the range of the 2-8 mutations expected in solid tumors [3]. The total number of
alterations (mutation plus copy number) in each of the three cancers is 7,876, 10,950, and 17,189,
respectively. Therefore, even though OV has higher mutation rate, the number of drivers only increases a
little, suggesting the robustness of our method. To examine the DawnRank score in a more extreme case, we
applied our method to the lung cancer data in TCGA, including 22,789 mutations across 152 samples. We
found that the average number of drivers in lung cancer patients is 7.18. Therefore, even with the large
number of mutations in lung cancer, DawnRank still predicts the reasonable number of drivers, further
suggesting the robustness of the method. We also plotted the number of predicted drivers against the total
number of mutations for individual patients in Supplementary Figure S14. We observed that as the number
of mutations increases, the number of predicted drivers in an individual sample increases at a much lower

rate until it reaches a plateau, further suggesting the robustness of our method.



Supplementary Figures
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Figure S1: A comparison of the precision, recall, and F1 score for the top ranked genes when using the static

damping factor (in original PageRank) and the dynamic damping factor (in DawnRank). The X-axis

represents the number of top ranked genes involved in the precision, recall and F1 score calculation, and the

Y-axis represents the score of the given metric.
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Figure S2: A toy example showing the effect of using dynamic damping factor. (A) Original network with
one central node and six outer nodes. (B) When static damping factor is used, after adding the outgoing
edges (in red) from the central node, the ranking of the central node does not change and the ranking of the
outer nodes decreases. (C) When dynamic damping factor is used (as in DawnRank), after adding the
outgoing edges from the central node, the ranking of the central node increases (as expected) and the ranking

of the outer nodes does not change (as expected).



Relation between Static and Dynamic Damping Factors
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Figure S3: The static versus the dynamic damping factor change over the number of inlinks (i.e. incoming

edges).



Free Parameter Training for Mu
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Figure S4: The training results for various u parameters when looking at the average rank of common driver

genes. The u that provides the highest average rank is 3.



Free Parameter Training for the Condorceet Vote Aggregation
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Figure S5 The training results for various § parameters when looking at the average precision of the top 10

rank-aggregated genes with respect to CGC. The § is maximized at 0.85 with a precision of 0.59.
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Figure S6: A close-up view of the protein structure of PDPK1 indicates that an amino acid change from the
mutation causes substitution of the Glycine (G) to Arginine (R) in TCGA Ovarian Cancer samples TCGA-
13-0751 (DawnRank score 98.14 percentile). The substitution is in a loop between 2 beta strands, and occurs
close to the binding site for the substrate Ins(1,3,4,5)P4, indicating a potential interaction of the positively
charged R-group of Arginine and a phosphate group.
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GBM Genes by CNV Log Ratio
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BRCA Genes by CNV Log Ratio
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A visualization of the top driver CNVs in BRCA, GBM, and OV. The X-axis represents the top

Figure S7

genes (in order of rank), and the Y-axis represents the copy number changes. The labels of known drivers are

shown in blue.
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Figure S8: Personalized drivers in TCGA GBM samples. The darker red/blue entries (red for point
mutations and blue for CNVs) indicate the personalized drivers that are significant and not documented in
CGC. The lighter entries are mutations that are not considered as drivers by DawnRank in specific samples.
The X-axis includes patient samples with a personalized driver that is significant and not documented in

CGC. On the Y-axis, rare drivers (frequency < 2%) are in blue and non-rare drivers (frequency >= 2%) are in

purple.

13



PJA1 [ |
TRRAP
SCNsA |
CAD [ |
ARHGAP28 [ |
CD40 ||
cyLc2 ||
CACNA1B [l
OR1J1 [
WNK1 ||
HIST1H1E [ |
PIGG ||
HCN1 ||
ARSA ||
IGSF5 ||
CEP63 [ |
AATF ||
GRIN2A ||
HACE1 ||
ADAM21 ||
CCAR1 ||
RIMS1 [ |
SLC4A4 ||
RSF1 ||
GBE1 ||
PLEKHA1 ||
COPS2 [ |
CHN2 ||
STX16 ||
FARP1 ||
BCL2L14 ||
LGR5 ||
OR52A1 [ |
BTC ||
ROBO1 ||
BRCC3 ||
OLIG3
CDC42BPB
KIAA0146 ||
GLIS1 ||
GJB6
HSD17B4
CSNK1G1
ACLY
ALX3 ||
POU4F1 |
CNOT2
FRS2
TRPS1 ||
PREX1 || |
DNAH9 ||
0Dz4 ||
UNC5D
ANK3
VPS13B
CDH2

Axov-Nv-vooL i

MEOV-HE-VDOL
201LV-23-VvHIL
HSOV-1Y-VHIL
dgovy-Hg-vool
MLOV-HY-VDIL
1VOV-NV-VDIL
HYOV-NV-VHIL
H90V-8V-VDOL
010V-2v-v¥9oL
MSOV-LY-¥DHIL
rSOV-LV-¥9oL1
DHOV-HE-VYDIL
810V-99-vHIL
X10V-HV-vDHIL
IrOV-0V-VDOL
090V-NY-¥9HIL
r40V-NV-YDOL

rvov-Nv-vooL [
NSOV-2v-VHIL
MPOY-2v-¥HI1
NYOV-2gv-vHOL
ovlv-23-voolL
801V-23-VHIL
6HOV-HE-VDIL
890V-Hg-VDHIL
280Y-HE-VHIL
INHOY-99-VDIL
NIOV-99-VDOL
LNOV-HV-VYHIL
L10V-HY-¥9IL
DZIV-0V-VDOL
DrOV-0OV-V9HIL
Zrov-ov-voolL
AEOV-OV-VDIL
deov-0v-vYDol
NEOV-OV-VDIL
A4O0V-NV-VHIL
X40V-NV-VDIL
avov-sv-vool
N60V-8Y-VDIL
H8OV-8Y-YDHIL
£80V-8Y-VDOL
090V-8V-VDHIL
FAOV-2V-YDIL
100V-2V-V¥HIL

Figure S9: Personalized drivers in TCGA BRCA samples. The darker red/blue entries (red for point
mutations and blue for CNVs) indicate the personalized drivers that are significant and not documented in
CGC. The lighter entries are mutations that are not considered as drivers by DawnRank in specific samples.
The X-axis includes patient samples with a personalized driver that is significant and not documented in

CGC. On the Y-axis, rare drivers (frequency < 2%) are in blue and non-rare drivers (frequency >= 2%) are in

purple.
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DawnRank, CHASM, Oncodrive—FM Comparison (Precision)
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Figure S10: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank,
CHASM and OncodriveFM. The X-axis represents the number of top ranking genes involved in the

precision, recall, and F1 score calculation. The Y-axis represents the score of the given metric.
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DawnRank, DriverNet, and PARADIGM-Shift comparison (Precision)
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Figure S11: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank,
DriverNet, and PARADIGM-Shift using the Pan-Cancer predicted drivers based on [4]. The X-axis
represents the number of top ranking genes involved in the precision, recall, and F1 score calculation. The Y-

axis represents the score of the given metric.
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Figure S12: A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank

compared to three summary statistics: differential expression only, connectivity, and maximum downstream

differential expression (MaxExp). The X-axis represents the number of top ranking genes involved in the

precision, recall, and F1 score calculation. The Y-axis represents the score of the given metric.
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DawnRank-Based Survival Clustering GBM Expression-Based Survival Clustering
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Figure S13: A Kaplan-Meier survival plot showing the survival rates of four clusters derived from using
GBM DawnRank scores (left), as compared to expression based clustering (right). The X-axis represents the

days until death and the Y-axis represents the proportion of living patients.
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DawnRank drivers vs. total number of mutations
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Figure S14: A plot illustrating the trend between the total number of mutations (X-axis) and the number of
significant DawnRank drivers (Y-axis). The intensity of each point represents the number of patients at the

coordinate. The line in blue is the LOESS curve.
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