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Notations used in these supplementary materials are taken from the main text, in particular, as
long as their explanations are not newly provided here.

A Joint survival modelling adopted in the article

A.1 Three copula models: Brief characteristics

In the present article, we consider the three typical models belonging to the Archimedean copula
model family in order to model the joint survival function by

S(k)(t, s; θ) = C(S(k)
1 (t), S

(k)
2 (s); θ), k = 1, 2.

We here supplement the explanation on these models. For simplicity, suppose gi = k (the ith

participant belongs to the group k) and hence ρ(k) is the correlation for the ith bivariate survival
times.
Clayton copula. The bivariate survival function given by Clayton (1978) is

C(u, v; θ) =
(
u−θ + v−θ − 1

)−1/θ
, θ ≥ 0.

Although this model allows negative dependencies if θ < 0, we do not consider the case. If
θ = θ(k) > 0, then the bivariate survival times T ∗

i1 and T ∗
i2 have a positive correlation ρ(k). The

case of θ(k) = 0 provides the independence between T ∗
i1 and T ∗

i2. As θ(k) → ∞, this achieves the

upper Fréchet bound S(k)(t, s) = min(S
(k)
1 (t), S

(k)
2 (s)), k = 1, 2.

Gumbel copula. The bivariate function induced from a positive stable distribution is

C(u, v; θ) = exp

(
−
{
(− log u)1/θ + (− log v)1/θ

}θ)
, 0 ≤ θ ≤ 1.

A smaller value of θ = θ(k) gives a larger positive correlation between T ∗
i1 and T

∗
i2. When θ(k) = 1,

T ∗
i1 and T ∗

i2 are mutually independent (Hougaard, 1986; Shih and Louis, 1995)．
Frank copula. The bivariate function introduced by Frank (1979) is

C(u, v; θ) = θ−1 log

(
1 +

(eθu − 1)(eθv − 1)

eθ − 1

)
.

When θ = θ(k) = 0, T ∗
i1 and T ∗

i2 are mutually independent. If θ(k) < 0, then T ∗
i1 and T ∗

i2 are
positively correlated. Note that, originally and in many articles, this copula model is usually
parameterized on eθ. We adopt the parametrization as displayed, because it is easier to treat our
computational problems on θ than the exponential scale. One computational problem in this
copula model is that the inside (eθu − 1)(eθv − 1)/(eθ − 1) of the logarithm may have a serious
rounding error when eθ is near zero, such as θ < −e2. Then, we could counter this problem with
an approximation

(eθu − 1)(eθv − 1)

(eθ − 1)
≈ −(1 + eθ + e2θ)(1− eθu − eθv + eθ(u+v)).

These copula models have different characteristics of the bivariate dependence. Generally,
the Clayton and Gumbel copulas provide late and early dependences, respectively, and the Frank
copula describes a symmetric dependence without tail dependence.

Figure 1 gives the relationships between the correlation ρ(k) and a transformation of θ(k)

for the three copula models in bivariate continuous survival data, from which a list of θ(k) to
ρ(k) = 0.3, 0.5, 0.8, 0.95 is picked.
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Frank copula
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Copula Association form ρ(k) = 0.3 ρ(k) = 0.5 ρ(k) = 0.8 ρ(k) = 0.95

Clayton log(θ(k)) -1.1158 -0.4439 0.5512 1.5313
Gumbel θ(k) 0.7249 0.5582 0.3027 0.1357
Frank log(−θ(k)) 0.9116 1.5539 2.6350 4.0579

Figure 1: Relationships between θ(k) and ρ(k) for the three copula models. The y-axes of plots
for the Clayton and Frank copulas are drawn in log(θ(k)) and log(−θ(k)).

A.2 A method to compute the association parameter from correlation

For simplicity, the superscripts (k) for θ(k) and ρ(k) are omited. We here introduce a method to
calculate the corresponding θ to a specified ρ. Figure 1 is created using this algorithm.

The Newton-Raphson (NR) algorithm is performed to numerically find θ which satisfies the
equation ρ̃(θ)− ρ = 0, where

ρ̃(θ) =
∫∞
0

∫∞
0 C

(
e−t, e−s; θ

)
dtds− 1 (A.1)

=
∫ 1
0

∫ 1
0 C (u, v; θ)u−1v−1dudv − 1 (A.2)

The latter equation (A.2) may be preferred because of not including infinite intervals. The first
derivative needed for the NR method is

d
dθ ρ̃(θ) =

∫∞
0

∫∞
0

d
dθC

(
e−t, e−s; θ

)
dtds (A.3)

=
∫ 1
0

∫ 1
0

d
dθC (u, v; θ)u−1v−1dudv, (A.4)

where

dC (u, v; θ)

dθ
=


C (u, v; θ) θ−1

{
vθ log(u)+uθ log(v)

uθ+vθ−uθvθ − log(C (u, v; θ))
}

(Clayton copula)

C (u, v; θ) (ϕu + ϕv)
θ−1{ϕu log(ϕu) + ϕv log(ϕv)

−(ϕu + ϕv) log(ϕu + ϕv)} (Gumbel copula)
uϕu(ϕv−1)+vϕv(ϕu−1)−(ϕu−1)(ϕv−1)eθ/(eθ−1)

θ{(ϕu−1)(ϕv−1)+eθ−1} − θ−2C (u, v; θ) (Frank copula)

,

ϕx = log(− log(x)) in the Gumbel copula and ϕx = eθx in the Frank copula. Hence, we obtain
the NR algorithm such that

θl = θl−1 −
{
d
dθQ(θ)

}−1
Q(θ)

∣∣
θ=θl−1

, l = 1, 2, 3, . . . ,

where θ0 is the starting point of the algorithm.
One remark is that the numerical integrations is usually required to calculate the double

integrals, such as (A.1) and (A.2). In the remainder of this paragraph, we discuss the numerical
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integration methods and their performances to calculate (A.1) and (A.2). Let tj = jh, j =
1, 2, 3, . . . with t0 = 0 and h = 10/M , and let u0 < u1 < u2 < · · · < uM be a partition of interval
[0,1] with u0 = 0 and uM = 1. The integrals (A.1) and (A.2) can be approximated by

ρ̃
(1)

M̃
(θ) =

∑M̃
m=1

∑M̃
l=1

¯̄C
(
e−tm , e−tl ; θ

)
δtmδtl − 1

and ρ̃
(2)
M (θ) =

∑M
m=1

∑M
l=1

¯̄C (um, ul; θ) ū
−1
m ū−1

l δulδum − 1,

respectively, where the notations of δtm = tm− tm−1 and δum = um−um−1 are commonly used,
in a trapezoidal rule

¯̄C (um, ul; θ) =
1

4
{C (um, ul; θ) + C (um, ul−1; θ) + C (um−1, ul; θ) + C (um−1, ul−1; θ)}

and ū−1
m = (u−1

m + u−1
m−1)/2

are used, in Simpson’s rule

¯̄C (um, ul; θ) =
1

36

[
C (um, ul; θ) + C (um, ul−1; θ) + C (um−1, ul; θ) + C (um−1, ul−1; θ)

+4 {C (ũm, ul; θ) + C (um, ũl; θ) + C (ũm, ul−1; θ) + C (um−1, ũl; θ)}+ 16C (ũm, ũl; θ)
]
,

ū−1
m = {u−1

m + 4ũ−1
m + u−1

m−1)/6 and ũm = (um + um−1)/2

are used. Also, M̃ for ρ̃
(1)

M̃
(θ) is selected as the first integer satisfying

|ρ̃(1)
M̃+j

(θ)− ρ̃
(1)

M̃+j−1
(θ)|/ρ̃(1)

M̃
(θ) < 10−18, j = 1, 2, 3,

which makes us escape from the loop computation.
Now, we see the performances of these numerical integrations. Table A.1 provides the values

of ρ̃
(1)

M̃
(θ) and ρ̃

(2)
M (θ) computed by the above two rules when M = 100, 200, 400, 800 and 1600

and θ’s for the three copulas are given. The columns T∗ and S∗ (time) of Table A.1 are the
computation values and times (second) using the trapezoidal and Simpson’s rules, respectively.
Computation times of Simpson’s rules until reaching the objective ρ are shorter than trapezoidal

rules. In particular, it is more efficient to compute ρ̃
(1)

M̃
(θ) than ρ̃

(2)
M (θ). Hence, the algorithm to

compute ρ̃
(1)

M̃
(θ) by Simpson’s rules is adopted in our computational program of Section E.

A.3 Generation of bivariate exponential survival data

We describe the generation of the random number of bivariate survival data. This simulation
technique is necessary to compute empirical powers in the present article. Suppose that the

marginals of Ti1 and Ti2 are exponential, that is, the marginal survival functions are S
(gi)
j (t) =

exp(−λ(gi)j t), j = 1, 2. In the below, u1 and u2 are mutually independent random numbers from
a standard uniform distribution U(0, 1).
Clayton copula. For gi = k, (T ∗

i1, T
∗
i2) can be generated from T ∗

i1 = − log(1− u1)/λ
(k)
1

T ∗
i2 = log

(
1− exp

(
−λ(k)1 T ∗

i1

)−θ(k)
+ exp

(
−λ(k)1 T ∗

i1

)−θ(k)
(1− u2)

−θ(k)/(1+θ(k))
)
/λ

(k)
2 θ(k)

using u1 and u2 (Prentice and Cai, 1992).
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Table A.1: Performance of four numerical integrations calculated ρ given θ.

ρ̃
(1)

M̃
(θ) ρ̃

(2)
M (θ)

copula θ M T∗(time) S∗(time) T∗(time) S∗(time)
100 0.433 (0.02) 0.300 (0.17) 0.289 (0.05) 0.294 (0.10)
200 0.332 (0.08) 0.300 (0.55) 0.294 (0.20) 0.297 (0.44)

Clayton 0.3277 400 0.308 (0.26) 0.300 (2.17) 0.297 (0.77) 0.298 (1.73)
800 0.302 (0.23) 0.300 (2.06) 0.298 (2.66) 0.299 (1.65)
1600 0.301 (0.91) 0.300 (7.76) 0.299 (2.95) 0.300 (6.63)
100 0.612 (0.01) 0.500 (0.04) 0.484 (0.01) 0.491 (0.02)
200 0.526 (0.01) 0.500 (0.14) 0.491 (0.05) 0.495 (0.11)

0.6415 400 0.506 (0.07) 0.500 (0.53) 0.496 (0.18) 0.498 (0.42)
800 0.502 (0.24) 0.500 (2.01) 0.498 (0.75) 0.499 (1.65)
1600 0.500 (0.91) 0.500 (7.76) 0.499 (2.95) 0.500 (6.63)
100 0.877 (0.01) 0.800 (0.04) 0.784 (0.01) 0.791 (0.02)
200 0.816 (0.02) 0.800 (0.13) 0.792 (0.05) 0.796 (0.11)

1.7353 400 0.804 (0.08) 0.800 (0.53) 0.796 (0.17) 0.798 (0.41)
800 0.801 (0.22) 0.800 (2.03) 0.798 (0.73) 0.799 (1.67)
1600 0.800 (0.91) 0.800 (7.67) 0.799 (2.96) 0.800 (6.59)
100 0.394 (0.00) 0.299 (0.04) 0.298 (0.02) 0.299 (0.04)
200 0.317 (0.01) 0.300 (0.15) 0.299 (0.07) 0.300 (0.16)

Gumbel 0.7249 400 0.303 (0.07) 0.300 (0.56) 0.300 (0.30) 0.300 (0.63)
800 0.301 (0.24) 0.300 (2.10) 0.300 (1.13) 0.300 (2.57)
1600 0.300 (0.94) 0.300 (7.97) 0.300 (4.59) 0.300 (10.3)
100 0.563 (0.01) 0.499 (0.04) 0.496 (0.02) 0.498 (0.04)
200 0.509 (0.02) 0.500 (0.17) 0.498 (0.08) 0.499 (0.15)

0.5582 400 0.501 (0.07) 0.500 (0.61) 0.499 (0.28) 0.500 (0.66)
800 0.500 (0.29) 0.500 (2.35) 0.500 (1.16) 0.500 (2.55)
1600 0.500 (1.02) 0.500 (8.93) 0.500 (4.62) 0.500 (10.3)
100 0.845 (0.00) 0.800 (0.05) 0.790 (0.01) 0.795 (0.04)
200 0.805 (0.02) 0.800 (0.19) 0.795 (0.07) 0.797 (0.14)

0.3027 400 0.801 (0.08) 0.800 (0.68) 0.798 (0.29) 0.799 (0.64)
800 0.800 (0.31) 0.800 (2.59) 0.799 (1.15) 0.799 (2.57)
1600 0.800 (1.15) 0.800 (9.84) 0.799 (4.55) 0.800 (10.2)
100 0.400 (0.04) 0.300 (0.01) 0.300 (0.02) 0.300 (0.03)
200 0.322 (0.00) 0.300 (0.07) 0.300 (0.06) 0.300 (0.15)

Frank -2.4882 400 0.305 (0.02) 0.300 (0.26) 0.300 (0.24) 0.300 (0.53)
800 0.301 (0.10) 0.300 (0.91) 0.300 (0.99) 0.300 (2.20)
1600 0.300 (0.39) 0.300 (3.59) 0.300 (3.97) 0.300 (8.87)
100 0.568 (0.04) 0.500 (0.01) 0.500 (0.01) 0.500 (0.03)
200 0.513 (0.01) 0.500 (0.06) 0.500 (0.06) 0.500 (0.13)

-4.7299 400 0.503 (0.04) 0.500 (0.23) 0.500 (0.22) 0.500 (0.49)
800 0.501 (0.10) 0.500 (0.87) 0.500 (0.90) 0.500 (2.04)
1600 0.500 (0.39) 0.500 (3.42) 0.500 (3.62) 0.500 (8.12)
100 0.850 (0.29) 0.800 (3.63) 0.799 (0.03) 0.800 (0.06)
200 0.807 (0.63) 0.800 (6.34) 0.800 (0.11) 0.800 (0.23)

-13.943 400 0.801 (0.51) 0.800 (7.91) 0.800 (0.42) 0.800 (0.92)
800 0.800 (0.40) 0.800 (10.6) 0.800 (1.66) 0.800 (3.72)
1600 0.800 (0.85) 0.800 (17.6) 0.800 (6.62) 0.800 (14.8)
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Gumbel copula. When gi = k, (T ∗
i1, T

∗
i2) following the Gumbel copula can be generated as

T ∗
i1 = (1− u1)

θ(k)W/λ
(k)
1

T ∗
i2 =

{
W 1/θ(k) −

(
λ
(k)
1 T ∗

i1

)1/θ(k)
}θ(k) /

λ
(k)
2

(Oakes and Manatunga, 1992), where W is the solution of the equation (1+Wθ(k)) exp(−W ) =
1− u2. We can usually obtain the W by a simple Newton-Raphson algorithm.
Frank copula. When gi = k, (T ∗

1i, T
∗
2i) from the Frank copula can be generated as{

T ∗
i1 = − log(1− u1)/λ

(k)
1

T ∗
i2 = − log

[
log

[
W/

{
W + (1− eθ

(k)
)(1− u2)

}]/
θ(k)

]/
λ
(k)
2

(Genest, 1987), where W = eθ
(k)(1−u1) +

{
eθ

(k) − eθ
(k)(1−u1)

}
(1− u2).

B Technical details for Section 2.3

In Section 2.3 of the main text, the power formula (2.4) is constructed based on the asymptotic
result of the bivariate logrank statistic. Here, we provide this asymptotic property and its proof.

B.1 Asymptotic distribution of bivariate logrank statistic

In advance, we express the bivariate weighted logrank statistic (U1, U2)
′ using the counting and

at-risk processes. Let Nij(t) = 1(Tij ≤ t,∆ij = 1) and Yij(t) = 1(Tij ≥ t) be the counting and
at-risk processes for the jth endpoint of the ith participant. Denote the total sums of Nij and
Yij in the group k by

N (k)
j (t) =

∑n
i=1 1

(k)
i Nij(t), and Y(k)

j (t) =
∑n

i=1 1
(k)
i Yij(t),

where 1
(k)
i = 1(gi = k). Then, the Nelson-Aalen estimator of Λ

(k)
j (t) is written as

Λ̂
(k)
j (t) =

∫ t

0
dN (k)

j (s)/Y(k)
j (s).

The function Ĥj(t) included in the weighted logrank statistic is usually a negative predictable

function of bounded variation. Let Yj(t) = Y(1)
j (t)+Y(2)

j (t) and ĤL
j (t) = n−1Y(1)

j (t)Y(2)
j (t)/Yj(t).

As well-known, the logrank statistic uses Ĥj(t) = ĤL
j (t), the Gehan-Wilcoxon statistic uses

Ĥj(t) = n−1Yj(t)ĤL
j (t) and the Prentice-Wilcoxon statistic selects Ĥj(t) = n−1Yj(t)Ŝjp(t−)ĤL

j (t),

where Ŝjp(t) is the Kaplan-Meier estimator for the jth endpoint in the pooled sample.
For differentials of the bivariate function, define the notations

S(k)(t, ds) = S(k)(t, s)− S(k)(t, s−), S
(k)(dt, s) = S(k)(t, s)− S(k)(t−, s),

and S(k)(dt, ds) = S(k)(t, ds)− S(k)(t−, ds) = S(k)(dt, s)− S(k)(dt, s−). These mean

S(k)(dt, ds) = { ∂
∂sS

(k)(dt, s)}ds and S(k)(t, ds) = { ∂
∂sS

(k)(t, s)}ds

if s is a continuity point of S(k)(dt, s) and S(k)(t, s). Similarly, we have S(k)(dt, s) = { ∂∂tS
(k)(t, s)}dt

if t is its continuity point. See Prentice and Cai (1992) for further details of notations. We can
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give the following result (Theorem 1) on the asymptotic distribution of the bivariate weighted
logrank statistic using these notations. In the main text, a(k) is given as the ratio of participants

assigned to the group k to the total number n, but it is exactly as the limit of a
(k)
n = n(k)/n in

this supplemental material, where n(k) is the numbers of participants in the group k.

Theorem 1. Let y
(k)
j (s) = E[Y(gi)

ij (s)|gi = k], τ = inf{t : y(1)j (t) ∧ y(2)j (t) = 0}, a(k)n = n(k)/n

and a(k) = limn→∞ a
(k)
n , where t ∧ s = min(t, s). Suppose that Ĥj(t) converges in probability

to Hj(t) uniformly on t ∈ [0, τ ] as n → ∞, where Hj(t) is a deterministic function of bounded
variation. Then, for sufficiently large n, the distribution of (U1(τ), U2(τ))

′ is approximately
bivariate normal with mean vector

√
n(µ1(τ), µ2(τ))

′ and variance-covariance matrix

V (τ) =

(
V11(τ) V12(τ)
V12(τ) V22(τ)

)
,

where √
nµj(τ) =

√
n

∫ τ

0
Hj(t){dΛ(2)

j (t)− dΛ
(1)
j (t)}, (B.1)

Vjj(τ) =

∫ τ

0
Hj(t)

2

{
(1− dΛ

(1)
j (t))dΛ

(1)
j (t)

a(1)y
(1)
j (t)

+
(1− dΛ

(2)
j (t))dΛ

(2)
j (t)

a(2)y
(2)
j (t)

}
, (B.2)

V12(τ) =

∫ τ

0

∫ τ

0
H1(t)H2(s)C(t, s)

{
dA(1)(t, s)

a(1)y
(1)
1 (t)y

(1)
2 (s)

+
dA(2)(t, s)

a(2)y
(2)
1 (t)y

(2)
2 (s)

}
, (B.3)

dA(k)(t, s) = S(k)(dt, ds) + S(k)(t−, ds)dΛ
(k)
1 (t) + S(k)(dt, s−)dΛ

(k)
2 (s)

+S(k)(t−, s−)dΛ
(k)
1 (t)dΛ

(k)
2 (s)

and C(t, s) is the joint survival function Pr(Ci1 > t,Ci2 > s) for censoring variables.

B.2 The derivation for the power formula (2.4)

The conditional variance of Uj(t), based on the hypergeometric distribution theory under H0, is

V̂ 0
jj(t) = n

∫ t

0
Ĥj(s)

2 Yj(s)
Y(1)
j (s)Y(2)

j (s)

{
1− dNj(s)− 1

Yj(s)− 1

}
dNj(s)

Yj(s)
,

where Nj(s) = N (1)
j (s)+N (2)

j (s). Similarly to discussion for Theorem 1, the limit form of V̂ 0
jj(τ)

is found out as

V 0
jj(τ) =

∫ τ

0
Hj(t)

2

{
a(1)y

(1)
j (t) + a(2)y

(2)
j (t)

a(1)a(2)y
(1)
j (t)y

(2)
j (t)

}
(1− dΛyj (t))dΛ

y
j (t), (B.4)

where

dΛyj (t) =
a(1)y

(1)
j (t)Λ

(1)
j (dt) + a(2)y

(2)
j (t)Λ

(2)
j (dt)

a(1)y
(1)
j (t) + a(2)y

(2)
j (t)

.

In order to derive a simple power formula in the main text, we consider the test statistic Z0
j =

−Uj(τ)/
√
V 0
jj(τ) rather than Ẑ

0
j = −Uj(τ)/

√
V̂ 0
jj(τ), where Z

0
j is Ẑ0

j of which the denominator
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V̂ 0
jj(τ) is replaced by the limit form V 0

jj(τ) (j = 1, 2). That is, the testing procedure (2.3) of the
weighted logrank statistic is modified such that

reject H0 if and only if Z0
1 > zα and Z0

2 > zα. (B.5)

Hence, the power for the testing procedure (2.3) is approximately obtained as (2.4) using the
rejection region (B.5) and the asymptotic distribution of (Z0

1 , Z
0
2 )

′, because, as written in the
main text, Theorem 1 provides that (Z0

1 , Z
0
2 )

′ is approximately bivariate normally distributed
with mean vector

√
nδ and variance-covariance matrix Σ.

B.3 Proof of Theorem 1

Here we provide a proof of Theorem 1 in the previous section.

Let Mij(t) = Nij(t) −
∫ t
0 Yij(s)dΛ

(gi)
j (s) and Fj,t = σ{Nij(s),NC

ij (s) : 0 ≤ s ≤ t, i =

1, · · · , n}, where NC
ij (t) = 1(Tij ≤ t,∆ij = 0) is a counting process for the censoring time. That

is, {Fj,t : t ≥ 0} is a standard filtration generated from the history through time t for the jth

endpoints, so that Mij(t) has the Fj,t-martingale property. By the definition of Uj , we have
Uj(t) =

√
nµ̂j(t) + UM

j (t), where

√
nµ̂j(t) =

∫ t

0
Ĥj(s){dΛ(2)

j (s)− dΛ
(1)
j (s)},

UM
j (t) =

√
n

n∑
i=1

∫ t

0
Ĥj(s)

{
1
(2)
i dMij(s)

Y(2)
j (s)

−
1
(1)
i dMij(s)

Y(1)
j (s)

}
.

Using well-known martingale theory for survival analysis (Fleming and Harrington, 1991; Ander-
sen and others, 1993), as n → ∞, the Fj,t-martingale process UM

j (t) converges in distribution
to the Gaussian process with the predictable variance process

⟨UM
j ⟩(t) = n

∫ t

0
Ĥj(s)

2

{
(1− Λ

(1)
j (ds))Λ

(1)
j (ds)

Y(1)
j (s)

+
(1− Λ

(2)
j (ds))Λ

(2)
j (ds)

Y(2)
j (s)

}
a.s.→ (B.2) (n→ ∞),

where
a.s.→ denotes almost sure convergence. Also, as n → ∞, Y(k)

j (s)/n(k) converges almost

surely to y
(k)
j (s) uniformly on s ∈ [0, τ ] by the Glivenko-Cantelli theorem.

To obtain the covariance of UM
1 and UM

2 , we need E [dMi1(t)dMi2(s)]. This is formulated
as

E [dMi1(t)dMi2(s)] = E [Yi1(t)Yi2(s)E [dMi1(t)dMi2(s)|Yi1(t)Yi2(s)]]
= Pr(Yi1(x)Yi2(y) = 1)E [dMi1(x)dMi2(y)|Yi1(x)Yi2(y) = 1]

=

{
C(t−, s−)S

(1)(t−, s−)dB
(1)(t, s) if gi = 1,

C(t−, s−)S
(2)(t−, s−)dB

(2)(t, s) if gi = 2,

(see Prentice and Cai (1992) and Jung (2008)), where dB(k)(t, s) can be expressed as

dB(k)(t, s) = Λ(k)(dt, ds)− Λ(k)(dt, s)Λ
(k)
2 (ds)− Λ(k)(t, ds)Λ

(k)
1 (dt) + Λ

(k)
1 (dt)Λ

(k)
2 (ds)

and Λ(gi)(t, s) is the joint cumulative hazard function of (Ti1, Ti2), so that we have

dA(k)(t, s) = S(k)(t−, s−)dB
(k)(t, s).
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On the covariance of UM
1 and UM

2 from these results, we obtain

E[UM
1 (t)UM

2 (s)]

= n

n∑
i=1

∫ t

0

∫ s

0
E

[
Ĥ1(x)Ĥ2(y)

{
1
(1)
i dMi1(x)dMi2(y)

Y(1)
1 (x)Y(1)

2 (y)
+
1
(2)
i dMi1(x)dMi2(y)

Y(2)
1 (x)Y(2)

2 (y)

}]
a.s.→ (B.3) (n→ ∞),

which can be shown using the Fj,t-martingale property of Mij(t) and the uniform convergences

in probability of Y(k)
j (·) and Ĥj(·).

Let J(x, s) = sup{|x(t) − x(t−)| : s < t ≤ τ}, which is the absolute value of the maximum
jump in x over the interval [s, τ ]. If both Ti1 and Ti2 are continuous random variables, letting
s = 0 and then we have

lim
n→∞

E[J(⟨UM
j , UM

l ⟩, 0)] = 0 and lim
n→∞

{
E[J(UM

j , 0)2]
}
= 0,

so that (UM
1 (·), UM

2 (·))′ is asymptotically distributed as a bivariate Gaussian martingale process
by Whitt (2007, Theorem 2.1). While, if either of Ti1 and Ti2, for example, Ti2 is discrete random
variable, considering the case of s = τ , we have a result restricted to one time point of Whitt
(2007, Theorem 2.1), so that we can show that the asymptotic distribution of (UM

1 (τ), UM
2 (τ))′ is

bivariate normal. In addition, it is immediate from the condition that as n→ ∞, µ̂j(t) converges
in probability to µj(t) uniformly on [0, τ ]. Therefore, a proof of this theorem is complete. �

C Technical details for Section 3

C.1 The selection of the logrank statistic

The main text limits to the logrank statistic for testing (2.1) on and after Section 3, so that the
limit function of Ĥj(t) is

Hj(t) = HL
j (t) =

a(1)a(2)y
(1)
j (t)y

(2)
j (t)

a(1)y
(1)
j (t) + a(2)y

(2)
j (t)

,

which is obtained following E[Yij(t)] = a
(1)
n y

(1)
j (t) + a

(2)
n y

(2)
j (t) and y

(k)
j (t) = S

(k)
j (t−)Cj(t−),

where Cj(t) = Pr(t < Cij) is the marginal survival function of Cij . In addition, assuming that
censoring times are the same, i.e., C1(t) = C2(t), we have the form of

Hj(t) = a(1)a(2)
C(t−)S

(1)
j (t−)S

(2)
j (t−)

Sp
j (t−)

and C(t, s) = C(t ∨ s),

where Sp
j (t) = a(1)S

(1)
j (t) + a(2)S

(2)
j (t) and t ∨ s = max(t, s). This form of Hj(t) is used in

Section 3 of the main text.

C.2 Computational efficiency of the numerical integration (Section 3.1)

We investigate computational efficiency of numerical integration for the bivariate logrank statis-
tic discussed in Section 3.1 of the main text. Generally Simpson’s rule has higher efficiency
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than a trapezoidal rule given in (3.1), while the original expression of Simpson’s rule is quite
complicated. The modification of (3.1) based on Simpson’s rule is

Ḡ(tm) =
{
G(tm) + 4G(t̃m) +G(tm−1)

}
/6,

¯̄G (tm, sl) =
1

36

[
G (tm, tl) +G (tm, tl−1) +G (tm−1, tl) +G (tm−1, tl−1) (C.1)

+4
{
G
(
t̃m, tl

)
+G

(
tm, t̃l

)
+G

(
t̃m, tl−1

)
+G

(
tm−1, t̃l

)}
+16G

(
t̃m, t̃l

)]
and t̃m = (tm + tm−1)/2

similarly to the form in Section A.2. There are trade-offs between the expression, precision and
cost. Hence, here we compare the trapezoidal method of the main text with two Simpson’s
methods (one is simple replacement and another is simultaneous application).

Table C.1 shows the values of the δj and σ12/σ1σ2 (see Section 3.2 of the main text on the
notions) computed by trapezoidal method (T) written in the main text, its simple replacement
(S1) to Simpson’s rule and simultaneous application (S2) of Simpson’s rule to the overall inte-

grand, where ρ(1) = ρ(2) = 0.8, S
(1)
1 (τ) = S

(2)
1 (τ) = 0.1, τa = 2, τf = 3, ψ−1

1 = ψ−1
2 = 1.2, 1.5

and M = 100 × 2l−1, l = 1, . . . , 5 are used. The column “time” of Table C.1 indicates times
until the methods T and S1 compute all of the bivariate logrank statistic. We consider the
results of the method S2 with the largest M as a standard, because what applies Simpson’s rule
simultaneously to the overall integrand is the usual Simpson’s method in numerical integration.
We find that the method T is not so inferior to the method S2 even if M is small, such as 100,
and the method S1 has the almost same results as S2. Hence, for a practical use, the method S1
with M = 100 is adopted as default in our computational program of Section E.

C.3 The derivation for sample size formula (3.2) (Section 3.2)

We show how the sample size formula (3.2) is derived from the power formula (2.4) in the
main text. Considering a transformed bivariate logrank statistic, (Z0

1σ
0
1/σ1, Z

0
2σ

0
2/σ2)

′ and a
symmetry property and shift to −

√
nδ on the integration (2.4), where δ = (δ1, δ2)

′. When n is
sufficiently large, Theorem 1 states that Zj can be approximated by normal distribution with
zero mean and variance σ0j /σj under the null hypothesis H0, j = 1, 2, while (Z1, Z2)

′ can be
approximated by bivariate normal distribution with mean vector

√
nδ and variance-covariance

matrix R given under true parameters. Hence, (2.4) can be transformed into

1− β =
∫ √

nδ1−zασ0
1/σ1

−∞
∫ √

nδ2−zασ0
2/σ2

−∞ f(z1, z2;R)dz2dz1. (C.2)

This equation (C.2) is equivalent to the simultaneous equations

1− β =
∫K(1)

−∞
∫K(2)

−∞ f(z1, z2;R)dz2dz1 (C.3a)

and K(k) =
√
nδk − zασ

0
k/σk, k = 1, 2. (C.3b)

Because (C.3b) is equivalent to two linear equations

n =

(
K(1) +

σ01
σ1

zα

)2

/δ21 and n =

(
K(2) +

σ02
σ2

zα

)2

/δ22 ,

the formula (3.2) can be derived for the total sample size n by letting Kβ = K(2). Given
Kβ = K(2), K(1) is expressed as

K(1) =
δ1
δ2
Kβ + zα

(
σ02
σ2

δ1
δ2

− σ01
σ1

)
, (C.4)
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Table C.1: The values of δj and σ12/σ1σ2 computed from the trapezoidal (T) and two Simpson’s

(S1, S2) methods when ρ(1) = ρ(2) = 0.8, S
(1)
1 (τ) = S

(2)
1 (τ) = 0.1, τa = 2, τf = 3 and ψ−1

1 = ψ−1
2

δj σ12/σ1σ2 time (s)
ψ−1

j copula M T S1 S2 T S1 S2 T S1

100 -0.081496 -0.081495 -0.081495 0.695825 0.695931 0.695926 0.10 0.12
200 -0.081495 -0.081495 -0.081495 0.695906 0.695932 0.695931 0.28 0.45

Clayton 400 -0.081495 -0.081495 -0.081495 0.695926 0.695932 0.695932 1.17 1.82
800 -0.081495 -0.081495 -0.081495 0.695931 0.695933 0.695932 4.69 7.29
1600 -0.081495 -0.081495 -0.081495 0.695932 0.695933 0.695933 18.8 28.8
100 -0.081496 -0.081495 -0.081495 0.791356 0.791495 0.791489 0.11 0.15
200 -0.081495 -0.081495 -0.081495 0.791460 0.791495 0.791493 0.44 0.67

1.2 Gumbel 400 -0.081495 -0.081495 -0.081495 0.791486 0.791495 0.791495 1.75 2.76
800 -0.081495 -0.081495 -0.081495 0.791493 0.791495 0.791495 7.08 11.0
1600 -0.081495 -0.081495 -0.081495 0.791494 0.791495 0.791495 28.1 43.6
100 -0.081496 -0.081495 -0.081495 0.863740 0.863877 0.863871 0.12 0.19
200 -0.081495 -0.081495 -0.081495 0.863845 0.863879 0.863877 0.50 0.77

Frank 400 -0.081495 -0.081495 -0.081495 0.863870 0.863879 0.863878 1.99 3.07
800 -0.081495 -0.081495 -0.081495 0.863877 0.863879 0.863879 8.00 12.4
1600 -0.081495 -0.081495 -0.081495 0.863878 0.863879 0.863879 31.9 49.6

100 -0.173694 -0.173693 -0.173693 0.682905 0.683004 0.683001 0.08 0.12
200 -0.173693 -0.173693 -0.173693 0.682981 0.683005 0.683004 0.28 0.44

Clayton 400 -0.173693 -0.173693 -0.173693 0.682999 0.683005 0.683005 1.16 1.80
800 -0.173693 -0.173693 -0.173693 0.683004 0.683005 0.683005 4.65 7.24
1600 -0.173693 -0.173693 -0.173693 0.683005 0.683005 0.683005 18.6 28.8
100 -0.173694 -0.173693 -0.173693 0.786875 0.787000 0.786996 0.11 0.21
200 -0.173693 -0.173693 -0.173693 0.786969 0.787000 0.786999 0.41 0.68

1.5 Gumbel 400 -0.173693 -0.173693 -0.173693 0.786992 0.787000 0.787000 1.75 2.75
800 -0.173693 -0.173693 -0.173693 0.786998 0.787000 0.787000 7.09 10.9
1600 -0.173693 -0.173693 -0.173693 0.787000 0.787000 0.787000 28.2 43.8
100 -0.173694 -0.173693 -0.173693 0.859370 0.859494 0.859490 0.12 0.19
200 -0.173693 -0.173693 -0.173693 0.859465 0.859495 0.859495 0.50 0.76

Frank 400 -0.173693 -0.173693 -0.173693 0.859488 0.859496 0.859496 1.97 3.13
800 -0.173693 -0.173693 -0.173693 0.859494 0.859496 0.859496 7.95 12.3
1600 -0.173693 -0.173693 -0.173693 0.859495 0.859496 0.859496 32.0 49.5

so that the integral equation (3.3) is obtained by substituting these equations into (C.3a).
Now, we provide a Newton-Raphson (NR) algorithm to solve the integral equation (3.3). Let

Q(Kβ) = (1− β)−
∫ δ1

δ2
Kβ+zα

(
σ0
2

σ2

δ1
δ2

−σ0
1

σ1

)
−∞

∫ Kβ

−∞
f (z1, z2;R) dz2dz1.

For the NR method, we need the first derivative to find Q(Kβ) = 0. The first derivative is

dQ(Kβ)

dKβ
= −F (1)

R (K(1),Kβ)
δ1
δ2

− F
(2)
R (K(1),Kβ),

where K(1) satisfies (C.4),

F
(1)
R (K(1),K(2)) =

∫ K(2)

−∞
f(K(1), z2;R)dz2 and F

(2)
R (K(1),K(2)) =

∫ K(1)

−∞
f(z1,K

(2);R)dz1.

Hence, we obtain the NR algorithm

K
(l)
β = K

(l−1)
β −

{
dQ(Kβ)

dKβ

}−1

Q(Kβ)

∣∣∣∣
Kβ=K

(l−1)
β

, l = 1, 2, · · · ,
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where K
(0)
β is the starting point of this algorithm. For example, as such a starting point, we

may use zβ or z1−
√
1−β. In addition, we can compute F

(k)
R approximately from the numerical

derivative using the CDF of the bivariate normal distribution. In Section E, we provide the R
codes (R Development Core Team, 2005) included as the name KBsolution in the R function
samplesize.2sep of Section E.

C.4 Technical details for Section 3.3

The design methods of the sample size in the article for the testing procedure (2.3) are classified
to the following three cases:

Case 1. when censoring times are the same , i.e., Ci1 = Ci2,
Case 2. special case of Case 1: a fixed-time censoring and proportional hazard alternatives,
Case 3. special case of Case 2: uncensored data and proportional hazard alternatives.

The sample size formula (3.2), which is derived under the logrank test, can be applied to Case 1
without assuming proportional hazard alternatives. So, the formula (3.2) under Case 3 reduces
to the number of events given in Section 3.3 of the main text. However, Cases 2 and 3 include
an important aspect to simplify a complicated situation in practice. We first discuss Case 2 in
calculation for Σ and then Case 3 as further one.

Similarly to Section 3.1 of the main text, µj(τ), Vjj(τ) and V12(τ) can be approximated
by numerical integration, which corresponds to providing C(t) = 1 on the time t ∈ [0, τ)
(except τ) into µ[M ]

j , V [M ]

jj and V [M ]

12 . Then, given an additional condition (a small effect size), a
further simplification can be obtained. A simple computation in Case 2, under a proportional
hazard alternative ψj = ψj(t), is similar to Freedman (1982). Let γj(t) be the ratio of the

numbers at risk for the jth endpoint in the two groups, γ̂j(t) = Y(2)
j (t)/Y(1)

j (t) and γj(t) =

a(2)S
(2)
j (t−)/a

(1)S
(1)
j (t−). We can consider an approximation for the weighted function

ĤL
j (t) = n−1Y(1)

j (t)γ̂j(t)/ (1 + γ̂j(t))
a.s.−→ HL

j (t)
ψj→1
≈ 2a(1)a(2)S

(1)
j (t)/(1 + ψj),

using γj(t)/(1+γj(t)) ≈ 2a(2)/(1+ψj) when ψj is near 1. This gives an approximation of µj(τ),

µj(τ)
ψj→1
≈ 2a(1)a(2) ((ψj − 1)/(ψj + 1)) (1− S

(1)
j (τ)) = µ†j(τ).

Similar argument yields approximations of Vjj(τ), j = 1, 2 and V12(τ),

Vjj(τ)
ψj→1
≈ 4a(1)a(2)

{
a(2)

(
1− S

(1)
j (τ)

)
/(1 + ψj)

2 + a(1)
(
1− S

(2)
j (τ)

)
/(1 + ψ̄j)

2
}
= V †

jj(τ),

V12(τ)
ψj→1
≈ 4a(1)a(2)

{
a(2)A(1)(τ, τ)

(1 + ψ1)(1 + ψ2)
+

a(1)A(2)(τ, τ)

(1 + ψ̄1)(1 + ψ̄2)

}
= V †

12(τ),

where ψ̄j = 1/ψj and A
(k)(t, s) =

∫ t
0

∫ s
0 dA

(k)(x, y). Similarly, V 0
jj(τ) are approximated as

V 0
jj(τ)

ψj→1
≈ 4a(1)a(2)

{
a(1)

(
1− S

(1)
j (τ)

)
/(1 + ψj)

2 + a(2)
(
1− S

(2)
j (τ)

)
/(1 + ψ̄j)

2
}
= V 0†

jj (τ).

Note that A(k)(t, s) is E[Mi1(t)Mi2(s)|gi = k] for the ith participant belonging to the group k.
Prentice and Cai (1992) gave one expression of A(k)(τ, τ),

A(k)(τ, τ) = S(k)(τ, τ)− 1 +
∫ τ
0 S

(k)(t−, τ)dΛ
(k)
1 (t) +

∫ τ
0 S

(k)(τ, s−)dΛ
(k)
2 (s)

+
∫ τ
0

∫ τ
0 S

(k)(t−, s−)dΛ
(k)
1 (t)dΛ

(k)
2 (s). (C.5)
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Let A
(k)
1 (τ) = S(k)(τ, τ) − 1 (the 1st term), and let A

(k)
2 (τ), A

(k)
3 (τ) and A

(k)
4 (τ) be the 2nd-4th

terms in the right-hand side of (C.5). If C is of the Clayton copula, the 2nd and 3rd terms
can be expressed by a hypergeometric function. However, it is generally necessary to perform
the numerical integration for the 2nd-4th terms, because the explicit forms of the integrals for

A
(k)
2 (τ) and A

(k)
3 (τ) are not obtained in the other copula models (Gumbel, Frank). In addition,

A
(k)
4 (τ) can not be expressed by well-known functions even if C is of Clayton’s copula. Hence,

the numerical integration method of Section 3 written under a general censoring scheme is still
useful in Case 2.

Consider Case 3 (uncensored data) based on the above-mentioned. Since S
(k)
j (τ) = 0, j = 1, 2

are imposed further (i.e., as τ → ∞), the approximations (µ†j(∞) and V †
jj(∞)) of µj(τ) and

Vjj(τ) are more easily obtained from the results of Case 2. In particular, note that A
(k)
2 (τ) and

A
(k)
3 (τ) are zeros when S

(k)
1 (τ) = S

(k)
2 (τ) = 0 (i.e., A

(k)
2 (∞) = 0 and A

(k)
3 (∞) = 0). Therefore,

by (2.2), we have A(k)(τ) = ρ(k) under Case 3 (i.e., A(k)(∞) = ρ(k)). For example, in Clayton’s

copula, the explicit value of A
(k)
4 (τ) = ρ(k) + 1 (as τ → ∞) can be obtained for some special

values of θ(k), such as

A
(k)
4 (τ)

∣∣∣
S
(k)
1 (τ)→0,S

(k)
2 (τ)→0

=


2(π2 − 9)/3

.
= 0.579 if θ(k) = −0.5

1 if θ(k) = 0

π2/6
.
= 1.645 if θ(k) = 1

2 if θ(k) = ∞

.

D Additional numerical experiments and their results

We here provide some numerical results omitted in Section 4.1 of the main text. These results are

constructed based on a few minor changes about some settings (e.g., S
(1)
j (τ), ψj , a

(1)) given to
create Table 2. Similarly to Section 4.1, the target power of 1−β = 0.8, the significance level of
α = 0.025, and the censoring distribution C(t) = 1(t < τa+τf)−1(τf ≤ t < τa+τf)(t−τf)/τa with
τa = 2 and τf = 3 are used throughout. Also, the manners to create and present the numerical
results here are used similarly to those in Table 2, such as the number of MC trials (100,000),
exponential marginals of Ti1 and Ti2, the levels of the correlations ρ

(k) and the notations for the
sample sizes n, nsim, nind and nmin from (3.2) and three PSs and their empirical powers p̃12, etc.

The cases of different baseline survival rates. In practice, the baseline survival rates

are usually different by the endpoints (e.g., S
(1)
1 (τ) ̸= S

(1)
2 (τ)), although the condition of equal

τ -time survival rates (S
(1)
1 (τ) = S

(1)
2 (τ)) is assumed for simplicity in the experiment of Table 2

of the main text. We will see one example with different baseline survival rates by adopting the
same settings (e.g., equal group size ratio a(1) = 0.5, the combinations of hazard ratios, etc.) as

Table 2 except for the condition of S
(1)
1 (τ) = S

(1)
2 (τ). For comparison with the result of Table 2,

set (S
(1)
1 (τ), S

(1)
2 (τ)) = (0.1, 0.5) and (0.5, 0.1) into the pairs of two τ -time survival rates. Table

D.1 shows the result of the experiment conducted under these settings, where the column of

S
(1)
τ displays the values of (S

(1)
1 (τ), S

(1)
2 (τ)).

The tendencies of the sample sizes seen in Table D.1 are intermediate between the sizes

corresponding to S
(1)
j (τ) = 0.1 and 0.5 in Table 2, because one endpoint has fewer censored

observations in compared with Table 2 while another endpoint is more censored. We find that,
as compared with nsim, nind and nmin, the sample size n from (3.2) has tendencies similar to
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ones found in Table 2. Hence, the formula (3.2) is also preferable in this situation in the sense
that it provides slightly conservative results, which strengthens the claim of Section 4.1.

Table D.1: Total numbers of participants (n) calculated from (3.2) and the corresponding em-

pirical powers (p̃12) in the case of S
(1)
1 (τ) ̸= S

(1)
2 (τ) under a(1) = a(2) and ρ(1) = ρ(2).

Clayton Gumbel Frank Marginal

S
(1)
τ ψ−1

1 ψ−1
2 ρ(k) nsim n p̃12 nsim n p̃12 nsim n p̃12 nmin p̃12

(0.5, 0.1) 1.2 1.2 0.0 2479 2482 80.2 2481 2482 80.0 2479 2482 80.2 2392 78.5
(0.5, 0.1) 1.2 1.3 0.0 2389 2394 80.1 2394 2394 80.0 2389 2394 80.1 2392 80.2
(0.5, 0.1) 1.2 1.5 0.0 2389 2392 80.2 2392 2392 80.0 2389 2392 80.2 2392 80.2
(0.5, 0.1) 1.2 1.2 0.3 2468 2470 80.0 2456 2456 79.9 2449 2456 80.1 2392 78.9
(0.5, 0.1) 1.2 1.3 0.3 2389 2394 80.1 2394 2394 79.9 2389 2394 80.1 2392 80.1
(0.5, 0.1) 1.2 1.5 0.3 2389 2392 80.2 2392 2392 80.0 2389 2392 80.2 2392 80.1
(0.5, 0.1) 1.2 1.2 0.5 2456 2460 80.2 2438 2438 80.1 2436 2436 80.1 2392 79.2
(0.5, 0.1) 1.2 1.3 0.5 2389 2394 80.1 2390 2394 80.0 2389 2394 80.1 2392 80.1
(0.5, 0.1) 1.2 1.5 0.5 2389 2392 80.2 2390 2392 80.0 2389 2392 80.2 2392 80.1
(0.5, 0.1) 1.2 1.2 0.8 2436 2438 80.1 2416 2416 79.9 2412 2414 80.2 2392 79.6
(0.5, 0.1) 1.2 1.3 0.8 2389 2394 80.1 2392 2392 80.0 2389 2392 80.2 2392 80.1
(0.5, 0.1) 1.2 1.5 0.8 2389 2392 80.2 2392 2392 80.0 2389 2392 80.2 2392 80.1
(0.5, 0.1) 1.5 1.5 0.0 545 550 80.7 542 550 80.7 545 550 80.7 532 79.0
(0.5, 0.1) 1.5 1.6 0.0 529 536 80.4 532 536 80.4 529 536 80.4 532 80.1
(0.5, 0.1) 1.5 1.8 0.0 527 532 80.3 528 532 80.4 527 532 80.3 532 80.3
(0.5, 0.1) 1.5 1.5 0.3 542 548 80.5 540 544 80.4 539 544 80.4 532 79.4
(0.5, 0.1) 1.5 1.6 0.3 529 536 80.4 528 534 80.4 529 534 80.2 532 80.2
(0.5, 0.1) 1.5 1.8 0.3 527 532 80.3 528 532 80.4 527 532 80.3 532 80.3
(0.5, 0.1) 1.5 1.5 0.5 539 546 80.5 535 542 80.6 535 540 80.4 532 79.6
(0.5, 0.1) 1.5 1.6 0.5 529 534 80.2 528 534 80.4 527 534 80.3 532 80.2
(0.5, 0.1) 1.5 1.8 0.5 527 532 80.3 528 532 80.3 527 532 80.3 532 80.3
(0.5, 0.1) 1.5 1.5 0.8 537 542 80.4 532 536 80.6 529 536 80.4 532 80.0
(0.5, 0.1) 1.5 1.6 0.8 527 534 80.3 528 532 80.4 527 532 80.3 532 80.3
(0.5, 0.1) 1.5 1.8 0.8 527 532 80.3 528 532 80.5 527 532 80.3 532 80.4

(0.1, 0.5) 1.2 1.2 0.0 2482 2482 80.0 2482 2482 80.2 2482 2482 80.2 2392 78.3
(0.1, 0.5) 1.2 1.3 0.0 1554 1556 80.2 1554 1556 80.1 1554 1556 80.1 1194 64.9
(0.1, 0.5) 1.2 1.5 0.0 1197 1204 80.3 1197 1204 80.2 1197 1204 80.2 1174 79.3
(0.1, 0.5) 1.2 1.2 0.3 2469 2470 80.1 2454 2456 80.2 2456 2456 80.1 2392 78.8
(0.1, 0.5) 1.2 1.3 0.3 1532 1538 80.3 1513 1518 80.1 1513 1518 80.1 1194 66.9
(0.1, 0.5) 1.2 1.5 0.3 1194 1200 80.3 1195 1196 80.1 1190 1196 80.1 1174 79.5
(0.1, 0.5) 1.2 1.2 0.5 2460 2460 80.2 2438 2438 80.0 2434 2436 80.1 2392 79.2
(0.1, 0.5) 1.2 1.3 0.5 1517 1524 80.2 1484 1486 80.1 1480 1484 80.2 1194 68.3
(0.1, 0.5) 1.2 1.5 0.5 1194 1198 80.3 1187 1190 80.2 1186 1188 80.3 1174 79.7
(0.1, 0.5) 1.2 1.2 0.8 2438 2438 80.0 2416 2416 80.0 2412 2414 80.0 2392 79.5
(0.1, 0.5) 1.2 1.3 0.8 1484 1486 80.2 1437 1444 80.2 1428 1436 80.2 1194 70.4
(0.1, 0.5) 1.2 1.5 0.8 1186 1190 80.4 1181 1182 80.2 1176 1182 80.2 1174 79.9
(0.1, 0.5) 1.5 1.5 0.0 542 550 80.6 542 550 80.7 542 550 80.7 532 79.2
(0.1, 0.5) 1.5 1.6 0.0 440 446 80.8 440 446 80.5 440 446 80.5 407 76.1
(0.1, 0.5) 1.5 1.8 0.0 341 348 81.1 341 348 80.7 341 348 80.7 275 67.6
(0.1, 0.5) 1.5 1.5 0.3 544 548 80.5 538 544 80.4 538 544 80.5 532 75.5
(0.1, 0.5) 1.5 1.6 0.3 438 442 80.7 429 438 80.8 433 438 80.7 407 76.2
(0.1, 0.5) 1.5 1.8 0.3 337 344 81.0 333 340 81.1 333 340 81.2 275 72.8
(0.1, 0.5) 1.5 1.5 0.5 540 546 80.5 537 542 80.6 533 540 80.3 532 76.5
(0.1, 0.5) 1.5 1.6 0.5 433 440 80.8 426 432 80.6 425 432 80.7 407 77.0
(0.1, 0.5) 1.5 1.8 0.5 335 340 80.9 327 332 80.8 325 332 80.9 275 73.7
(0.1, 0.5) 1.5 1.5 0.8 536 542 80.5 532 536 80.4 532 536 80.6 532 78.3
(0.1, 0.5) 1.5 1.6 0.8 426 432 80.6 419 424 80.6 417 424 80.8 407 78.7
(0.1, 0.5) 1.5 1.8 0.8 328 334 80.9 319 324 80.8 316 322 80.9 275 75.1
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The cases of equal effect sizes As seen in Tables 2 and D.1, nmin and nind are mutually
approaching to the sample size n from (3.2) regardless of the copula type and its correlations,
according as the effect size ratio δ2/δ1 is farther from 1. Conversely, when δ2/δ1 is near 1,
the sample size n is the farthest from nmin and nind. In such a situation, we can say that it
is the most reasonable to use the formula (3.2) considering the correlations ρ(k) between the
co-primary endpoints. Table D.2 shows the result of one experiment with the same effect sizes
under adopting the settings similar to Table 2 (e.g., equal group size ratio a(1) = 0.5, baseline

survival rates S
(1)
1 (τ) = S

(1)
2 (τ) = 0.1, 0.5, levels of ρ(k), etc.). This indicates that the sample

sizes n from (3.2) provides preferably conservative results similarly to Tables 2 and D.1. We
consider the ratio n/nind under ρ(k) = 0.8 to see how much the consideration of correlations ρ(k)

make the sample size decrease. In the case of Table D.2, the ratios of n/nind are between 91.7%

and 92.1% if S
(1)
j (τ) = 0.1 and 95.9% and 96.4% if S

(1)
j (τ) = 0.5.

Table D.2: Total numbers of participants (n) calculated from (3.2) and the corresponding em-

pirical powers (p̃12) under a
(1) = a(2), S

(1)
1 (τ) = S

(1)
2 (τ), ψ1 = ψ2 and ρ(1) = ρ(2).

(HR) Clayton Gumbel Frank Marginal

S
(1)
j (τ) ρ(k) ψ−1

1 ψ−1
2 nsim n p̃12 nsim n p̃12 nsim n p̃12 nmin p̃12

0.1 0.0 1.2 1.2 1540 1544 80.3 1540 1544 80.3 1540 1544 80.3 1177 69.2
0.1 0.0 1.3 1.3 755 762 80.4 755 762 80.4 755 762 80.4 581 69.7
0.1 0.0 1.5 1.5 328 334 81.0 328 334 81.0 328 334 81.0 256 70.6
0.1 0.0 1.7 1.7 198 204 81.8 198 204 81.8 198 204 81.8 157 71.0
0.1 0.0 2.0 2.0 121 126 82.4 121 126 82.4 121 126 82.4 99 72.4
0.1 0.3 1.2 1.2 1510 1516 80.2 1498 1502 80.1 1494 1498 80.4 1177 67.0
0.1 0.3 1.3 1.3 742 748 80.4 734 742 80.5 732 740 80.6 581 67.0
0.1 0.3 1.5 1.5 322 328 81.0 319 324 80.9 317 324 81.0 256 68.0
0.1 0.3 1.7 1.7 194 200 81.5 193 198 81.6 191 198 81.6 157 69.2
0.1 0.3 2.0 2.0 119 124 82.3 118 124 82.7 117 124 82.8 99 70.7
0.1 0.5 1.2 1.2 1484 1488 80.2 1457 1462 80.2 1452 1452 80.2 1177 69.0
0.1 0.5 1.3 1.3 730 734 80.3 715 722 80.6 713 716 80.3 581 69.0
0.1 0.5 1.5 1.5 317 322 80.9 311 316 80.8 310 314 80.9 256 70.0
0.1 0.5 1.7 1.7 191 196 81.2 187 192 81.2 186 192 81.4 157 71.0
0.1 0.5 2.0 2.0 117 122 82.0 114 120 82.4 114 120 82.7 99 72.3
0.1 0.8 1.2 1.2 1408 1412 80.3 1370 1374 80.3 1332 1340 80.4 1177 73.1
0.1 0.8 1.3 1.3 694 698 80.4 672 678 80.4 657 660 80.3 581 73.1
0.1 0.8 1.5 1.5 302 306 80.7 293 298 81.0 284 290 81.0 256 73.9
0.1 0.8 1.7 1.7 183 186 80.9 176 182 81.5 171 176 81.2 157 74.7
0.1 0.8 2.0 2.0 112 116 81.8 108 114 82.7 105 110 82.2 99 75.8
0.5 0.0 1.2 1.2 3140 3144 80.1 3140 3144 80.1 3140 3144 80.1 2397 64.4
0.5 0.0 1.3 1.3 1564 1570 80.4 1564 1570 80.4 1564 1570 80.4 1199 64.6
0.5 0.0 1.5 1.5 692 700 80.7 692 700 80.7 692 700 80.7 537 65.1
0.5 0.0 2.0 2.0 265 274 81.6 265 274 81.6 265 274 81.6 213 67.2
0.5 0.3 1.2 1.2 3113 3116 80.1 3049 3052 80.0 3060 3062 80.1 2397 66.6
0.5 0.3 1.3 1.3 1548 1556 80.3 1519 1524 80.2 1528 1530 80.4 1199 66.7
0.5 0.3 1.5 1.5 686 694 80.7 674 680 80.7 675 682 80.7 537 67.2
0.5 0.3 2.0 2.0 265 272 81.7 259 266 81.5 260 268 81.7 213 69.0
0.5 0.5 1.2 1.2 3087 3092 80.0 2969 2972 80.0 2978 2978 79.9 2397 68.3
0.5 0.5 1.3 1.3 1534 1544 80.4 1481 1484 80.1 1483 1488 80.2 1199 68.2
0.5 0.5 1.5 1.5 684 688 80.5 654 662 80.6 656 664 80.8 537 68.8
0.5 0.5 2.0 2.0 263 270 81.6 253 260 81.6 253 260 81.4 213 70.5
0.5 0.8 1.2 1.2 3006 3014 80.0 2812 2812 80.0 2758 2760 80.0 2397 71.6
0.5 0.8 1.3 1.3 1504 1506 80.2 1397 1404 80.1 1374 1380 80.3 1199 71.7
0.5 0.8 1.5 1.5 668 672 80.5 622 626 80.4 612 616 80.4 537 72.1
0.5 0.8 2.0 2.0 256 264 81.4 239 246 81.6 236 242 81.2 213 73.6
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The cases of unequal group size ratio We investigate how the empirical powers vary when
the sampling ratio of each group is not equal. Adopting ρ(k) = 0.8 of a high correlation, we
consider the patterns of the unequal group size ratios of a(1) = 0.25, 0.4, 0.6 and 0.75 and the

equal effect sizes of ψ−1
j = 1.2, 1.3, 1.5, 1.7, 2.0, j = 1, 2 with S

(1)
1 (τ) = S

(1)
2 (τ) = 0.1. Table

D.3 is a list of the sample sizes n calculated from (3.2) and the corresponding empirical powers
p̃12, where nsim and nmin are calculated as before. From Table D.3, we can find a tendency
that the empirical powers tend to go below the target power 1− β as a(1) is farther towards the
above from 0.5 but to go above 1− β as a(1) is lower than 0.5. Comparing the values of n with
nsim, their differences are not necessarily ignorable if either effect size (δ1 and/or δ2) is smaller.
Hence, we should attend to use of the formula (3.2) when the group size ratio a(1) is extremely
smaller or larger than 0.5. However, because this problem is not limited to the bivariate case
and occurs similarly in univariate case (see Table D.4 of the next paragraph), the major causes
are in the univariate critical point rather than the calculation of the bivariate correlation.

Table D.3: Total numbers of participants (n) calculated from (3.2) and the empirical powers

(p̃12) in the case of a(1) ̸= a(2) under S
(1)
1 (τ) = S

(1)
2 (τ) = 0.1, ψ1 = ψ2 and ρ(1) = ρ(2) = 0.8.

(HR) Clayton Gumbel Frank Marginal

a(1) ψ−1
1 ψ−1

2 nsim n p̃12 nsim n p̃12 nsim n p̃12 nmin p̃12
0.25 1.2 1.2 1848 1904 81.4 1810 1860 81.3 1757 1808 81.4 1580 74.1
0.25 1.3 1.3 905 944 81.9 885 920 82.2 861 896 82.0 780 74.5
0.25 1.5 1.5 387 416 83.1 378 404 83.1 371 396 83.0 344 76.0
0.25 1.7 1.7 231 256 84.2 226 248 84.1 220 240 83.6 208 76.4
0.25 2.0 2.0 140 160 85.4 136 156 85.5 134 152 85.2 128 77.0
0.40 1.2 1.2 1451 1478 80.6 1411 1440 80.7 1381 1403 80.7 1227 73.3
0.40 1.3 1.3 717 733 81.3 697 713 81.1 680 693 81.0 607 73.8
0.40 1.5 1.5 308 323 82.2 299 313 82.1 295 305 81.9 265 74.3
0.40 1.7 1.7 186 198 82.9 181 190 82.5 176 185 82.0 162 75.2
0.40 2.0 2.0 114 123 83.5 111 120 83.7 108 118 84.1 100 75.6
0.60 1.2 1.2 1464 1462 79.7 1424 1424 79.6 1388 1387 79.7 1218 72.6
0.60 1.3 1.3 724 720 79.7 701 702 80.1 684 684 79.8 600 72.1
0.60 1.5 1.5 315 315 79.8 306 307 80.4 298 299 80.1 261 72.8
0.60 1.7 1.7 192 192 80.1 185 187 80.6 181 182 80.5 158 72.6
0.60 2.0 2.0 119 120 80.7 114 117 80.1 111 114 81.2 98 73.2
0.75 1.2 1.2 1894 1854 78.9 1839 1806 79.2 1791 1758 79.1 1548 72.0
0.75 1.3 1.3 940 911 78.7 908 886 78.8 880 862 79.0 760 71.7
0.75 1.5 1.5 411 395 78.2 395 384 78.6 384 374 78.8 329 70.8
0.75 1.7 1.7 250 240 77.9 239 232 78.6 234 227 78.6 200 70.9
0.75 2.0 2.0 154 148 77.6 148 144 78.7 144 140 78.7 124 70.8

The univariate cases In the main text, we calculated the solution nmin from PSmin using
the univariate version of our formula (3.2). Here, we will investigate the performance of the
univariate formula, preparing Collett-Freedman’s formula (Freedman, 1982; Collett, 2003) as
the competitor. We consider the patterns of the group size ratios of a(1) = 0.25, 0.4, 0.5,

0.6 and 0.75, the effect sizes of ψ−1
1 = 1.2, 1.3, 1.5, 1.7, 2.0 and S

(1)
1 (τ) = 0.1 and 0.5. In this

paragraph, let n and nCF be the sample sizes calculated from the univariate version of (3.2) and
Collett-Freedman’s formula, respectively. Table D.4 is a list of n and nCF and their corresponding
empirical powers p̃1. Similarly to the tendency of Table D.3, the empirical powers corresponding
to n tend to go below the target power 1− β as a(1) is higher than 0.5 but to go above 1− β as
a(1) is lower than 0.5. However, the degree of the tendency is slightly smaller than the bivariate
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case. On the other hand, the empirical powers corresponding to nCF are farther from 1 − β as
a(1) gets farther away from 0.5, and the degree of the tendency is not so better. In any case,
the sample sizes calculated from the univariate version of (3.2) have better performance than
Collett-Freedman’s formula in the empirical powers. Similarly to the bivariate case, probably
there is some problem to violation of the normality and room for improvement is left, when the
group sizes are extremely unbalanced and/or the sample size n calculated from the formula is
relatively small.

Table D.4: Total numbers of participants (n and nCF) calculated from the univariate version of
(3.2) and Collett-Freedman’s formula and their corresponding empirical powers (p̃1) in the cases

of S
(1)
1 (τ) = 0.1 and 0.5.

S
(1)
1 (τ) = 0.5 S

(1)
1 (τ) = 0.1

a(1) ψ−1
1 n p̃1 nCF p̃1 n p̃1 nCF p̃1

0.25 1.2 3164 80.6 3020 78.7 1580 81.1 1456 77.9
0.25 1.3 1572 80.7 1472 78.1 780 81.6 696 76.9
0.25 1.5 696 80.9 632 77.5 344 82.5 292 76.3
0.25 1.7 428 81.5 376 76.5 208 83.1 172 76.0
0.25 2.0 268 82.1 228 76.2 128 84.0 100 74.6

0.40 1.2 2485 80.1 2442 79.6 1227 80.4 1190 79.2
0.40 1.3 1237 80.5 1210 79.5 607 80.9 582 79.4
0.40 1.5 550 80.5 532 79.6 265 81.5 250 78.7
0.40 1.7 340 80.9 327 79.8 162 82.5 152 79.9
0.40 2.0 212 81.9 205 79.8 100 82.6 92 79.7

0.50 1.2 2392 80.2 2398 80.2 1174 80.2 1178 80.3
0.50 1.3 1194 80.2 1200 80.4 580 80.5 582 80.5
0.50 1.5 532 80.2 538 80.9 254 80.9 256 81.2
0.50 1.7 328 80.5 334 81.3 154 81.1 158 82.1
0.50 2.0 208 81.0 214 82.1 96 81.8 100 83.1

0.60 1.2 2500 80.0 2553 80.7 1218 79.7 1261 81.2
0.60 1.3 1250 79.9 1290 81.1 600 79.8 631 81.6
0.60 1.5 558 79.9 586 81.9 261 80.0 283 83.1
0.60 1.7 345 80.0 370 83.0 158 80.2 176 84.3
0.60 2.0 220 80.8 240 84.2 98 80.6 113 85.8

0.75 1.2 3212 79.7 3376 81.5 1548 79.1 1685 82.4
0.75 1.3 1608 79.7 1726 82.3 760 78.9 857 83.6
0.75 1.5 720 79.5 802 84.2 329 78.8 394 85.7
0.75 1.7 448 79.5 513 85.1 200 78.7 252 87.3
0.75 2.0 285 80.2 340 86.9 124 78.9 165 89.3

E Computational program

We provide the code for the software R (ver 2.15.2) needed to calculate total numbers of par-
ticipants (n) calculated from (3.2) (R is a free software package that the user can download
from http://www.r-project.org/). In advance, please install the R of 32-bit version 2.15.2
and then the additional library package mvtnorm. For our computational program, the users can
download samplesize2.zip file from the web site

http://www.st.hirosaki-u.ac.jp/~sugimoto/samplesize2.zip

and extract three dll files (named theta_rho.dll, blogrank_stat.dll and libgcc_s_dw2-1.dll)
and one R script file (named samplesize2.R) from the samplesize2.zip file. The R script file
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consists of the following code and is defining the function named samplesize.2sep. Please
write this code on the R console by copy and paste:

samplesize.2sep<-function(alpha,power,a1,HR,Sc_e,ta,tf,corr,copula){

##### function to obtain theta corresponding to a given rho #####

thetarho <- function(rho0,cmp,Cp){

clayton=c(0,0.1010,0.2080,0.3277,0.4680,0.6415,0.8696,1.1963,1.7353,2.9366,4.6674)

gumbel=c(1,0.9033,0.8120,0.7249,0.6407,0.5582,0.4759,0.3918,0.3027,0.2003,0.1340)

frank=c(0,-0.7953,-1.6094,-2.4882,-3.4940,-4.7299,-6.3987,-8.9811,-13.943,-28.613,-57.610)

thetas=rbind(clayton,gumbel,frank)

colnames(thetas)=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95)

theta=thetas[rownames(thetas)==Cp,which.min(abs(as.numeric(colnames(thetas))-rho0))]

if(min(abs(as.numeric(colnames(thetas))-rho0))==0){return(c(theta,rho0))}

theta0=theta

dyn.load("theta_rho.dll")

theta=.Fortran("theta_rho",rho0,as.integer(cmp),theta=theta0)$theta

return(c(theta,arho))}

##### function to solve integral equation (3.3) #####

KBsolution <- function(alpha,power,rho,gamma,rsd,K){

if(det(rho) <= 0){print("no positive definite");break}

library(mvtnorm)

z_a = qnorm(1-alpha); ndel = 0.001; rn = round(runif(1)*1000); cad=1

KB = qmvnorm(power, corr=rho, tail="lower.tail")$quantile

for(j in 1:1000){

set.seed(rn)

KB1k = KB*gamma + z_a*(rsd[K]*gamma - rsd[1:(K-1)])

pow1 = pmvnorm(lower=rep(-Inf,K), upper=c(KB1k,KB), corr=rho)[1]

G = power - pow1; if(abs(G) < 0.00001 & G <= 0){break}

F1k = rep(0,K-1)

for(l in 1:(K-1)){

vndel = rep(0,K-1); vndel[l] = ndel

F1k[l] = pmvnorm(lower=c(rep(-Inf,l-1),KB1k[l],rep(-Inf,K-l)),

upper=c(KB1k+vndel,KB), corr=rho)[1]/ndel }

FK = pmvnorm(lower=c(rep(-Inf,K-1),KB),upper=c(KB1k,KB+ndel),corr=rho)[1]/ndel

dG = -t(F1k)%*%gamma - FK

KB = KB - G/dG

if(pow1<0.1){cad=cad+0.5; KB=cad*qnorm(sqrt(power))} }

return(c(KB))}

#### begin: the computation of sample size formula (3.2)

cmn=ifelse(copula=="clayton",1,ifelse(copula=="gumbel",2,ifelse(copula=="frank",3,0)))

taf=c(ta,tf); K=2

theta<-c(); for(k in 1:K){

theta[k]=thetarho(corr[k],cmn,copula)[1]}

##### begin: computation of bivariate logrank statistics

dyn.load("blogrank_stat.dll")

blogrank_stat<-.Fortran("blogrank_stat",a1,HR,Sc_e,taf,theta,as.integer(cmn),

delta=numeric(2),Rho=matrix(0,ncol=2,nrow=2),rSD=numeric(2))

##### end: computation of bivariate logrank statistics

delta=blogrank_stat$delta

rSD=blogrank_stat$rSD

Za=qnorm(1-alpha); Zb=qnorm(power)

n_single=(Zb+Za*rSD)^2/(delta^2)

Rho=blogrank_stat$Rho

KB=KBsolution(alpha,power,Rho,delta[1]/delta[2],rSD,K)

n=(KB+rSD[2]*Za)^2/(delta[2]^2)
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out<-list(n,ceiling(ceiling(n*a1)/a1),ceiling(ceiling(n_single*a1)/a1))

names(out) <- c("raw_n", "round_n", "single_n")

return(out)

#### end: the computation of sample size formula (3.2)

}

Please put the dll files of theta_rho.dll, blogrank_stat.dll and libgcc_s_dw2-1.dll into
your R working folder in advance, because these dll files are used in the above function samplesiz

e.2sep, where the former two dll files are composed of computational source codes written
originally by FORTRAN and the last dll file is not needed if some similar service is already
included in user’s PC environment.

The function named samplesize.2sep has night arguments, alpha, power, HR, a1, Sc_e,
ta, tf, corr and copula. The former eight arguments correspond to the notations α, 1 − β,

(ψ1, ψ2)
′, a(1), (S

(1)
1 (τ), S

(1)
2 (τ))′, τa, τf and (ρ(1), ρ(2))′ in this article, respectively, and the last

argument provides one selection of Clayton, Gumbel and Frank copulas.
The following example represents an application where α = 0.025, 1 − β = 0.8, a(1) = 0.5,

(ψ1, ψ2) = (1.2−1, 1.3−1), (S
(1)
1 (τ), S

(1)
2 (τ)) = (0.6, 0.3), τa = 2, τf = 3, (ρ(1), ρ(2)) = (0.8, 0.8)

and copula=“clayton”:

alpha=0.025 # input type I error for one-sided test

power=0.8 # input target power

a1=0.5 # input ratio of participants assigned to group 1

HR=c(1/1.5,1/1.3) # input hazard ratios between groups for endpoints 1 and 2

Sc_e=c(0.6,0.3) # input (ta+tf) years survival of the control

ta=2; tf=3 # input ta=entry time; tf=follow-up time

corr=c(0.8,0.8) # input correlations between two endpoints of groups 1 and 2

copula="clayton" # input copula model ("clayton", "gumbel","frank")

> samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,copula)

$raw_n

[1] 945.6165

$round_n

[1] 946

$single_n

[1] 682 810

This output is composed of three elements. The 1st element

samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,copula)$raw_n=945.6165

is the raw value of the total sample size n calculated from (3.2), and the 2nd element

samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,copula)$round_n=946

is a rounding value of the raw n by the rule
⌈
⌈a(1)n⌉/a(1)

⌉
, where ⌈x⌉ denotes the smallest

integer equal to or more than x. The numerical tables of the total sample sizes in the main text
and this supplemental material are created by the rounding values of n. The 3rd element

samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,copula)$single_n=(682,810)

represents the total sample size required to test the difference between two groups with the same
type I and II errors alpha and 1-power when each of two survival endpoints is regarded as a single
endpoint. That is, the maximum of the two sample sizes, max(samplesize.2sep$single_n)=810,
provides the practical solution PSmin.
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Finally, we will provide the confirmation of a part of numerical results of this article using
this function samplesize.2sep. Please see the 15th line from the bottom of Table 2 in the main
text or the 4th line from the bottom of Table D.2 in this supplemental material. The setting

parameters are α = 0.025, 1− β = 0.8, a(1) = 0.5, (ψ1, ψ2) = (1.2−1, 1.2−1), (S
(1)
1 (τ), S

(1)
2 (τ)) =

(0.5, 0.5), τa = 2, τf = 3, (ρ(1), ρ(2)) = (0.8, 0.8):

> alpha=0.025; power=0.8; a1=0.5; HR=c(1/1.2,1/1.2); Sc_e=c(0.5,0.5)

> ta=2; tf=3; corr=c(0.8,0.8)

> samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,"clayton")$round_n

[1] 3014

> samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,"gumbel")$round_n

[1] 2812

> samplesize.2sep(alpha,power,a1,HR,Sc_e,ta,tf,corr,"frank")$round_n

[1] 2760

F Application to discrete survival models of the scope in the
article

The main text of the article is discussed focusing on the continuous survival model. We here
apply the scope of the present article to discrete survival models. In particular, the two levels
case of the discrete models is of interest connected to binary data, even if this is appropriate
only in some narrow technical sense.

An extension measure of the hazard ratio defined by ψj(t) = λ
(2)
j (t)/λ

(1)
j (t) in the continuous

models is

ψj(t) =
dΛ

(2)
j (t)/(1− dΛ

(2)
j (t))

dΛ
(1)
j (t)/(1− dΛ

(1)
j (t))

, j = 1, 2 (F.1)

in the form which comprehends both discrete and continuous times T ∗
ij (see Cox (1975)). If the

jth response variables (T ∗
ij) are binary (constituted by the values of two levels), ψj(t) of (F.1)

reduces to the odds ratio.
The correlation between cumulative hazard variates,

ρ(k) =
cov

[
Λ
(k)
1 (T ∗

i1),Λ
(k)
2 (T ∗

i2)
]

√
var[Λ

(k)
1 (T ∗

i1)]

√
var[Λ

(k)
2 (T ∗

i2)]

, k = 1, 2

can be applied to the discrete survival model (see Prentice and Cai (1992)), where

cov
[
Λ
(k)
1 (T ∗

i1),Λ
(k)
2 (T ∗

i2)
]
=

∫ ∞

0

∫ ∞

0
S(k)(t−, s−)dΛ

(k)
1 (t)dΛ

(k)
2 (s)− 1,

and t− is a time just prior to t. Similarly to the main text, suppose that the joint survival function

is generated by S(k)(t, s) = C(S(k)
1 (t), S

(k)
2 (s); θ(k)) using some copula model C(·). Hence, if one

of survival variables (T ∗
i2) is discrete, we have

ρ(k) =
(∫∞

0

∑L
l=1 C

(
e−t,

∏l−1
j=1(1− ds̃j); θ

(k)
)
dtds̃l − 1

)
/

√
var[Λ

(k)
2 (T ∗

i2)],

where ds̃l = dΛ
(k)
2 (l) and the range of possible values of T ∗

i2 is {1, 2, . . . , L}. In particular, if
L = 2, that is, T ∗

i2’s are binary variables, then we can write

ρ(k) =
(
π
(k)
⋆1 +

∫∞
0 C

(
e−t, π

(k)
⋆2 ; θ(k)

)
dt− 1

)
/

√
π
(k)
⋆1 π

(k)
⋆2 , (F.2)
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where π
(k)
⋆s = Pr(T ∗

i2 = s | gi = k), s = 1, 2.

Table F.1 shows how ρ(k) of (F.2) varies corresponding to π
(k)
⋆2 = 0.1, . . . , 0.9 under the copula

models in cases where one of bivariate data is continuous and another is binary. The values of
θ(k) adopted for Table F.1 are obtained with ρ(k) = 0.95 in Figure 1. Even if θ(k) provides a
high value of ρ(k) in bivariate continuous data, we observe that ρ(k) corresponding to the same
θ(k) falls into a smaller value if either of the variables is transformed to binary data.

Table F.1: The values of ρ(k) under the three copula models in the case of continuous survival

and binary data for π
(k)
⋆2 = 0.1, 0.2, . . . , 0.9.

π
(k)
⋆2

Copula (θ(k)) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clayton (4.667) 0.746 0.772 0.746 0.697 0.635 0.562 0.480 0.384 0.266
Gumbel (0.1340) 0.723 0.769 0.761 0.727 0.678 0.616 0.539 0.443 0.315
Frank (9.554× 10−26) 0.750 0.798 0.785 0.746 0.691 0.624 0.543 0.445 0.314

The moment calculation of the statistic: the case with continuous survival and
binary variables. We consider the case where Ti1 is continuous survival outcome and Ti2 is
a binary variable. So, assume that Ti2 is uncensored and has the realized value of 1 or 2. Then,

note that dΛ
(k)
2 (1) = π

(k)
⋆1 , dΛ

(k)
2 (2) = 1, y

(k)
2 (1) = S

(k)
2 (0) = 1, y

(k)
2 (2) = S

(k)
2 (1) = 1−π(k)⋆1 = π

(k)
⋆2

and HL
j (1) = a(1)a(2). Hence, applying these results to (B.1), (B.2) and (B.4), the asymptotic

mean and variances for the logrank statistic for the binary endpoint, which is almost the same
as Pearson’s chi-square statistic, are

µ2(τ) = a(1)a(2)
(
π
(2)
⋆1 − π

(1)
⋆1

)
,

V22(τ) = a(1)a(2)
(
a(2)π

(1)
⋆1 π

(1)
⋆2 + a(1)π

(2)
⋆1 π

(2)
⋆2

)
and

V 0
22(τ) = a(1)a(2)πp⋆1π

p
⋆2,

(F.3)

where πp⋆2 = a(1)π
(1)
⋆2 + a(2)π

(2)
⋆2 = 1− πp⋆1. Similar argument yields the asymptotic covariance of

V12(τ) = a(1)a(2)
∫ τ

0
C(t)

S
(1)
1 (t)S

(2)
1 (t)

Sp
1 (t)

{
a(2)

dA(1)(t, 1)

S
(1)
1 (t)

+ a(1)
dA(2)(t, 1)

S
(2)
1 (t)

}
,

which can be approximated again using numerical integration, where dA(k)(t, s), s = 1, 2 are

dA(k)(t, 2) = 0 and dA(k)(t, 1) = S(k)(dt, 1)− S(k)(t, 1)

S
(k)
1 (t)

dS
(k)
1 (t).

Numerical study: continuous and binary co-primary endpoints. Suppose that the 1st
endpoint (Ti1) is continuous survival outcome and the 2nd (Ti2) is a binary variable, and prepare
typical cases that sample sizes and correlations are equal in the two groups (i.e., a(1) = 0.5,
ρ(1) = ρ(2)). We set baseline quantities for continuous and binary co-primary endpoints by

S
(1)
1 (τ) and π

(1)
⋆1 , and provide the correlation (ρ(k)) between continuous and binary endpoints by

the latent form (binary data can be generated from continuous variables, such as the result of
Table F.1). Similarly to Section 4.1, target power 1− β = 0.8, the significance level α = 0.025,
and the censoring distribution C(t) with τa = 2 and τf = 3 for the survival outcome are used.
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Table F.2 is a list of the total sample sizes n calculated from (3.2) and the corresponding empirical
powers p̃12 based on Monte-Carlo simulation, which are made selecting some combinations from

S
(1)
1 (τ) = 0.1, 0.4, π

(1)
⋆1 = 0.3, 0.7, latent ρ(k) = 0, 0.5, 0.8, ψ−1

1 = 1.5, 2.0 and ψ−1
2 = 1.5, 2.0, 2.5.

Then, the empirical powers of p̃12 are not smaller than the desirable power of 1 − β, although
the empirical powers become slightly larger than 1 − β as n is smaller. In this meaning, the
formula (3.2) gives an aspect of selectable methods in some settings of continuous and binary
co-primary endpoints.

Table F.2: The case with continuous survival and binary co-primary endpoints:
the 1st endpoint is survival outcome and the 2nd is binary.

latent (HR) (OR) Clayton Gumbel Frank
S

(1)
1 (τ) π

(2)
⋆1 ρ(k) ψ−1

1 ψ−1
2 n p̃12 n p̃12 n p̃12

0.1 0.3 0.0 1.5 1.5 1000 0.800 1000 0.800 1000 0.800
0.1 0.3 0.0 1.5 2.0 418 0.809 418 0.809 418 0.809
0.1 0.3 0.0 1.5 2.5 316 0.808 316 0.808 316 0.808
0.1 0.3 0.0 2.0 2.5 234 0.811 234 0.811 234 0.811
0.1 0.3 0.5 1.5 1.5 1000 0.801 1000 0.810 1000 0.801
0.1 0.3 0.5 1.5 2.0 412 0.807 406 0.807 406 0.808
0.1 0.3 0.5 1.5 2.5 312 0.808 306 0.811 306 0.806
0.1 0.3 0.5 2.0 2.5 232 0.807 232 0.811 232 0.809
0.1 0.3 0.8 1.5 1.5 1000 0.802 1000 0.808 1000 0.800
0.1 0.3 0.8 1.5 2.0 406 0.805 400 0.813 400 0.806
0.1 0.3 0.8 1.5 2.5 306 0.806 300 0.807 300 0.807
0.1 0.3 0.8 2.0 2.5 232 0.809 230 0.807 230 0.808
0.1 0.7 0.0 1.5 1.5 852 0.800 852 0.800 852 0.800
0.1 0.7 0.0 1.5 2.0 352 0.808 352 0.808 352 0.808
0.1 0.7 0.0 1.5 2.5 276 0.804 276 0.804 276 0.804
0.1 0.7 0.0 2.0 2.5 172 0.811 172 0.811 172 0.811
0.1 0.7 0.5 1.5 1.5 852 0.800 850 0.802 850 0.803
0.1 0.7 0.5 1.5 2.0 342 0.807 338 0.806 334 0.803
0.1 0.7 0.5 1.5 2.5 272 0.806 268 0.808 268 0.808
0.1 0.7 0.5 2.0 2.5 170 0.809 168 0.808 168 0.810
0.1 0.7 0.8 1.5 1.5 850 0.802 850 0.802 850 0.800
0.1 0.7 0.8 1.5 2.0 330 0.803 322 0.803 316 0.807
0.1 0.7 0.8 1.5 2.5 264 0.805 262 0.809 258 0.806
0.1 0.7 0.8 2.0 2.5 166 0.806 164 0.800 162 0.801

0.4 0.3 0.0 1.5 1.5 1020 0.802 1020 0.802 1020 0.802
0.4 0.3 0.0 2.0 2.0 382 0.810 382 0.810 382 0.810
0.4 0.3 0.5 1.5 1.5 1016 0.803 1008 0.804 1010 0.803
0.4 0.3 0.5 2.0 2.0 380 0.807 376 0.807 376 0.805
0.4 0.3 0.8 1.5 1.5 1012 0.804 1002 0.802 1002 0.802
0.4 0.3 0.8 2.0 2.0 378 0.806 374 0.805 374 0.806
0.4 0.7 0.0 1.5 1.5 888 0.803 888 0.803 888 0.803
0.4 0.7 0.0 2.0 2.0 304 0.807 304 0.807 304 0.807
0.4 0.7 0.5 1.5 1.5 880 0.803 872 0.802 870 0.804
0.4 0.7 0.5 2.0 2.0 302 0.807 298 0.806 296 0.802
0.4 0.7 0.8 1.5 1.5 870 0.804 864 0.803 862 0.802
0.4 0.7 0.8 2.0 2.0 296 0.802 294 0.805 292 0.802
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